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ABSTRACT 32 

Estradiol signaling is ideally suited for analyzing molecular and functional linkages between the different layers of 33 

information directing transcriptional regulations: DNA sequence, chromatin modifications and the spatial 34 

organization of the genome. Hence, estrogen receptor (ER) can bind at a distance from its target genes and engages 35 

timely and spatially coordinated processes to regulate their expression. In the context of the coordinated 36 

regulations of co-linear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a 37 

challenging question. Here, we investigated the coordination of such regulatory events at a 2 Mb genomic locus 38 

containing the estrogen-sensitive TFF cluster of genes in breast cancer cells. We demonstrated that this locus 39 

exhibits a hormone and cohesin-dependent reduction in the plasticity of its three-dimensional organization that 40 

allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using 41 

triplex forming oligonucleotides, we could precisely document the functional links between ER engagement at 42 

given ERBSs and the regulation of particular genes. Hence, our data evidence a formerly suggested cooperation of 43 

enhancers towards gene regulations, and also show that redundancy between ERBSs can occur. 44 

 45 

INTRODUCTION 46 

In Mammals, gene transcription relies on complex and highly organized regulatory processes, which include 47 

binding of transcription factors to cognate DNA sequences (cis elements), chromatin structure and epigenetic 48 

information, the action of additional factors in trans (cofactors and RNA Polymerase II (Pol II) machinery) and the 49 

spatial organization of the genome (1-5). Signaling pathways initiated by steroid hormones, such as 17β-estradiol 50 

(E2), provide model systems to study these different layers of transcription regulation in mammalian cells. Indeed, 51 

exposure to estrogens leads to transcriptional changes of cell-specific gene repertoires, which are mediated by E2-52 

bound Estrogen Receptors (ESR1 -ER throughout the manuscript- and ESR2) (6). On model gene promoters, such as 53 

TFF1, ER together with a number of its cofactors associate with cognate binding sites (BS) in a cyclic manner to 54 

direct their transcription (7, 8). The spatial organization of the genome also determines the coordinated expression 55 

of genes (9, 10). This is notably the case for ER, where the existence of clusters of co-regulated genes can originate 56 

from genetic and epigenetic information or from chromatin dynamics itself. In some instances, such coordinated 57 

regulation of co-linear genes depends on a single regulating unit [e.g., HBB, Mrf4 and Hox clusters (11-13)]. 58 

Genome-wide analyses of ER binding sites (ERBSs) have demonstrated that ER binds only rarely to the proximal 59 

promoter of its target genes, but is mobilized onto intergenic and intronic sequences (14), which have been 60 

proposed to communicate with target genes via long-distance intrachromosomal interactions (15). Whether these 61 

distant elements are acting as global regulators for clustered E2-responsive genes is still an intriguing question. In 62 

addition, these genome-wide studies also showed that additional transcription factors are required for the accurate 63 

targeting of ER onto cognate sequences along the whole genome (16). These factors include FOXA1 (17), TFAP2C 64 

(19), and PBX1 (20). Among those, FOXA1 may act as an allosteric sensor for histone marks associated with active 65 

or poised chromatin (such as H3K4 mono/di-methylation), and it is therefore considered as a pioneer factor 66 
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preparing chromatin for subsequent binding of ER (21-23). 67 

We aimed here to obtain functional and mechanistic evidence that distant ERBSs elements actually constitute 68 

global regulators for clustered E2-responsive genes. To do so, we engaged an extensive analysis of mechanisms 69 

involved in the coordination of the estrogenic response of one cluster of E2-sensitive genes in breast carcinoma 70 

cells. These studies were performed in different breast cancer cell lines: MCF-7 cells that constitutively express 71 

both ER and FOXA1, and in MDA-MB231 cells that were engineered to constitutively express ER [cells named 72 

MDA::ER; (24)] but not FOXA1. Comparative observations made in these two cell lines allowed us to interrogate 73 

whether the introduction of ER in MDA-MB231 cells is sufficient to recapitulate regulatory processes observed in 74 

MCF-7 at the TFF locus. The combination of chromosome conformation capture methods (3C/4C) with ChIP-chip 75 

experiments and the use of triple helix forming oligonucleotides (TFOs), which allows testing the functional 76 

importance of individual enhancers, defined key molecular features specifying the transcriptional response induced 77 

by E2. We show that, in both cell types, ER engages similar mechanisms to regulate transcription of co-regulated 78 

gene clusters, in particular through long-range and dynamic interactions between multiple ERBSs and its target 79 

genes. By interfering specifically with the association of ER with given ERBSs, we were also able to determine the 80 

relative importance of these different BSs in the regulation of corresponding E2-dependent genes. 81 

 82 

MATERIALS AND METHODS 83 

Reagents. All chemicals, restriction or modification enzymes were obtained from Sigma, Roche or New England 84 

Biolabs. All primers and siRNAs were purchased from Sigma. Antibodies were from from Abcam, Millipore or 85 

SantaCruz (Actin: sc-8432; CTCF: 07-729; ER: HC20 and ab10[TE111-SD1]; FOXA1: ab23738 and RAD21: ab992). The 86 

anti-Scc1/RAD21 was a gift from Dr. JM Peters and the anti-hCAPD2 Eg7.2 was previously published (25) BACs were 87 

purchased from Invitrogen (RP11-814F13, CTD-2337B13, RP11-35C4, CTD-260o11, RP11-113F1, CTD-1033M14). 88 

 89 

Triplex forming oligonucleotides (TFOs). We developed a python algorithm (available upon request) following the 90 

rules defined in (26) to design putative TFOs targeting 15-30 bp long oligopyrimidine-oligopurine tracts included 91 

within ERBSs (Table 1), with one possible divergent base from a strict polyA/G sequence. Triplex formation was 92 

monitored in vitro by incubating increasing amounts of TFOs with DNA duplexes for 16h at 37°C in a buffer 93 

containing 10 mM MgCl2, 100 mM NaCl, 50 mM Tris-HCl (pH 7.4), 10% glycerol and 0.5 mg/ml tRNA. Complexes 94 

were separated by native electrophoresis on polyacrylamide gel containing 10 mM MgCl2 and 50 mM Tris-HCl (pH 95 

