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Abstract

We present quantum scattering calculation$¢é and®*He colliding with®’Rby,. For both
helium isotopes, the elastic and inelastic rate coefficients are strongly iodéididay thel = 1
partial wave. For the lighter isotope a strong resonance feature dfth# partial wave is
responsible for an extremely efficient vibrational relaxation processaMb perform bound-
state calculations of the RHe complex for even Rb permutation symmetry and non-zero total
angular momentum. The global Rie 3% potential energy surface used supports four bound
states for*He and a single one foiHe. We propose an analysis of th&Rby*He spectrum

separating the contributions of Riotation and helium motion.

*To whom correspondence should be addressed



| ntroduction

In recent years, the interest in producing dense samplesldfreolecules as well as in detailed
studies of reactions and collisions at cold and ultra-celdgeratures is rising.In this context
cold collisions of helium atoms with rubidium dimers in thhigh spin state have been studied.
A limitation of this former work is the restriction of the calculation to the zero total aaguho-
mentum partial wave. Here we extend the scattering studiasrt-zero total angular momentum
using the three-dimensional potential energy surfacen®tdwest triplet state of the RHe com-
plex proposed by ud.Our study concerns the= 1, j = 0 rovibrational state di’Rb, as the initial
state for collision with helium. All bound states of the cdexes Rb3He and Rb*He with even
Rb atoms permutation symmetry have also been determined.wAcade that relies on a high
order finite element method has been developed. It permasrtpute both bound and scattering
states.

The use of helium nanodroplét$ enabled the production and spectroscopic studies of high
spin alkali dimers and in particular rubidium dimex$ndeed during the doping process the col-
lision of two alkali atoms at the surface of the helium cluséads preferentially to the high spin
state dimer. Singlet state dimers are absent because ofdtgg binding energy which induces
a strong reduction of the cluster size by evaporation and mabably the detachment of the
formed dimer>® Because of the very weak interaction between alkali dimedshatium atoms,
the high spin alkali dimers stay on the surface of the helivoplkgt. Among the numerous works
on RipHey, experimental and theoretical works have been dedicatétetanderstanding of the
vibrational relaxation dynamics of such adsorbed weaklynglodimers. The vibrational dynamics
of Rb, on an helium droplet has been the subject of femtosecond {puoige experimentsfrom
which a relaxation time of 2 ns has been extracted for ?rigblectronic state and a 0.3 ns for the
lowest tripletZ state. This value can be compared with the one fpirkthe first excited singlet
electronic state which is.6 ps Even if in these experiments, the Rélimer is adsorbed on an
helium surface, microscopic information on the vibratioedaxation of Rb induced by He could

provide some additional insight in understanding the olesedecoherence process.
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The vibrational quenching mechanism of alkali dimers iretlioy collisions with helium atoms
has been theoretically addressed in the group of Giantdftior Li, and Cs. In particular, the
difference on the quenching cross sections for these twerext cases, the light £dimer and the
heavy Cs one, is explained by the different energy spacing of theatibnal levels, large for Li
and small for Cs. The mass of Rbwould lead to conclude that the results for this dimer should
be closer to the Gsresults than to the kiones. However given the extremely shallow,Be
potential surface, direct conclusion on the behavior oflrenching in the case of rubidium is not
straightforward and calculations are needed.

In the following sections we present the theoretical apgnazsed for the scattering calcula-
tions. Then we present both elastic and inelastic rate casitis of the Rp(v =1, j = 0) + >*He
collisions. Finally the details of the bound state deteation are presented before concluding

remarks.

Scattering calculations

Theory

Quantum calculations of the elastic and inelastig®b= 1, j = 0) + He — Rbp(V, j’) + He col-
lision for partial waves with non-zero total angular moment] have been performed with a
time-independent close coupling approach. As in a previsyeer? we employed the modified
version of the MOLCOL computer codewith the resolution of the coupled equations by the
Johnson-Manolopould$ log-derivative propagator. It permits to obtdirmatrix elements in the
space-fixedvj/JM) representatiol® wherev and j are the vibrational and rotational quantum
numbers of the diatomid, is the orbital angular momentum of the relative particled drandM

are the total angular momentum quantum numbers of the atoleemle system. This code has
been modified and extended to determine both bound and rhegtitates of the complex (see
below the section "Bound states").

