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Abstract

We present quantum scattering calculations of4He and3He colliding with87Rb2. For both

helium isotopes, the elastic and inelastic rate coefficients are strongly influenced by theJ = 1

partial wave. For the lighter isotope a strong resonance feature of theJ = 1 partial wave is

responsible for an extremely efficient vibrational relaxation process. We also perform bound-

state calculations of the Rb2He complex for even Rb permutation symmetry and non-zero total

angular momentum. The global Rb2He3Σ+
u potential energy surface used supports four bound

states for4He and a single one for3He. We propose an analysis of the87Rb2
4He spectrum

separating the contributions of Rb2 rotation and helium motion.

∗To whom correspondence should be addressed
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Introduction

In recent years, the interest in producing dense samples of cold molecules as well as in detailed

studies of reactions and collisions at cold and ultra-cold temperatures is rising.1 In this context

cold collisions of helium atoms with rubidium dimers in their high spin state have been studied.2

A limitation of this former work2 is the restriction of the calculation to the zero total angular mo-

mentum partial wave. Here we extend the scattering studies to non-zero total angular momentum

using the three-dimensional potential energy surface for the lowest triplet state of the Rb2He com-

plex proposed by us.2 Our study concerns thev= 1, j = 0 rovibrational state of87Rb2 as the initial

state for collision with helium. All bound states of the complexes Rb23He and Rb24He with even

Rb atoms permutation symmetry have also been determined. A new code that relies on a high

order finite element method has been developed. It permits tocompute both bound and scattering

states.

The use of helium nanodroplets3,4 enabled the production and spectroscopic studies of high

spin alkali dimers and in particular rubidium dimers.5 Indeed during the doping process the col-

lision of two alkali atoms at the surface of the helium cluster leads preferentially to the high spin

state dimer. Singlet state dimers are absent because of their large binding energy which induces

a strong reduction of the cluster size by evaporation and most probably the detachment of the

formed dimer.5,6 Because of the very weak interaction between alkali dimers and helium atoms,

the high spin alkali dimers stay on the surface of the helium droplet. Among the numerous works

on Rb2HeN, experimental and theoretical works have been dedicated tothe understanding of the

vibrational relaxation dynamics of such adsorbed weakly bound dimers. The vibrational dynamics

of Rb2 on an helium droplet has been the subject of femtosecond pump-probe experiments7 from

which a relaxation time of 2 ns has been extracted for the 13Σ+
g electronic state and a 0.3 ns for the

lowest tripletΣ state. This value can be compared with the one for K2 in the first excited singlet

electronic state which is 6.6 ps.8 Even if in these experiments, the Rb2 dimer is adsorbed on an

helium surface, microscopic information on the vibrational relaxation of Rb2 induced by He could

provide some additional insight in understanding the observed decoherence process.
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The vibrational quenching mechanism of alkali dimers induced by collisions with helium atoms

has been theoretically addressed in the group of Gianturco9,10 for Li2 and Cs2. In particular, the

difference on the quenching cross sections for these two extreme cases, the light Li2 dimer and the

heavy Cs2 one, is explained by the different energy spacing of the vibrational levels, large for Li2

and small for Cs2. The mass of Rb2 would lead to conclude that the results for this dimer should

be closer to the Cs2 results than to the Li2 ones. However given the extremely shallow Cs2He

potential surface, direct conclusion on the behavior of thequenching in the case of rubidium is not

straightforward and calculations are needed.

In the following sections we present the theoretical approach used for the scattering calcula-

tions. Then we present both elastic and inelastic rate coefficients of the Rb2(v= 1, j = 0) + 3,4He

collisions. Finally the details of the bound state determination are presented before concluding

remarks.

Scattering calculations

Theory

Quantum calculations of the elastic and inelastic Rb2(v= 1, j = 0) + He→ Rb2(v′, j ′) + He col-

lision for partial waves with non-zero total angular momentum J have been performed with a

time-independent close coupling approach. As in a previouspaper,2 we employed the modified

version of the MOLCOL computer code11 with the resolution of the coupled equations by the

Johnson-Manolopoulos12 log-derivative propagator. It permits to obtainT matrix elements in the

space-fixed|v jℓJM〉 representation13 wherev and j are the vibrational and rotational quantum

numbers of the diatomic,ℓ is the orbital angular momentum of the relative particle, and J andM

are the total angular momentum quantum numbers of the atom-molecule system. This code has

been modified and extended to determine both bound and scattering states of the complex (see

below the section "Bound states").