7.4) and visualized by methylene blue staining. 96 

 97 

Cell culture and reverse-transcription. MCF-7, MDA-MB231 and MDA-MB231 cells stably expressing ERα [MDA::ER 98 

(24)] were maintained in DMEM (Gibco) containing 5% fetal calf serum (FCS, BioWest) and antibiotics (Roche) at 99 

37°C under 5% CO2. MDA::ER media was supplemented with 0.8 mg/ml hygromycin (Calbiochem). For experiments 100 

requiring treatment with E2, cells were cultivated for 2 days in DMEM without phenol red containing 2% charcoal-101 
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stripped FCS (csFCS; BioWest) prior to the addition of E2 (10
-8

M final concentration). Total RNAs from 10
7
 cells were 102 

purified using TrizolTM reagent (Life Technologies, Inc.) according to the manufacturer’s instructions. Two μg of 103 

RNA served as template for M-MLV reverse transcriptase (Invitrogen) and Pd(N)6 random hexamers (Amersham 104 

Pharmacia Biosciences).  105 

 106 

Transfections. 2.5x10
6
 cells were plated in 9cm dishes in DMEM/5%FCS for 16h and then grown for 24h in 107 

DMEM/2.5% csFCS. Media was then replaced with 4 ml of FCS and antibiotics free Opti-MEM (Sigma) and 1 µmol 108 

siRNAs (sense: Luciferase, AACACUUACGCUGAGUACUUCGA; CTCF, GGAGCCUGCCGUAGAAAUU; RAD21, 109 

GGUGAAAAUGGCAUUACGG) or 10 µmol TFOs were then transfected using oligofectamine as recommended by the 110 

manufacturer (Invitrogen). Following 6h of incubation, the media was completed with 125 µl of csFCS, and E2 111 

stimulation (10
-8

M) was done 36h later.  112 

 113 

Western blotting. Half cells from confluent 9cm-diameter dishes were directly lysed in sample buffer, and 114 

subjected to classical SDS-PAGE. Proteins were transferred onto Hybond nitrocellulose membrane (Amersham) for 115 

2h, which were subsequently blocked in PBS or TBS complemented with 0.1% Tween-20/4% dry milk for 1 h at 4°C. 116 

Membranes were then incubated overnight at 4°C with primary antibodies at appropriate concentrations (CTCF: 117 

1/2000; Scc1/RAD21: 1/1000; ER: 1/2500; FOXA1: 1/2500; β-Actin: 1/5000 and 1/2000 for anti-hCAPD2 Eg7.2). 118 

Following three successive washes, blots were further incubated for 1h at room temperature using appropriate 119 

peroxidase-coupled secondary antibodies diluted at 1/10,000 in PBS or TBS plus 0.1% Tween-20/4% dry milk. 120 

Western blots were revealed by the ECL detection kit (Amersham). 121 

 122 

DNA-FISH. Probes were produced by direct labelling of BACs clones through random priming (Bioprime array CGH 123 

genomic labeling system, Invitrogen) using fluorochrome conjugated nucleotides (dUTP-alexa fluor 488 from 124 

Invitrogen or dUTP-cyanine 3 from Perkin Elmer). Before use, probes were denatured 5min at 80°C and then 30min 125 

at 37°C. Cells were grown for two days on glass slides in DMEM without phenol red containing 2.5% csFCS. After 126 

addition of 10
-8

M E2 or ethanol (vehicle), slides were washed with PBS, and then fixed in 2% paraformaldehyde 127 

(PFA) for 10 min at 4°C. PFA fixed cells were permeabilized in 0.5% Triton X-100 and equilibrated in 1X SSC for 5 128 

min. Slides were incubated one hour with 20ug/mL RNAseA in 1X SCC at 37°C and then sequentially washed 3 times 129 

with PBS, incubated in 2% PFA for 10 min at room temperature, in HCl 100mM for 10 min and then in 0.5% Triton 130 

for 10 min, with 3 washings with PBS between each step. Slides were then subjected to denaturation through 131 

sequential heating at 73°C in 70% formamide/ 30% 2X SSC for 7 min and then 3 min in 50% formamide / 50% 2X 132 

SSC. Hybridization with 600ng of labelled denatured DNA probes was performed overnight at 42°C in hybridization 133 

buffer (per 800µL: 200µL 25% Dextran sulfate; 100µL 20X SSC; 500µL deionised formamid) containing 150µg of Cot-134 

I (Invitrogen) and 150µg of Salmon Sperm DNA. Slides were rinsed three times in 2X SSC, in 50% formamide/50% 2X 135 
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SSC 20 min at 42°C and three times in 2X SCC again. Nuclei were stained with DAPI in 2X SSC for 5 min and then 136 

slides were mounted in ProLong Gold antifade reagent (Invitrogen) with a 22*40 coverslip. 137 

 138 

Cytogenetic analysis. MCF-7 and MDA cells were plated in Lab-TekTM chamber slides (Nunc Thermo Scientific) and 139 

observed daily until they reached a stage of active division. Cells were then harvested using a MultiPrep Genie 205 140 

apparatus (Genial Genetics) according to the recommendations of the manufacturer. After R-banding, twenty 141 

metaphases were captured and analysed. Complementary analysis using fluorescence in situ hybridization (FISH) 142 

was carried out according to standard procedures as described in (27). Slides were analysed with an epifluorescent 143 

microscope Olympus BX61 and images were captured using Isis® software (MetaSystems). 144 

 145 

Microscopy and image analysis. Stacks were obtained with a 63x oil immersion objective of a DMRXA (LEICA) 146 

microscope or a Zeiss apotome (63x objective). Measurements of nuclear area and distance between the centroid 147 

of each probe were performed under Image J (http://rsbweb.nih.gov/ij/). Distances were determined in 2D, since 148 

pilot experiments did not evidence any qualitative difference between 2D and 3D-FISH experiments (data not 149 

shown). Entire stacks were taken for all selected nuclei (non-mitotic and containing the expected 3 pairs of 150 

hybridization signals), and the three channels (red, green and blue) were isolated using the «DeInterleave» plugin. 151 

Pictures in z (distance of 0.3 µm) containing maximum red or green signal intensities were selected for all channels, 152 

merged and then tresholded to eliminate background from specific signals for distance measures. We used the 153 