In this work we are interested in collisions for the initigl= 1, j = 0) rovibrational level. We



computed the following rate coefficients :

Kel = Z K = ko Z (2J+1) |T10] 100/ (1a)
Hkio o ’
Kvb = K= (21+1) Vz |TW,|, 1wl (1c)
3 Ko = s 3. 12
KIn = ZKm - KRot"‘ KVib7 (1d)

WhereT\/J,g, vie denotesT matrix elements for a total angular momentdrbetween thesj¢ and

V' j'¢’ channelsk;p = +/2UEq is the initial wave-vector ang is the reduced mass for the Rb

He system. In these expressioKsy is the elastic rate coefficieniKret is the rate for changing
the rotational state without modification of the vibratibsiate, anKy;, is the rate coefficient for
changing the vibrational state of the diatomic, with all gibke final rotationalj’ values. Since
the initial rotational state i$ = 0, Krot iS a rate for rotational excitation. In the energy range we
considered, the = 2 vibrational level is not accessible energetically &g, is thus the rate for
relaxation to the ground vibrational state= 0. Finally,Kj, is the inelastic rate for ther=1, j =

0) rovibrational level.

We included rovibrational states 8fRb, with v=0,...,5 andj = 0,2, ...,48 in the close-
coupling expansion and we used a propagation distancengfigim 4 to 120ay. A discrete
variable representation (DVR) with 200 grid points equapigced between 9 and 3@ has been
used to determine the rovibrational state$@h,. The rotational constant §fRh, is 0.0148 K
and thev = 0 — v = 1 excitation energy is 1823 K. Eighteen even rotational levels of the
vibrationalv = 0 ground state lie below the =1, j = 0) level. All the results (elastic and inelastic)

which are displayed are converged to graphical accuracy.
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Figure 1: (color) Elastic rate coefficierkg;, (black full line) for*He +87Rb, collisions with the
initial v=1, j = O rovibrational state of Rbas a function of the collisional energy in Kelvin. Some
relevant partial wave contributioﬂ@I are shown.

Elastic scattering

Figure 1 shows the elastic rate coeffici&igf for “He. The collision energk.o ranges from 50 mi-
croK to 18 K. At the highest collision energies it is neceggsarinclude partial wave contributions

up toJ = 20 to obtain converged rate coefficients. For energies b2williK, the J = 0 partial

1/2

wave is the only one which contributes and the rate coeffiédgnincreases ai_;

. Kgj reaches a
maximum value of ¥ 102 cm®s 1 at 84 milliK with a main contribution coming from thie= 1
andJ = 2 partial waves.

For scattering by a central potential, the phase-shifior each value of the orbital angular
momentun¥ follows Wigner threshold laws. For a potential ranging aptotically asC,/R", the

behavior ofd, whenk — 0 reads*

& kY, with o = min(2¢+1,n—2). (2)



In the case of He+Rb(v = 1, j = 0) scattering, the initial orbital angular momenténs equal to
the total angular momentuthand the above relation can be transposed for the partidicetase
coefficientk, as

1
KZ 0 Egy, 2 3)

for small collisional energies. When considering a pu@jyR® long range interaction potential,

the Wigner threshold laws thus predict that the partialt'mtlatateKé, should increase &5Y/2

col
5/2
col

for
J=0and a%£ ), forJ= 1. The computed rate coefficients follow indeed very weBb thehavior.
ForJ > 2 the computed rate coefficients shown in Figure 1 var&gaﬁwheren ~ 3.9 instead of