In this work we are interested in collisions for the initial(v= 1, j = 0) rovibrational level. We
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computed the following rate coefficients :

KEl = ∑
J

KJ
El =

πh̄
µk10

∑
J
(2J+1)|TJ

10J,10J|2 (1a)

KRot = ∑
J

KJ
Rot =

πh̄
µk10

∑
J
(2J+1) ∑

j ′ 6=0
∑
ℓ′
|TJ

1 j ′ℓ′,10J|2 (1b)

KVib = ∑
J

KJ
Vib =

πh̄
µk10

∑
J
(2J+1) ∑

v′ 6=1
∑
j ′

∑
ℓ′
|TJ

v′ℓ′l ′,10J|2 (1c)

KIn = ∑
J

KJ
In = KRot+KVib, (1d)

whereTJ
v′ j ′ℓ′,v jℓ denotesT matrix elements for a total angular momentumJ between thev jℓ and

v′ j ′ℓ′ channels,k10 =
√

2µEcol is the initial wave-vector andµ is the reduced mass for the Rb2 +

He system. In these expressions,KEl is the elastic rate coefficient,KRot is the rate for changing

the rotational state without modification of the vibrational state, andKVib is the rate coefficient for

changing the vibrational state of the diatomic, with all possible final rotationalj ′ values. Since

the initial rotational state isj = 0, KRot is a rate for rotational excitation. In the energy range we

considered, thev= 2 vibrational level is not accessible energetically andKVib is thus the rate for

relaxation to the ground vibrational statev′ = 0. Finally,KIn is the inelastic rate for the(v= 1, j =

0) rovibrational level.

We included rovibrational states of87Rb2 with v = 0, . . . ,5 and j = 0,2, . . . ,48 in the close-

coupling expansion and we used a propagation distance ranging from 4 to 120a0. A discrete

variable representation (DVR) with 200 grid points equally spaced between 9 and 30a0 has been

used to determine the rovibrational states of87Rb2. The rotational constant of87Rb2 is 0.0148 K

and thev = 0 → v = 1 excitation energy is 18.223 K. Eighteen evenj rotational levels of the

vibrationalv= 0 ground state lie below the(v= 1, j = 0) level. All the results (elastic and inelastic)

which are displayed are converged to graphical accuracy.
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Figure 1: (color) Elastic rate coefficient,KEl, (black full line) for 4He + 87Rb2 collisions with the
initial v= 1, j = 0 rovibrational state of Rb2 as a function of the collisional energy in Kelvin. Some
relevant partial wave contributionsKJ

El are shown.

Elastic scattering

Figure 1 shows the elastic rate coefficientKEl for 4He. The collision energyEcol ranges from 50 mi-

croK to 18 K. At the highest collision energies it is necessary to include partial wave contributions

up toJ = 20 to obtain converged rate coefficients. For energies below20 milliK, the J = 0 partial

wave is the only one which contributes and the rate coefficient KEl increases asE1/2
col . KEl reaches a

maximum value of 1.4 10−9 cm3s−1 at 84 milliK with a main contribution coming from theJ = 1

andJ = 2 partial waves.

For scattering by a central potential, the phase-shiftδℓ for each value of the orbital angular

momentumℓ follows Wigner threshold laws. For a potential ranging asymptotically asCn/Rn, the

behavior ofδℓ whenk→ 0 reads14

δℓ ∝ kα , with α = min(2ℓ+1,n−2). (2)
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In the case of He+Rb2 (v= 1, j = 0) scattering, the initial orbital angular momentumℓ is equal to

the total angular momentumJ and the above relation can be transposed for the partial elastic rate

coefficientKJ
El as

KJ
El ∝ E

α− 1
2

col (3)

for small collisional energies. When considering a purelyC6/R6 long range interaction potential,

the Wigner threshold laws thus predict that the partial elastic rateKJ
El should increase asE1/2

col for

J = 0 and asE5/2
col for J = 1. The computed rate coefficients follow indeed very well this behavior.