DAPI (blue channel) pictures to consistently determine the nucleus area, calculated following the determination of 154 

a threshold fluorescence value corresponding to an entry transition into the nucleus. This value was manually 155 

determined as the inflection point of a profile plotting DAPI signal measured in a 10 pixel large longitudinal window 156 

crossing the nucleus against pixel distance. Images from up to 100 nuclei were analyzed in each experiment. 157 

Significant variations between experimental conditions were tested by a Fisher t-test comparison for unpaired data, 158 

with a significance threshold set for p-values ≤0.05. To calculate 3D volumes, we first segmented automatically the 159 

3-dimensional hybridization signals for each of the color channel using the triangle algorithm (28) implemented in 160 

ImageJ. After a cleaning step consisting of the successive application of an opening and closing filter, the 3D-161 

volumes of the structures resulting from the union of the two segmentation masks were measured and expressed 162 

as voxels.  To analyse the kinetic FISH experiment, we had to develop a custom Matlab (MathWorks, Natick, 163 

Massachusetts) image processing routine in order to quantitatively analyze the high number of images. For that, 164 

we used the maximum intensity projections of the 3-dimensional stacks acquired by fluorescence microscopy. The 165 

analysis steps were performed automatically to avoid potential bias associated to manual intervention. The nuclei 166 

were segmented on the DAPI channel using the Otsu approach (29) and a watershed algorithm (30) was applied to 167 

separate touching nuclei. For detecting the fluorescence spots on the images corresponding to each FISH probe, we 168 

used the algorithm developed by Sbalzarini and Koumoutsakos (31). A first filtering step was performed to remove 169 

the very dim spots and those located outside the nuclei. The intensities of the remaining spots were estimated and 170 
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substracted to the local background. We only kept the spots whose intensity was exceeding the threshold TI, which 171 

was calculated as follows: TI = <I> + n*σI , with <I> and σI, the mean and the standard deviation of the spot 172 

intensities, respectively, and n a user-defined integer. On a subset of images, we compared the spots detected by 173 

the automatic analysis and those selected by manual inspection. By setting n to 5, we optimized the matching 174 

between the automatic and manual selections. The intensity spots corresponding to the two FISH probes were 175 

paired based on a nearest neighbor criterion. FISH pair distances exceeding 20 pixels were not considered. We 176 

noted that our approach was robust towards the choice of the integer n as similar distance distributions were 177 

obtained for 3 < n < 7.  178 

 179 

Microarray and mRNA profiling data analyses. RNAs for microarray analysis were isolated from 20
7
 MCF7 or 180 

MDA::ER cells treated with E2 or ethanol as vehicle control using the RNeasy Plus Mini Kit (Qiagen) with 181 

homogenization through QIAShredders (Qiagen). Integrity and purity of the RNAs were controlled on an Agilent 182 

Bioanalyzer using the RNA 6000 Nano Assay (Agilent). Ten µg of selected samples exhibiting a RIN >9.8 were then 183 

subjected to cDNA synthesis using the Superscript Double-Stranded cDNA Synthesis Kit (Invitrogen) and a mix of 50 184 

pmol random hexamers and 50 pmol of Oligo-dT. cDNAs were then treated for 10 min at 37°C with 5 μg RNaseA 185 

(Invitrogen), purified through a phenol:chloroform:isoamyl alcohol extraction on Phase Lock light gels (Fisher 186 

Scientific) and then precipitated. Following a quality control on agarose/BET gels, all subsequent steps (labeling of 187 

cDNA, hybridization and scanning of the arrays) were performed at the NimbleGen service facilities (Rejkyavic, 188 

Island). For each experimental condition, three arrays (NimbleGen Homo sapiens 385K Array) were hybridized with 189 

independently prepared pools of cDNAs synthesized from experimental triplicates (independent experimental and 190 

biological triplicates). Quantile normalization of the data through the RMA algorithm and all primary analyses were 191 

performed using the ArraySTar software suite (DNAstar, Inc.). Data were filtered according to two criteria: i) 192 

expression values greater than the first quartile in all samples of at least one triplicate; and ii) triplicate standard 193 

deviations lower than the third quartile in all triplicates. Experimental groups were compared by analysis of 194 

variances (t-test) and p-values were adjusted by the Benjamini and Hochberg method. Genes were considered as 195 

differentially expressed between two experimental conditions when their adjusted p-value was lower than 0.05 196 

and their fold change greater than 1.8. Estrogen-sensitive clusters were then defined by sliding a window of 197 

variable sizes and counting the number of E2-regulated genes within these windows. The best empirically defined 198 

parameters were to define clusters as regions comprising at least 3 regulated genes within a window of 7 genes. 199 

 200 

FAIRE assays. Formaldehyde-assisted isolation of regulatory elements [FAIRE; (32)] methodology was conducted as 201 

previously (23). 202 

 203 

Chromatin immunoprecipitation. Cells were washed twice with PBS, and cross-linked during 10 min at room 204 

temperature using 1.5% formaldehyde (Sigma) diluted in PBS. Following a subsequent incubation with 0.125 M 205 
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glycin for 2 min, the cells were collected in 1 ml collection buffer [100 mM Tris-HCl (pH 9.4) and100 mM DTT]. Cells 206 

were then washed in 1 ml PBS, lysed for 15 min at room temperature in 300 µl of lysis buffer [10 mM EDTA, 50 mM 207 

Tris-HCl (pH 8.0), 1% SDS, 0.5% Empigen BB (Sigma)], and chromatin sonicated during 14 min using a BioRuptor 208 

apparatus (Diagenode), with 30 sec on/off duty cycles. Chromatin was then cleared through a 10 min centrifugation 209 

at 10,000 x g. ChIP experiments were then conducted with some modifications from previous protocol (2) using a 210 

tenth of the chromatin samples (30 μl) of the supernatants as inputs, and the remainder diluted 5-fold in IP buffer 211 

[2 mM EDTA, 100 mM NaCl, 20 mM Tris-HCl (pH 8.1), and 0.5%Triton X-100]. A 1/4
th

 of this fraction was subjected 212 

to immunoprecipitations overnight after a 3 hr preclearing at 4°C with 10 μg yeast tRNA and 80 μl of a 50% protein 213 

A-Sepharose bead (Amersham Pharmacia Biosciences) slurry. Complexes were recovered after 3 hr incubation at 214 

4°C with 5 μg yeast tRNA and 40 μl of protein A-Sepharose. Precipitates were then serially washed, using 300 μl of 215 