7/2
col

E.. as expected from Wigner threshold law witk= 6 and/ > 2. This behavior can be explained
by the fact that the interaction potential as a function efiacobi Rp-He distancdr is not strictly
speakingCs/R® at large distances but the sum of t@@/Rnge rubidium-helium potential terms.
Indeed in the fitting procedure of the Rble interaction potentidla many-body decomposition
has been used. Because the 3-body term vanishes at laggdeRttistances, the full potential
resumes to the two 2-body terms between the helium and eadatiuo atom for largeR values.
Figure 2 illustrates the deviation of the RBle isotropic component of the interaction potential
from a pureCg/RE behavior. The relative deviation between the averagedfiatgV (R, 6 = 0) +

2V (R, 8 =90))/3, relevant for the initiaj = 0 state of the Rppmolecule and a pui€/RC is given

in percent as a function of the distanRen logscale. For large distances, the largest deviations
are observed for the linea6 (= 0) approach. At a distance &= 120 ag, the actual interaction
potential deviates from @/R® behavior by 5% for a linear approach of the helium atom. The
corresponding potential value for this geometry is arowdd microK. TheCg/R® behavior is
however valid at very large REHe distances and extremely small energies. For examge-at
350ag, the deviation to th<§:6/R6 behavior drops to 0.5% with potential values of the order of
—10 nanoK. These large distances take importance for esevgiech are lower than the ones
presented on Figure 1 for thede> 2 partial waves and the corresponding rate coefficients lie

below 10 4 cmés 1.

Figure 3 presents results for the lighfitte isotope. Calculations with up to 20 have also
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Figure 2: Deviation in % of the isotropic component of theoRbé interaction potential from a
Ce/R® behavior as a function of the RiHe distance in bohr. See text for details.

been found necessary to converge the rate coefficients cotisedered energy domain. The=0
contribution is dominant below 0.7 milliK. This is much lowihan for*He because of the very
strong resonance in the= 1 partial wave that occurs at 3.5 milliK where the rate cogffit
reaches 4 10° cm®s~1. The importance of thd = 1 partial wave contribution for this isotope
renders the conclusions based on dhe 0 partial waveé rather limited. The applicability of the
Wigner threshold laws fod = 0 andJ = 1 and the discussion for largérvalues (Figure 3) is

similar to the*He case.

Vibrational relaxation and inelastic scattering

The understanding of the vibrational damping mechanism of &bthe surface of helium nan-
odroplets could benefit from information on the vibratiorelbxation rate coefficientsy;,. Fig-
ures 4 and 5 showy;, for “He and®He in the same collisional energy range as above. For both

helium isotopes we needed partial waves ug to 15 to get converged rate coefficients. At low
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Figure 3: (color) Elastic rate coefficierkg;, (black full line) for3He +87Rb, collisions with the
initial v=1, j = O rovibrational state of Rbas a function of the collisional energy in Kelvin. Some
relevant partial wave contributioﬂ@I are shown.

collision energies, Wigner threshold laws predict thatghsial K\J,iIO rate coefficients vary as

Kvip 0 Egg- (4)

This behavior is valid below 10 milliK for thd = 0 partial wave contribution which is nearly
constant for botfHe and*He. We found numerically that the contribution of each ratepartial
wave varies ag; | at low energy.

TheJ =1 partial wave has a strong influence on the global rate caaftiat energies which
lie in the 0.5 - 100 milliK range fofHe and in the 1 microK - 10 milliK range fotHe. This
is due to resonance features in the- 1 partial wave that appear as a peak for both isotopes. It
occurs at 63 milliK with a value of #2 1011 cm®s 1 for “He and at 2 milliK with a value of
2.76 1010 cmis~1 for 3He. We analyzed the evolution of the energy position of thasel = 1

peaks as a function of the helium mass and we found that tleayatrelated. When increasing the
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Figure 4: (color) Vibrational relaxation rate coefficieKt;p, (black full line) for*He +8'Ri (v =
1,j = 0) collisions as a function of the collisional energy in KelviBome relevant partial wave
contributionsKy,, are shown.