For J ≥ 2 the computed rate coefficients shown in Figure 1 vary asEη
col whereη ≃ 3.9 instead of

E7/2
col as expected from Wigner threshold law withn= 6 andℓ≥ 2. This behavior can be explained

by the fact that the interaction potential as a function of the Jacobi Rb2-He distanceR is not strictly

speakingC6/R6 at large distances but the sum of twoC6/R6
RbHe rubidium-helium potential terms.

Indeed in the fitting procedure of the Rb2-He interaction potential2 a many-body decomposition

has been used. Because the 3-body term vanishes at large Rb2-He distances, the full potential

resumes to the two 2-body terms between the helium and each rubidium atom for largeR values.

Figure 2 illustrates the deviation of the Rb2-He isotropic component of the interaction potential

from a pureC6/R6 behavior. The relative deviation between the averaged potential, (V(R,θ = 0)+

2V(R,θ = 90))/3, relevant for the initialj = 0 state of the Rb2 molecule and a pureC6/R6 is given

in percent as a function of the distanceR in logscale. For large distances, the largest deviations

are observed for the linear (θ = 0) approach. At a distance ofR= 120a0, the actual interaction

potential deviates from aC6/R6 behavior by 5% for a linear approach of the helium atom. The

corresponding potential value for this geometry is around−10 microK. TheC6/R6 behavior is

however valid at very large Rb2-He distances and extremely small energies. For example atR=

350a0, the deviation to theC6/R6 behavior drops to 0.5% with potential values of the order of

−10 nanoK. These large distances take importance for energies which are lower than the ones

presented on Figure 1 for theseJ > 2 partial waves and the corresponding rate coefficients lie

below 10−14 cm3s−1.

Figure 3 presents results for the lighter3He isotope. Calculations withJ up to 20 have also
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Figure 2: Deviation in % of the isotropic component of the Rb2He interaction potential from a
C6/R6 behavior as a function of the Rb2-He distance in bohr. See text for details.

been found necessary to converge the rate coefficients in theconsidered energy domain. TheJ = 0

contribution is dominant below 0.7 milliK. This is much lower than for4He because of the very

strong resonance in theJ = 1 partial wave that occurs at 3.5 milliK where the rate coefficient

reaches 4 10−9 cm3s−1. The importance of theJ = 1 partial wave contribution for this isotope

renders the conclusions based on theJ = 0 partial wave2 rather limited. The applicability of the

Wigner threshold laws forJ = 0 andJ = 1 and the discussion for largerJ values (Figure 3) is

similar to the4He case.

Vibrational relaxation and inelastic scattering

The understanding of the vibrational damping mechanism of Rb2 on the surface of helium nan-

odroplets could benefit from information on the vibrationalrelaxation rate coefficientsKVib. Fig-

ures 4 and 5 showKVib for 4He and3He in the same collisional energy range as above. For both

helium isotopes we needed partial waves up toJ = 15 to get converged rate coefficients. At low
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Figure 3: (color) Elastic rate coefficient,KEl, (black full line) for 3He + 87Rb2 collisions with the
initial v= 1, j = 0 rovibrational state of Rb2 as a function of the collisional energy in Kelvin. Some
relevant partial wave contributionsKJ

El are shown.

collision energies, Wigner threshold laws predict that thepartialKJ
Vib rate coefficients vary as

KJ
Vib ∝ EJ

col. (4)

This behavior is valid below 10 milliK for theJ = 0 partial wave contribution which is nearly

constant for both3He and4He. We found numerically that the contribution of each relevant partial

wave varies asEJ
col at low energy.

TheJ = 1 partial wave has a strong influence on the global rate coefficient at energies which

lie in the 0.5 - 100 milliK range for4He and in the 1 microK - 10 milliK range for3He. This

is due to resonance features in theJ = 1 partial wave that appear as a peak for both isotopes. It

occurs at 63 milliK with a value of 1.42 10−11 cm3s−1 for 4He and at 3.2 milliK with a value of

2.76 10−10 cm3s−1 for 3He. We analyzed the evolution of the energy position of thesetwo J = 1

peaks as a function of the helium mass and we found that they are not related. When increasing the
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Figure 4: (color) Vibrational relaxation rate coefficient,KVib, (black full line) for4He +87Rb2(v=
1, j = 0) collisions as a function of the collisional energy in Kelvin. Some relevant partial wave
contributionsKJ