Washing Buffers (WB) I [2 mM EDTA, 20 mM Tris-HCl (pH 8.1), 0.1% SDS, 1% Triton X-100, 150 mMNaCl], WB II [2 216 

mM EDTA, 20 mM Tris-HCl (pH 8.1), 0.1% SDS, 1% Triton X-100, 500 mM NaCl], WB III [1 mM EDTA, 10 mM Tris-HCl 217 

(pH 8.1), 1% NP-40, 1% Deoxycholate, 0.25 M LiCl] and then twice with 1 mM EDTA, 10 mM Tris-HCl (pH 8.1). 218 

Precipitated complexes were removed from the beads through two sequential incubations with 50 μl of 1% SDS, 219 

0.1 M NaHCO3. Cross-linking was reversed by an overnight incubation at 65°C. DNA was purified on NucleoSpin™ 220 

columns (Macherey-Nagel) using 50 µl NTB buffer. Subsequent qPCR analysis used 1 μl of input material and 3 μl of 221 

ChIP samples. 222 

 223 

ChIP-on-chip assays and analysis of published datasets. The ChIP procedure conducted on chromatin prepared 224 

from 15.10
6
 cells was similar to the one described above with the following modifications for final steps. 225 

Crosslinking was reversed by an overnight incubation at 65°C with 10 µg of Proteinase K (Sigma). Following a 226 

subsequent incubation of the samples with 2.5 µg RNAse (Sigma) for 1h at 37°C, the DNA was then purified on 227 

NucleoSpin™ columns (Macherey-Nagel) using NTB buffer and eluted in 40 µl of elution buffer. Efficiency of the 228 

ChIP assay was then evaluated using qPCR positive and negative controls. Experimental input and ChIP triplicates 229 

were then pooled by precipitation, resuspended in 25 µl H2O, and divided in two for amplification using the WGA 230 

whole genome amplification kit (Sigma). Following a quality control step, the amplified material was pooled and 231 

sent to NimbleGen services (Rejkyavic, Island) for hybridization on custom 385K arrays. These arrays were 232 

conceived by spotting genomic regions containing clusters of E2-regulated genes as defined from MDA::ER and 233 

MCF-7 estrogen-sensitive transcriptomes, as well as regions containing individual control cell-specific estrogen-234 

sensitive genes (cf. Table 2). ChIP-chip signals normalization and peak calling steps were performed using the MA2C 235 

algorithm (33) on raw data obtained from two arrays hybridized with DNA prepared in two independent 236 

experiments. MA2C parameters were: robust normalization (C=1) and peak calling for a minimum of 4 probes 237 

(maximum gap set at 400 bp) in a sliding window of 300 bp half-width. All binding sites determined in our ChIP-chip 238 

experiments were confirmed by independent ChIP-qPCR assays, except the CTCFBS identified in the TFF1 promoter 239 

which was found to be antibody- and experiment-dependent. This site was therefore not included in the statistical 240 



8 

 

examinations of our data. Analysis of published Affymetrix tiling arrays data (ER and Pol II ChIP-chips performed in 241 

MCF-7 cells) were analyzed under MAT (34). All genomic annotations were performed using algorithms present 242 

within the cistrome web-platform [http://cistrome.dfci.harvard.edu/ap; (35)]. MCF-7 ChIP-seq data for CTCF and 243 

RAD21 (concatenation of fastq obtained in duplicate experiments) and corresponding input were extracted from 244 

the GSE25710 series and aligned onto indexed chromosomes of genome hg18 using bowtie-0.12.7 (36) with 245 

parameters -p 7, --best, -m 1, -n 1, --sam and –l 28. The .sam files were then converted to .wig files, using samtools-246 

0.1.12a (37) and MACS-1.3.7.1 (38). To compare RAD21 ChIP-seq datasets obtained in vehicle and estradiol-treated 247 

cells, we adjusted the bias of diverging sequencing depths through a linear normalization (factor of 2.1) of signal 248 

intensities of a given .wig so as to be comparable to the .wig file with the highest sequencing depth. Peak calling 249 

was then performed as previously described (39). 250 

 251 

Triplex capture experiments. Triplex capture assays were performed on transfected cells which were subsequently 252 

cross-linked by 2% formaldehyde and lysed by sonication as described above. Sonicated chromatin was then 253 

incubated for 4h with streptavidin-coated magnetic beads (Dynal) that were blocked with 10 µg/ml BSA and 10 254 

µg/ml yeast tRNA for 1h. Captured DNA was eluted by two rounds of elution in 0.1% SDS, purified following 255 

digestion with proteinase K and RNaseA and analyzed by qPCR.  256 

 257 

Chromosome conformation capture (3C) and circular 3C (4C). Methods were adapted from (40), and used the 258 

DpnII 4-base cutter as an enzyme of choice. Following a 5 min centrifugation at 2,000 x g, aliquots of 2.10
6
 cross-259 

linked cells were washed with 200 μl of 1X DpnII buffer, and then lyzed overnight at 37°C in 200 μl of 1X DpnII 260 

buffer containing 0.3 % SDS with shaking. Following 2 passages through a syringe needle, 400 μl of 1X DpnII buffer 261 

were sequentially added in 4 times, and SDS was sequestered with 67 μl of 20 % Triton X-100 at 37°C for 1h. 50 μl 262 

of the reaction mixture were then kept as input fraction for digestion efficiency controls. 550 μl of the chromatin 263 

preparation were then digested overnight with 400 U DpnII at 37°c with shaking in a total volume of 500 μl of 264 

digestion buffer containing protease inhibitors (Roche). An additional step of 6h digestion with 150 U DpnII was 265 

then performed. 50 μl of the digested chromatin was then kept for digestion efficiency controls, whilst the 266 

remaining was kept at 4°C during this step. To control the digestion efficiency, both input and digested aliquots 267 

were incubated with 9.5% SDS for 20 min at 65°C. Cell fragments were then eliminated by centrifugation at 12,000 268 

x g for 5 min. 117 μl of TE buffer were then added together with 5 μl of 10 μg/μl RNAse A (Sigma) and the mixture 269 

was incubated at 37°C for 30 min before the addition of 8 μl of 5M NaCl and 10 μl of 10 μg/μl of Proteinase K 270 