helium mass fronfHe to*He the first resonance 8He at 3.2 milliK goes below thev=1, j = 0)
threshold and the second resonance which appears as auittie at 100 milliK correlates to the
63 milliK peak seen iffHe. In Figure 5 another resonance feature is present fat & partial
wave contribution. It shows up as a peak at filliK which amounts to 138 10713 cmPs™1 in
K{ip2. Assuming that the resonance features are associated niklmm atom stuck for some
time around Rp and given that in our previous stutlyve showed that the vibration of Rihas a
very small effect on the vibrationally averaged-Rl-He interaction potential for low vibrational
v states we can conclude that the two low energy peaks observ&iyure 5 for thel = 1 and

J = 2 partial waves are related #Rb,*He bound states. If one transposes thesel findings
to the case of the = 0 ground vibrational state of Rbthe increase of mass frofte to“He
would be responsible for the modification of quasi-bountestaf®’Rb,3He to the bound states of
8’Rby*He labelled as 1 and 2" (see below Table 1 and the discussion in section "Bound states")

For both isotopes the total vibrational relaxation rateffocient is affected by these resonances in
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Figure 5: (color) Vibrational relaxation rate coefficieKt;p, (black full line) for3He +8'Ri (v =
1,j = 0) collisions as a function of the collisional energy in KelviBome relevant partial wave
contributionsKy,,, are also shown.

theJ = 1 partial wave. The effect is about ten times larger for tgbtkr helium isotope.

Figure 6 shows the inelastic rate coefficieig, for both helium isotopes. In the present
collisional energy range the inelastic rate coefficierbklow the elastic ones shown in Figures 1
and 3. Due to the definition iy, given in Eq. (1) and to the initial state considered in this
work, K, is identical toKy;, below the opening of thév = 1, j = 2) level at 90 mk. Thus the
resonance features detailed abovelgp are the same in Figure 6. For collisional energies above
90 milliK, vibrational relaxation turns out to be much legBogent than rotational excitation and
Kin ~ Krot > Kvip. For both isotopevir, amounts to a few 102 cm®s~! wherea, reaches
10~10 cmis~1. For3He the magnitude of the resonance at 3.2 milliK is such thewthrational
relaxation rate coefficient is as important as the rotatiereitation observed for higher collision

energies.
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Figure 6: (color) Inelastic rate coefficienk§,, for *He +8'Rbp(v= 1, j = 0) and®He +8'Rby(v=
1,j = 0) collisions as a function of the collision energy in Kelvin.

Bound states

An extension of our scattering code has been done to enabledbstate calculations. To this
end we developped a high-order finite element method to $epteheFij£(R) radial functions in
the close coupling expansion. The total domain of atomedialacobi distanceR is split into
elements in which the radial wavefunctions are expandediogé degree polynomials. This pro-
cedure permits to build the hamiltonian matrix. Radial wawetions are then enforced to vanish
at both endpoints of the domain and bound states are obthynédthgonalization of the hamil-
tonian matrix. Alternative boundary conditions, for exdenR-matrix boundary conditions, can
be used at the right endpoint of the integration domain toprgethe continuum states. They are
determined at each energy by solving a real symmetric liegaations system and are further used
to generate the scattering states with the usual asymjetiaviour. We tested the stability and
accuracy of this method on several model systems and repeddaccurately the results presented

in the previous section. We also considered the CO-He contjgard states and obtained good
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agreement with Peterson and Mc Baheho used the BOUND prograif:1”

In the case of the RbHe complex, an extended tot&tdomain ranging from 4g to 200ay
has been used to ensure that the very diffuse character bbthel states is properly represented.
The total range was divided into 49 elements of equal widtthich the radial wavefunction was
expanded on polynomials of degree 20. Rovibrational statgswe= 0,1 and evenj < 24 have
been used in the close-coupling expansion. The resultinglteeian matrix is of order 25974. It
is very sparse with a filling factor equal to 910 The eigenvalues and eigenvectors were obtained
with a sparse real symmetric matrix diagonalizer based effBAST algorithm:®