Vib are shown.

helium mass from3He to4He the first resonance of3He at 3.2 milliK goes below the(v= 1, j = 0)

threshold and the second resonance which appears as a littlehump at 100 milliK correlates to the

63 milliK peak seen in4He. In Figure 5 another resonance feature is present for theJ = 2 partial

wave contribution. It shows up as a peak at 0.7 milliK which amounts to 1.38 10−13 cm3s−1 in

KJ=2
Vib . Assuming that the resonance features are associated with an helium atom stuck for some

time around Rb2 and given that in our previous study2 we showed that the vibration of Rb2 has a

very small effect on the vibrationally averaged Rb2(v)-He interaction potential for low vibrational

v states we can conclude that the two low energy peaks observedon Figure 5 for theJ = 1 and

J = 2 partial waves are related to87Rb2
4He bound states. If one transposes thesev = 1 findings

to the case of thev = 0 ground vibrational state of Rb2, the increase of mass from3He to 4He

would be responsible for the modification of quasi-bound states of87Rb2
3He to the bound states of

87Rb2
4He labelled as 1− and 2+ (see below Table 1 and the discussion in section "Bound states").

For both isotopes the total vibrational relaxation rate coefficient is affected by these resonances in
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Figure 5: (color) Vibrational relaxation rate coefficient,KVib, (black full line) for3He +87Rb2(v=
1, j = 0) collisions as a function of the collisional energy in Kelvin. Some relevant partial wave
contributionsKJ

Vib are also shown.

theJ = 1 partial wave. The effect is about ten times larger for the lighter helium isotope.

Figure 6 shows the inelastic rate coefficientsKIn, for both helium isotopes. In the present

collisional energy range the inelastic rate coefficients lie below the elastic ones shown in Figures 1

and 3. Due to the definition ofKVib given in Eq. (1) and to the initial state considered in this

work, KIn is identical toKVib below the opening of the(v = 1, j = 2) level at 90 mk. Thus the

resonance features detailed above forKVib are the same in Figure 6. For collisional energies above

90 milliK, vibrational relaxation turns out to be much less efficient than rotational excitation and

KIn ≃ KRot ≫ KVib. For both isotopes,KVib amounts to a few 10−12 cm3s−1 whereasKIn reaches

10−10 cm3s−1. For 3He the magnitude of the resonance at 3.2 milliK is such that the vibrational

relaxation rate coefficient is as important as the rotational excitation observed for higher collision

energies.
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Figure 6: (color) Inelastic rate coefficients,KIn, for 4He +87Rb2(v= 1, j = 0) and3He +87Rb2(v=
1, j = 0) collisions as a function of the collision energy in Kelvin.

Bound states

An extension of our scattering code has been done to enable bound state calculations. To this

end we developped a high-order finite element method to represent theFJ
v jℓ(R) radial functions in

the close coupling expansion. The total domain of atom-diatom Jacobi distancesR is split into

elements in which the radial wavefunctions are expanded over high degree polynomials. This pro-

cedure permits to build the hamiltonian matrix. Radial wavefunctions are then enforced to vanish

at both endpoints of the domain and bound states are obtainedby diagonalization of the hamil-

tonian matrix. Alternative boundary conditions, for example R-matrix boundary conditions, can

be used at the right endpoint of the integration domain to compute the continuum states. They are

determined at each energy by solving a real symmetric linearequations system and are further used

to generate the scattering states with the usual asymptoticbehaviour. We tested the stability and

accuracy of this method on several model systems and reproduced accurately the results presented

in the previous section. We also considered the CO-He complexbound states and obtained good

11



agreement with Peterson and Mc Bane15 who used the BOUND program.16,17

In the case of the Rb2-He complex, an extended totalR-domain ranging from 4a0 to 200a0

has been used to ensure that the very diffuse character of thebound states is properly represented.