(Sigma). Cross- linking was then reversed overnight at 65°C, and DNA purified on Macherey-Nagel columns. qPCR 271 

were then performed on input and digested fractions to calculate the digestion efficiency as follows: E%= 272 

[1.9^(CtInput-Ctsample)
test region

/1.9(Ctinput-Ctsample)
control region

]*df*100, where the dilution factor (df) was =0.98360 273 

[(50/610)/(50/600)], and the control region a region that contains no DpnII fragment. If this % was > 85%, the 274 

remaining digested chromatin was subjected to a final lysis step by addition of 108 μl of 10% SDS and incubation at 275 
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65°C with shaking for 20 min. Two μg of digested chromatin, as evaluated from the amounts of DNA recovered in 276 

the digested fraction using a NanoDrop were then incubated for 1h at 37°C with 40 μl of 20 % Triton X-100 in a 277 

total volume of 694 μl of Ligation buffer (10 mM Tris-HCl pH=7.8; 0.1 μg/μl BSA and protease inhibitors). Ligations 278 

for 3C or 4C experiments were then performed at 16 °C with gentle agitation for 4h or 5 days respectively. For 3C, 279 

10 μl of T4 DNA ligase were added in the reaction mixture together with 80 μl of its buffer, 8 μl of 10 μg/μl BSA and 280 

8 μl of 100 mM ATP (total volume of 800 μl/DNA concentration=2.5 ng/μl). For the 4C samples, requiring a more 281 

diluted concentration of DNA, 906 μl of H20 were first added and then 160 μl of 10X T4 DNA ligase buffer, 16 μl of 282 

10 μg/μl BSA, 16 μl of 100 mM ATP and 15 μl of T4 DNA ligase (total volume of approx. 1800 ml). The ligation mix 283 

was replenished at days 2 and 4 with ATP (20 μl of 100 mM ATP). Following these 5 days of ligation, 4C samples 284 

were further incubated for 1.5h with 1 ul of T4 DNA ligase in order to ensure that the ligase fills any nicks in the 285 

circularized 3C products. The cross-linking of either 3C or 4C DNA products was then reversed overnight at 65°C 286 

following the addition of EDTA (1 mM final), NaCl (0.2 M final) and 10 or 20 μl of 10μg/μl proteinase K. Samples 287 

were then subjected to three successive phenol/chloroform/isoamylalcohol (25:24:1) extractions followed by a 288 

chloroform washing step, diluted 4 times in water and precipitated at -20°C for 2h by 2 volumes of isopropanol. 289 

Following centrifugation at 13, 000 x g, samples were then washed 3 times with 1 volume of 75% EtOH and 290 

resuspended in 50 μl of TE. 3C samples were then processed for analysis. In contrast, the circularized 3C products 291 

(4C) generated by the 5 day ligation were then purified from linear DNA by a combined digestion with 7 μl of 292 

exonuclease I and 2 μl of exonuclease III (New England BioLabs) in a total volume of 100 μl of 1X exonuclease I 293 

buffer. Circular DNA was then purified on Macherey-Nagel columns following a 25 min heating step at 85°C to 294 

inactivate the enzymes. Elution step was modified, by incubating the DNA bound on the columns with 50 μl of Tris-295 

HCl (pH=7.8) containing 20 ng of ytRNA for 2h. 4C libraries were then amplified on a thermocycler using High-296 

fidelity Taq polymerase (Invitrogen) using the following primers: TMPRSS2 5’-AACATAGTCCTCTTTGGCACA-3’ and 5’-297 

GTCAGTCTCGGGGAGGGACT-3’; RIPK4 5’-TTGGGAGCTTCCATCAAGAC-3’ and 5’-GCTCCTTCATGGGTTCATTC-3’; TFF3 298 

5’-GACCAGGGTGTGGTGTCC-3’ and 5’-CAGCTCTGCTGAGGAGTACG-3’; TFF2 5’-CAGACCCTCATCCTCCAGAC-3’ and 299 

5’TATAAAGGCATCTGGCAATGTG-3’; TFF1 5’-GCTACATGGAAGGATTTGCTG-3’ and 5’-CAGTGGAGATTATTGTCTCAGA-300 

3’; TMPRSS3 5’-CATGGCTGCTCTGGGAAC-3’ and 5’CCTCGGCTAAGGAGGTAGAG-3’; UBASH3A 5’-301 

GTACGGCTTCCTGCCAAA CCGCTGCCATCTCTTCCT-3’. Amplification was made following a 30 sec denaturation step 302 

at 98°C as follows: (98°C 10 sec, 60°C 4 min, 68°C 5 min)x4 and (98°C 5 sec, 60°C 2 min, 68°C 5 min)x34 with a final 303 

incubation at 68°C for 10 min. In parallel of samples subjected to the whole procedure, additional aliquots of cells 304 

or of chromatin were processed to generate additional controls: minus cross-linking (entire procedure on cells not 305 

incubated with formaldehyde), minus ligase (entire procedure but with no ligase in the mix). These samples served 306 

to control the specificity of the ligation (opportunistic ligation by background proximity: minus cross-linking) and of 307 

the PCR (minus ligase). The relative frequencies of interactions detected by 3C were calculated as follows:  308 

Freq =[1.9^(Ctcontrol region-Cttest)/min(E%test5’;E%test3’)]/(1.9^(Ctcontrol region-Ctpos3Cctl)/min(E%control;E%tpos3Cctl3’)], 309 
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where the control region amplification (same as for the digestion controls) served to normalize over the inter-310 

samples variations of DNA amounts, the pos3Ctl a region that was always ligating under any condition (ligation of 311 

two adjacent regions). All values were normalized for their availability for ligation, by taking into account the 312 

minimal (min) digestion efficiency measured for either extremities of the ligated product. As negative controls, we 313 

tested the minus ligase samples and assessed for two negative control interactions which were 1- the ligation of 314 

each fragments of interest with a fragment located within a GAPDH exon and 2- a negative region taken from our 315 