The energy levels are summarized in Table 1 for both isoto#s found that the lighter
8’Rb,3He complex has only one bound state with- 0 and that thé’Rb,*He complex has four
bound states, one for each partial wave- 0 and 1 and two fod = 2. Our calculations show
that there is only one bound state fbe= 0 for both helium isotopes as already concluded in
an indirect way for’He in a previous papér.The four levels of the heavier complex have been
represented schematically on Figure 7. They are denoteaeindt' symmetry quantum numbers
wherell = (—1)I*¢ denotes the parity of the complex. In addition to the eneFghle 1 presents
thevj/ channels on which the wave-function has a non-negligiblpléumae. This amplitude is
characterized by the partial normN) of the wavefunction in a given channej/, defined by the

expression:
PNy = | IR (RIPAR (5)

The sum ofPN values over ali/j¢ channels is 1 because the wavefunction is normalized tg.unit

o+
Figure 7: Schematic representation of the f8(Rby*He bound state energy levels denoted by
their J™ label.
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Table 1: Bound state energy levels in milliK for tBéRb,*He and®’Rb,3He complexes. The
zero of energy is taken for separafé®b,(v = 0, j = 0) and He systems. The partial noiPN
illustrates the expansion of the eigenfunctionsvghchannels. See text for the definition. Only
PN values larger than 1% have been indicated in the table.

JIn E V,j,¢ | PNin %

8’Rby*He 0| + | —2050|0,0,0 85
0,2,2 13

0,4,4 2

8’'Rb,*He 1| -|-1128|0,0,1 77
0,2,1 16

0,2,3 4

0,4,3 2

8'Rby*He 2| +|-11920,2,0 83
0,4,2 6

0,0,2 5

0,2,2 4

0,2,4 1

8’'Rby*He 2| - | —-455 |0,2,1 94
0,2,3 4

0,4,3 2

8’Rby3He 0| +| —872 |0,0,0 93
0,2,2 6

Table 1 and Figure 7 show that the energy ordering of the sewslile increasing the total
angular momenturd from 0 to 2 is non monotonous because the energy of tHew&l lies below
the one of the 1 level. The expansion of the corresponding eigenfunctitwusvs that from 0
to 2+ the main channel shifts from= 0 to j = 2 while for the 0 to 1~ it shifts from/ =0 to
¢ = 1. These shifts are denoted By andA/ on Figure 7. For an isolated Ridiatomic, thej = 2
level lies 90 milliK above thg = 0 ground level. For the Rible complex, the energy difference
E(27) —E(0") is roughly the same with a 85.8 milliK value and we can assume this state
represents a rotating Rimnolecule with a surrounding attached He atom whose massilmateis

to the lowering of the effective rotational constant of,RBecause the dominant channel has also
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an/ = 0 value the helium density of this'Ztate should be similar to the one of the@round state.
For the I state, we expect a strong modification of the helium proiighdensity with respect
to 0" because of thé = 1 dominant character of the wave-function. Thus the eneiffgrence

E(17)—E(0") =922 milliK is not related to the rotation of the Rhbwhich stays predominantly

in the j = 0 channel.

Figure 8: (color) Iso-density surfaces of the= 0 eigenfunctions fof’Rby*He (left panel) and
8’'Rp3He (right panel). The volume inside the dark green isoserfamtains 30% of the proba-
bility to find helium and the one inside the light green suef@®%. A cut of the RpHe potential
energy surface is given in ttey plane with color codes such as blue is repulsive, red isctittea
and white corresponds to the asymptotic limit. Hdirection lies along the Rhbaxis.

Figure 8 presents the probability densities fordhe 0 eigenfunctions of RifHe and Rb®He
together with a cut of the interaction potential. It shows density surfaces corresponding to the
expansion onto the = 0O vibrational state of the Rldimer. The iso-density surfaces were chosen
such that they contain a volume corresponding to 30% and 7#G#e grobability to find helium.