The total range was divided into 49 elements of equal width inwhich the radial wavefunction was

expanded on polynomials of degree 20. Rovibrational states with v = 0,1 and evenj ≤ 24 have

been used in the close-coupling expansion. The resulting hamiltonian matrix is of order 25974. It

is very sparse with a filling factor equal to 9 10−4. The eigenvalues and eigenvectors were obtained

with a sparse real symmetric matrix diagonalizer based on the FEAST algorithm.18

The energy levels are summarized in Table 1 for both isotopes. We found that the lighter

87Rb2
3He complex has only one bound state withJ = 0 and that the87Rb2

4He complex has four

bound states, one for each partial waveJ = 0 and 1 and two forJ = 2. Our calculations show

that there is only one bound state forJ = 0 for both helium isotopes as already concluded in

an indirect way for3He in a previous paper.2 The four levels of the heavier complex have been

represented schematically on Figure 7. They are denoted by their JΠ symmetry quantum numbers

whereΠ = (−1) j+ℓ denotes the parity of the complex. In addition to the energy,Table 1 presents

the v jℓ channels on which the wave-function has a non-negligible amplitude. This amplitude is

characterized by the partial norm (PN) of the wavefunction in a given channelv jℓ, defined by the

expression:

PNJ
v jℓ =

∫ ∞

0
|FJ

v jℓ(R)|2dR. (5)

The sum ofPN values over allv jℓ channels is 1 because the wavefunction is normalized to unity.
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Figure 7: Schematic representation of the four87Rb2
4He bound state energy levels denoted by

theirJΠ label.
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Table 1: Bound state energy levels in milliK for the87Rb2
4He and87Rb2

3He complexes. The
zero of energy is taken for separated87Rb2(v = 0, j = 0) and He systems. The partial normPN
illustrates the expansion of the eigenfunctions onv jℓ channels. See text for the definition. Only
PN values larger than 1% have been indicated in the table.

J Π E v, j, ℓ PN in %

87Rb2
4He 0 + −205.0 0,0,0 85

0,2,2 13
0,4,4 2

87Rb2
4He 1 - −112.8 0,0,1 77

0,2,1 16
0,2,3 4
0,4,3 2

87Rb2
4He 2 + −119.2 0,2,0 83

0,4,2 6
0,0,2 5
0,2,2 4
0,2,4 1

87Rb2
4He 2 - −45.5 0,2,1 94

0,2,3 4
0,4,3 2

87Rb2
3He 0 + −87.2 0,0,0 93

0,2,2 6

Table 1 and Figure 7 show that the energy ordering of the levels while increasing the total

angular momentumJ from 0 to 2 is non monotonous because the energy of the 2+ level lies below

the one of the 1− level. The expansion of the corresponding eigenfunctions shows that from 0+

to 2+ the main channel shifts fromj = 0 to j = 2 while for the 0+ to 1− it shifts from ℓ = 0 to

ℓ= 1. These shifts are denoted by∆ j and∆ℓ on Figure 7. For an isolated Rb2 diatomic, thej = 2

level lies 90 milliK above thej = 0 ground level. For the Rb2He complex, the energy difference

E(2+)−E(0+) is roughly the same with a 85.8 milliK value and we can assume that this state

represents a rotating Rb2 molecule with a surrounding attached He atom whose mass contributes

to the lowering of the effective rotational constant of Rb2. Because the dominant channel has also
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anℓ= 0 value the helium density of this 2+ state should be similar to the one of the 0+ ground state.

For the 1− state, we expect a strong modification of the helium probability density with respect

to 0+ because of theℓ = 1 dominant character of the wave-function. Thus the energy difference

E(1−)−E(0+) = 92.2 milliK is not related to the rotation of the Rb2 which stays predominantly

in the j = 0 channel.

Figure 8: (color) Iso-density surfaces of theJ = 0 eigenfunctions for87Rb2
4He (left panel) and

87Rb2
3He (right panel). The volume inside the dark green isosurface contains 30% of the proba-

bility to find helium and the one inside the light green surface 70%. A cut of the Rb2 He potential
energy surface is given in thezyplane with color codes such as blue is repulsive, red is attractive
and white corresponds to the asymptotic limit. Thezdirection lies along the Rb2 axis.

Figure 8 presents the probability densities for theJ = 0 eigenfunctions of Rb24He and Rb23He

together with a cut of the interaction potential. It shows iso-density surfaces corresponding to the

expansion onto thev= 0 vibrational state of the Rb2 dimer. The iso-density surfaces were chosen

such that they contain a volume corresponding to 30% and 70% of the probability to find helium.