4C screenings. We did not normalize the values obtained on test regions over those obtained in these negative 316 

controls as they were generally not producing any amplification signal. However, whenever this had to occur, the 317 

interaction detected with the test region was not taken into account. The 4C interactions were considered as being 318 

only qualitative, due to the amplification step present in the procedure. Calculations made to determine interacting 319 

regions were the same as for the 3C, except that in this case, the amounts of DNA were sufficient to allow further 320 

normalization over negative controls. In this case, the Ctcontrol region used was the lower one (maximum interaction) 321 

obtained in the whole set of tested ligation-produced fragments. We considered values which were at least 2-fold 322 

higher than negative control regions as significant. Networks of long-distance chromatin interactions were 323 

generated under Cytoscape (41).  324 

 325 

Quantitative-PCRs (qPCR) and statistics. All qPCRs used 1 μM of specific oligonucleotides (Sigma; sequences in 326 

Table S1 in the supplemental material) and were performed on BioRad MyiQ and BioRad CFX96 machines using 327 

BioRad iQ SYBR Green supermix with 50 rounds of amplification followed by determination of melting curves. 328 

Primers for RT-PCR were designed using the QuantPrime design tool (http://www.quantprime.de/) (42). 329 

Oligonucleotides for all other type of samples were designed under Primer3 (http://frodo.wi.mit.edu/primer3/). 330 

ChIP sample values were normalized in three steps: to inputs (ΔCt), then to control ChIP samples (beads alone or 331 

anti-H3 ChIP; ΔΔCt) and then to ΔΔCt values obtained on control DNA regions. FAIRE values were normalized to a 332 

positive control region (promoter of the Rplp0 gene). Heatmaps of qPCR data were all generated under Mev (43), 333 

with values that were declared as significant from the control by Wilcoxon or Student t-tests (depending upon the 334 

number of values). To facilitate their reading, only values significantly differing from the control ones were included 335 

within the heatmaps. 336 

 337 

Microarray data 338 

Dataset were deposited at the NCBI's Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/, (44)] under 339 

the GSE23850 and GSE32132 accession numbers (expression and ChIP-chip data, respectively). 340 

 341 

RESULTS 342 

Cell-specific transcriptional regulations of the TFF cluster and ERBSs. To consider processes governing the co-343 

regulation of co-linear genes by E2, we first characterized the MDA::ER and MCF-7 repertoires of E2-sensitive genes 344 
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by microarray analyzes. As shown within the Venn diagram in Fig. 1A, the estrogen-sensitive transcriptome of both 345 

cell-types was extremely divergent with only 19 genes in common after 4h of E2 treatment. This is consistent with 346 

previous studies (45-47). We next identified clusters of E2-regulated genes defined as regions comprising at least 3 347 

regulated genes within a window of 7 genes. As a paradigm, we focused here on one cluster located within locus 348 

21q22.3, previously identified in MCF-7 cells (48) and termed TFF (Fig. 1). This choice was guided by the facts that i) 349 

this region includes the prototypical estrogen-responsive gene TFF1 and that ii) our transcriptome analysis 350 

indicated that this E2-sensitive region include different E2-sensitive genes in MCF-7 and MDA::ER cells, with only 4 351 

genes regulated by E2 in MCF-7 and up to 7 in MDA::ER. This indicated that specific events may influence the 352 

transcriptional response of genes included in this genomic region, and thereby provided the opportunity to address 353 

these mechanisms. Note that we included the TMPRSS2 gene into our definition of the estrogen-responsive TFF 354 

cluster, since it was found to be regulated by E2 in MDA::ER cells. We first performed RT-qPCR experiments to 355 

confirm these regulations. The results of these assays, illustrated within Fig. 1B showed i) a timely coordinated 356 

regulation of expected genes by E2; and ii) that ER is the main transcription factor responsible for their E2-357 

responsiveness, since a 24h pre-treatment of the cells with the ER-targeting antiestrogen ICI abrogated E2 actions 358 

(Fig. 1B). Moreover, none of the tested genes were regulated in naïve MDA-MB231 cells (Fig. 1B), further 359 

confirming that the observed genes regulations by E2 strictly relied on the presence of ER. 360 

These differing subsets of estrogen-sensitive genes between MCF-7 and MDA::ER cells might reflect the 361 

existence of different ER cistromes in the two cell lines. Hence, we characterized ER binding sites on this genomic 362 

region in MDA::ER cells. ER chromatin immunoprecipitation (ChIP) experiments were performed on chromatin 363 

prepared from MDA::ER cells treated for 50 min with 10
-8

M E2, with resulting samples hybridized on custom tiling 364 

DNA arrays designed to cover genomic regions containing E2-sensitive clusters (Table 2). These assays identified 17 365 

ERBS within the TFF cluster in MDA::ER cells at a FDR<5% (Fig. 1C). When comparing these data to the ERBSs 366 

determined in MCF-7 cells by ChIP-chip technology [data from Carroll et al. (17)], only three binding sites were 367 

common to both cell lines (in green in Fig. 1C), including the comBS2 located within the TFF1 promoter. This low 368 

overlap between MDA::ER and MCF-7 ERBSs is consistent with analyses made on the entirety of the genomic 369 

regions spotted on the arrays (Fig. 1D).  370 

Independent anti-ER ChIP-qPCR assays confirmed the cell-specificity of these ERBSs. FAIRE (formaldehyde 371 

assisted isolation of regulatory elements) experiments further showed that MDA::ER specific ERBSs exhibited a 372 

condensed chromatin state in MCF-7 cells, and vice-versa (Fig. 1E). This observation was also made when 373 

evaluating the enrichment of these regions in canonical histone marks for enhancers (not shown). Thus, the 374 

chromatin condensation state of these genomic sequences confirmed their cell-specific function. Exception to this 375 

observation was made for the MCF-7 ERBS5 which also exhibited an “opened” conformation in MDA::ER and MDA-376 

MB231 cells. This might illustrate the vicinity of this sequence with an annotated transcript. Recent data has shown 377 

that transcription can occur at enhancers (49-51). This prompted us to assess by ChIP-chip whether the RNA 378 

polymerase II (Pol II) was present on MDA::ER ERBSs. As shown within the Fig. 1F, we indeed found a general 379 



12 

 

enrichment of MDA::ER ERBs in Pol II that further exhibited cell-specificity since it was not observed on sequences 380 

corresponding to MCF7 ERBSs. Concordantly, using MCF7 Pol II ChIP chip data from (17) in these analyzes also 381 

showed that the polymerase was enriched on MCF7 ERBSs but not MDA::ER ERBSs sequences (Fig. 1F).  382 