A cut of the potential energy surface is also presented izyipéane as an eye guide. We used the
equilibrium Rb distance to produce the color map of the interaction paéentihe repulsive part
of the potential is clearly seen in blue surrounded by a s#dditractive part. The global minimum

of the surfacé corresponds to a T-shape geometry with a distance HeeRli1.9 ay and has
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a depth of 373 K with respect to the Rb+ He asymptote. The asymptotic potential value is
represented in white. The same scale is used for both hesiotoges underlying the more diffuse
character of the wavefunction of the lighter helium isot@pght panel). The two isosurfaces for
4He are torii surrounding the waist of the Rimolecule. The dark green isosurface féte has
the same torus shape. However the light green isosurfac#iois split into two parts: an outer
prolate ellipsoid and an inner peanut. The inner peanuivalthe repulsive part of the interaction
potential seen in dark blue in the figure. The density is maxmon a circle of radius 14.4, for
“He and 15a for 3He lying in thexy plane of the Rpwaist. It decreases to a small but non-zero
value when going along the Rlaxis as seen in the figure f8He and in quantum Monte Carlo
studies!®20

The J = 0 ground state energy can be compared with the publiSif@djround state energy
of 8Rb,*He. These calculations were performed within the rigid reqmproximation and used a
quantum Monte Carlo approach. A value-e1929+ 0.4 milliK was obtained® while a slightly
higher value—1722+ 0.4 milliK is found by Gianturco and co-workef® on an alternative po-
tential energy surface. Direct comparison with the valuegiin Table 1 is to be avoided given
that in the present work the vibration of Ris included and more important that the above studies

concerrf®Rb,.

Conclusions

In this work, we have studied the vibrational relaxatiof@b,(v = 1, j = 0) in its ground triplet
state induced by collisions wittHe and*He isotopes in the cold and ultra cold regimes. Both
elastic and inelastic rate coefficients have been detedrforecollisional energies ranging from
10 microK to 10 K. We also determined all the bound staté¥Rb,°He and®’Rb,*He with even
Rb atom permutation symmetry. For that purpose we have dexela new code that generates
both scattering states and bound states. It relies on a Inigit bnite element method to represent

the radial functions in the close coupling expansion.
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We found that vibrational relaxation is very efficient at lowallisional energies for both helium
isotopes due to a strong resonance feature inJteel partial wave. Nevertheless the elastic
rate stays above the inelastic rate in the considered erdengain. A detailed analysis of the
behavior at very small energies of the partial wave contioims to the elastic rates demonstrates
the influence of the asymptotit ® potential for > 2.

8’'Rhy3He supports only one bound state wifth = 0 symmetry.8’Rb,*He supports a total
of four bound states, one for each symmeffy= 0*,1~,2* and 2". The non monotonous energy
ordering as a function ad has been analyzed through the expansion of the bound stge-ei
functions on thevj¢ channels. Tha™ = 0* eigenfunctions for both helium isotopes show both a
localized density around the waist of Rénd a diffuse but non-zero helium density along the Rb
axis.

In the present work we did not take into account hyperfine g otation terms in the Rb
molecule. However a detailed spectroscopic analysi$’Rb, in the lowest triplet statet has
shown their importance. These terms have been includeceimafiational relaxation studies of
Cs-He and of Lp-He by Gianturco and co-worker8:23 Work dedicated to assess their role in
the collisional observables for RitHe is in progress. Another limitation of the present residt
the exclusive use of the low= 1 vibrational state of Rbas the initial state. The effect of low
vibrationally excited states up o= 4 has been found to be small in tde= 0 partial wave?
Preliminary calculations fod > 0 showed also a small effect on low vibrationally excitedesta
However rate coefficients for highly excited states clostéodissociation limit might be strongly
affected. Analysis of RiV, j = 0) + He scattering with a largecould bring a better understand-
ing of the relaxation process observed in pump-probe exmaris on helium clusters. Moreover
information about scattering from R{v, j > 0) would allow to discuss the efficiency of buffer
gas cooling* for this high spin alkali dimer. To our kwnowlege this teoiué has not yet been
employed for alkali dimers. Finally, a more refined analygdithe helium density for bound states

with J > 0 is needed to better understand the energy spectrumHeb
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