A cut of the potential energy surface is also presented in thezyplane as an eye guide. We used the

equilibrium Rb2 distance to produce the color map of the interaction potential. The repulsive part

of the potential is clearly seen in blue surrounded by a reddish attractive part. The global minimum

of the surface2 corresponds to a T-shape geometry with a distance He-Rb2 of 11.9 a0 and has

14



a depth of 3.73 K with respect to the Rb2 + He asymptote. The asymptotic potential value is

represented in white. The same scale is used for both helium isotopes underlying the more diffuse

character of the wavefunction of the lighter helium isotope(right panel). The two isosurfaces for

4He are torii surrounding the waist of the Rb2 molecule. The dark green isosurface for3He has

the same torus shape. However the light green isosurface for3He is split into two parts: an outer

prolate ellipsoid and an inner peanut. The inner peanut follows the repulsive part of the interaction

potential seen in dark blue in the figure. The density is maximum on a circle of radius 14.4a0 for

4He and 15a0 for 3He lying in thexy plane of the Rb2 waist. It decreases to a small but non-zero

value when going along the Rb2 axis as seen in the figure for3He and in quantum Monte Carlo

studies.19,20

The J = 0 ground state energy can be compared with the published19,20 ground state energy

of 85Rb2
4He. These calculations were performed within the rigid rotor approximation and used a

quantum Monte Carlo approach. A value of−192.9±0.4 milliK was obtained19 while a slightly

higher value−172.2±0.4 milliK is found by Gianturco and co-workers20 on an alternative po-

tential energy surface. Direct comparison with the value given in Table 1 is to be avoided given

that in the present work the vibration of Rb2 is included and more important that the above studies

concern85Rb2.

Conclusions

In this work, we have studied the vibrational relaxation of87Rb2(v= 1, j = 0) in its ground triplet

state induced by collisions with3He and4He isotopes in the cold and ultra cold regimes. Both

elastic and inelastic rate coefficients have been determined for collisional energies ranging from

10 microK to 10 K. We also determined all the bound states of87Rb2
3He and87Rb2

4He with even

Rb atom permutation symmetry. For that purpose we have developed a new code that generates

both scattering states and bound states. It relies on a high order finite element method to represent

the radial functions in the close coupling expansion.
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We found that vibrational relaxation is very efficient at lowcollisional energies for both helium

isotopes due to a strong resonance feature in theJ = 1 partial wave. Nevertheless the elastic

rate stays above the inelastic rate in the considered energydomain. A detailed analysis of the

behavior at very small energies of the partial wave contributions to the elastic rates demonstrates

the influence of the asymptoticR−6 potential forJ ≥ 2.

87Rb2
3He supports only one bound state withJΠ = 0+ symmetry.87Rb2

4He supports a total

of four bound states, one for each symmetryJΠ = 0+,1−,2+ and 2−. The non monotonous energy

ordering as a function ofJ has been analyzed through the expansion of the bound state eigen-

functions on thev jℓ channels. TheJΠ = 0+ eigenfunctions for both helium isotopes show both a

localized density around the waist of Rb2 and a diffuse but non-zero helium density along the Rb2

axis.

In the present work we did not take into account hyperfine and spin rotation terms in the Rb2

molecule. However a detailed spectroscopic analysis of87Rb2 in the lowest triplet state21 has

shown their importance. These terms have been included in the rotational relaxation studies of

Cs2-He and of Li2-He by Gianturco and co-workers.22,23 Work dedicated to assess their role in

the collisional observables for Rb2-He is in progress. Another limitation of the present results is

the exclusive use of the lowv = 1 vibrational state of Rb2 as the initial state. The effect of low

vibrationally excited states up tov = 4 has been found to be small in theJ = 0 partial wave.2

Preliminary calculations forJ > 0 showed also a small effect on low vibrationally excited states.

However rate coefficients for highly excited states close tothe dissociation limit might be strongly

affected. Analysis of Rb2(v, j = 0) + He scattering with a largev could bring a better understand-

ing of the relaxation process observed in pump-probe experiments on helium clusters. Moreover

information about scattering from Rb2(v, j > 0) would allow to discuss the efficiency of buffer

gas cooling24 for this high spin alkali dimer. To our kwnowlege this technique has not yet been

employed for alkali dimers. Finally, a more refined analysisof the helium density for bound states

with J > 0 is needed to better understand the energy spectrum of Rb2
4He.
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