In conclusion, these results altogether show that the studied 2 Mb genomic region that covers the TFF cluster 383 

includes different sets of estrogen-responsive genes and ERBSs in MCF-7 and MDA::ER cells. Interestingly, the cell-384 

specific ERBSs were not predominantly found at the proximity of cell-specific E2-regulated genes. In accordance 385 

with the fact that chromatin loops may place the promoter of these cell-specific genes in the vicinity of cell-specific 386 

ERBSs (14), this latter observation suggested that the three-dimensional organization of the TFF loci may differ 387 

between the two cell lines. 388 

 389 

Dynamic spatial reorganization of the TFF cluster upon E2 treatment. We next envisioned that the coordinated 390 

regulations occurring at the level of the studied genomic region in both MCF-7 and MDA::ER cells (Fig. 1) may 391 

involve an E2-dependent spatial reorganization of this locus. To test this hypothesis, we sought to perform DNA-392 

FISH experiments. Noteworthy, MDA::ER cells present three fluorescent TFF loci and there were a higher number of 393 

loci (at least 6) in our MCF-7 cell line. This originates from the complex hypertriploid karyotype of these MCF-7 cells 394 

harboring 3 chromosomes 21 and multiple non assignable chromosome parts that contain at least 4 TFF loci (see 395 

Fig. S1 in the supplemental material). As this high number of loci hindered the correct evaluation of the 396 

experimental results, we focused on MDA::ER cells for these specific analyzes. We first conducted experiments 397 

aiming to evaluate the spatial volume occupied by the 2 Mb genomic region encompassing the TFF cluster and thus 398 

performed DNA-FISH with a mix of fluorescent probes generated from multiple BACs covering a large part of the 399 

TFF region (Fig. 2A). The results of these experiments led us to evidence a compaction of the chromatin domain 400 

containing the TFF cluster after a 50 min treatment with E2 (Fig. 2B). This could be assigned to a smaller dispersion 401 

of the distances separating central (B5) and 5’ (B1) probes following exposure to E2 (Fig. 2C). Interestingly, whilst 402 

there were no changes in the distribution of distances between probes generated using the central and the 3’ BACs 403 

(B6), the distribution of the distances separating probes located at both extremities of the TFF region were again 404 

significantly different. Furthermore, quantile-quantile representations of data (Q-Q plots, Fig. 2C, bottom) indicated 405 

that observed changes mostly reflected a disappearance of large distances separating paired probes. Importantly, 406 

these variations were not an indirect consequence of a global reduction in nucleus volume upon E2 exposure (not 407 

shown). The 2 Mb region containing the TFF cluster thus undergoes spatial rearrangements under E2 treatment in 408 

MDA::ER cells, reflected by a more constrained three-dimensional conformation.  409 

To gain further insights into how the cell-specific transcriptional activity of the TFF cluster was spatially 410 

organized, we characterized the spatial proximity of ERBS with the promoters of E2-regulated genes. We conducted 411 

4C-qPCR on chromatin prepared from MCF-7, MDA::ER as well as MDA-MB231 cells all treated for 50 min with E2. 412 

Results of these experiments (Fig. S2 and Fig.S3) are schematized in Fig. 3A. All determined spatial proximities are 413 

given within the Table S2. These 4C assays recovered all but one of the interactions previously determined by ChiA-414 
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PET (15) as linking ERBSs to regulated promoters in MCF-7 cells, and further uncovered 38 new interactions (Fig. 415 

3B), in agreement with the differing outcome of 4C and ChiA-PET techniques. These experiments indicated that 416 

major spatial constraints of this chromatin domain involve interactions between central and distant regions mainly 417 

located 5’ of the TFF cluster (approx. 70% of the ERBS-promoters interactions) in both MCF-7 and MDA::ER cells. 418 

This is consistent with results obtained in DNA-FISH experiments. Interestingly, the RIPK4 promoter was situated in 419 

the spatial vicinity of more ERBSs in MDA::ER than in MCF-7 cells (Fig. 3A and Fig. 3C). This might be correlated with 420 

the estrogenic regulation of this gene in the former cell line but not in the latter (Fig. 1). However, there was no 421 

strict correlation between the numbers of ERBS-promoter interactions and the amplitude of the estrogenic 422 

regulation of the gene, as evaluated by the RT-qPCR results from Fig. 1 (maximum R
2
 of 0.22 and 0.51 observed 423 

following 2h of E2 treatment, in MCF-7 and MDA::ER cells, respectively). Importantly, 27% of the interactions 424 

detected in MDA::ER were also detected in ER negative MDA-MB231. This indicates that some of the MDA::ER 425 

ERBSs may be pre-existing enhancers that recruit additional transcription factors regulating the activity of all 426 

considered genes, with the exception of TFF3, as it did not establish any contact with the tested regions in MDA-427 

MB231 cells (Fig. 3A and Fig. 3C). Conversely, since the remaining 73% of the interactions detected in MDA::ER 428 

were not detected in MDA-MB231, these results also demonstrate that the expression of ER in this system is 429 

sufficient, either directly or not, to remodel the spatial organization of this genomic region. 430 

As illustrated within Fig. 3D and Fig. 3E, the MCF-7 and MDA::ER network of interactions between ERBSs and 431 

promoters of regulated genes is complex. One striking difference between these interactomes detected by 4C is 432 

that there are more singleton interactions in MCF-7 than in MDA::ER. Indeed, while 6 ERBSs were interacting with 433 

one single gene in MCF-7, there was only one of these exclusive contacts in MDA::ER cells (the BS15/TFF3 434 

association). Finally, this interactome study also showed that the ERBS located within the TFF1 promoter (comBS2) 435 

directs more interactions than the others in both cell lines, suggesting that it plays a crucial role in the chromatin 436 

re-organization of the TFF cluster in response to E2. 437 

 438 

CTCF and cohesin are required for appropriate regulations and organization of the TFF cluster. ER has been 439 

proven to modulate the frequencies of interactions between distant ERBSs and promoters of either up- or down-440 

regulated genes (15, 52), in concert with CTCF and/or the cohesin complex (53). Hence, to better understand how 441 

E2 signaling impacts on chromatin organization, we mapped CTCF and RAD21 (a subunit of the cohesin complex) 442 

binding sites in MDA::ER through ChIP-chip analysis (Fig. 4A). The comparison of all the MDA::ER CTCFBSs and 443 

RAD21BSs identified on all the genomic regions spotted on our arrays with those previously determined in MCF-7 444 

cells (53; restricted here to BSs contained within the spotted regions) indicated that most CTCFBSs were conserved 445 

between the two cell types on the contrary to RAD21BSs (Fig. 4B). This cell-specific RAD21 cistrome may represent 446 

a major source for the different E2-responses of the clustered TFF genes. On the other hand, the overlap between 447 

the BSs for ER, CTCF and RAD21 was much more important in MCF-7 cells than in MDA::ER within the TFF cluster 448 

(Fig. 4C). These differing ER/CTCF/RAD21 BS overlaps between MCF-7 and MDA::ER were reflected in the 449 
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proportions of established contacts between ERBS and genes promoters (Fig. 4D). These data also indicated that 450 

the presence of CTCF and/or RAD21 at ERBSs does not correlate with the number of interactions made with gene 451 

promoters in the context of the TFF cluster (Chi2 and Fisher tests p-values>0.4). In agreement with this observation, 452 

we did not observe any significant increase in CTCF and RAD21 binding on respective ERBSs following the addition 453 

of E2 (Fig. 4E). This may signify that the dynamic modulations of the TFF three-dimensional organization that occurs 454 

upon E2 treatment involve other RAD21/CTCF sites. Alternatively, the physical contacts established between the 455 

ERBSs and the promoters may be directed by ER and occurring within a structurally fixed frame imposed by CTCF 456 

and/or RAD21. In favor of the latter hypothesis, the alignment of RAD21 ChIP-seq reads obtained in MCF-7 [data 457 

from (53)] on ER, CTCF and RAD21 shared binding sites within the TFF cluster did not evidence any significant 458 

change in RAD21 mobilization on ER/CTCF/RAD21, the sole ER/RAD21 BS and on CTCF/RAD21 BSs (p-value 0.0676 459 

for this latter category of sites) (Fig. 4F).  460 

The putative role of CTCF and RAD21 in establishing the spatial conformation of the TFF cluster genomic domain 461 

was next examined following the transfection of siRNAs targeting their expression. Control RT-qPCR and Western 462 

blots performed in MDA::ER cells are shown in Fig. 5A and 5B, with similar reductions observed in MCF-7 cells (not 463 

shown). We first performed 3C-qPCR experiments to evaluate the impact of these siRNA-mediated reductions in 464 

CTCF and RAD21 intracellular amounts on the frequencies of interaction between RAD21 and/or CTCF positive 465 

ERBSs and the promoters of E2-regulated genes. These experiments, summarized in Fig. 5C showed that the 466 

silencing of RAD21 diminished the frequency of interactions between ERBSs and their target gene promoters in 467 

both MDA::ER and MCF-7 cells. This was also observed following the transfection of siRNAs targeting CTCF, 468 

although to a lesser extent (Fig. 5C). DNA-FISH experiments further showed that RAD21 is essential for the global 469 

E2-induced constraints exerted on the TFF three-dimensional conformation (Fig. 5D). Unfortunately, the 470 

involvement of CTCF could not be addressed here due to its inefficient depletion (≈25%) in this particular 471 

experimental setup. Finally, disrupting CTCF and RAD21 expression by siRNAs drastically reduced both basal and 472 

induced transcriptional activity of E2-regulated genes in both cell lines (Fig. 5E). This ultimately led to a strong 473 

decrease of their fold inductions by E2 except for TFF3 and RIPK4 in MDA::ER cells and UBASH3A in MCF-7 cells. 474 

Altogether, these data indicate that cohesin and CTCF organize the E2-responsiveness of the genes included in 475 

the TFF cluster, in both cell lines, possibly by promoting a three-dimensional organization of the studied genomic 476 

locus which is propitious for the interaction between distant ERBS and promoters of activated genes. 477 

 478 

Dynamic 3D organization of the TFF cluster. We questioned next whether one or a limited number of ERBSs within 479 

the TFF cluster could orchestrate the observed coordinated genes regulations through long-range interactions. This 480 

hypothesis would imply that one -or a few - ERBS is brought nearby promoters in a dynamic manner compatible 481 

with these transcriptional responses to E2. Hence, we evaluated by 3C-qPCR the dynamics of the interactions 482 

between ERBSs and genes promoters following treatment of the cells with E2. These data are summarized within 483 

Fig. 6 and Fig. 7; with circle areas being directly proportional to the fold changes in the relative frequency of 484 
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interactions as compared to the initial situation (t0) (MCF-7 data are presented in Fig. S4). In x are the coordinates 485 

for the promoters of the genes and in y-axis are the coordinates for the ERBSs, whose positions are indicated. 486 

Importantly, all of the ERBS-promoter interactions were detected at t0 (MCF-7 controls in Fig. S4). In both cell 487 

types, a spatial reorganization was apparent as soon as 10 min following E2 addition with both increases and 488 

decreases in frequencies of interaction (Fig. 6 and Fig. 7). The existence of several TFF loci in both cell types may 489 

influence the interpretation of these kinetic 3C data, since we cannot ascertain that all of the interactions are 490 

occurring on the same genomic fragment. However, supporting the existence of dynamic variations in the three-491 

dimensional organization of the TFF genomic region occur, we were able to further evidence such processes by 492 

DNA-FISH time-course experiments in MDA::ER cells (see Fig. S5). Some of the reorganizations evidenced by 3C-493 

qPCR exhibited a relatively dynamic or even cyclical nature, such as those highlighted in orange within Fig. 6 and 494 

Fig. 7 subpanels. Interestingly, the dynamics of these spatial reorganizations differed between MDA::ER and MCF-7 495 

cells. In MCF-7 cells, these variations were restrained to short-range interactions except for TFF1/BS1, TFF1/BS18 496 

and TMPRSS3/BS8 contacts (Fig. 6). In contrast, the dynamic MDA::ER interactome highlighted important variations 497 

in long-range interactions between ERBSs and the promoters of regulated genes. This is notably illustrated by the 498 

interactions made by the ERBSs located in the 5’ region of the cluster that climax at 50 min following the addition 499 

of E2 (Fig. 7). Furthermore, in MDA::ER cells, an apparent combination of local (BS2 and comBS1) and long-range 500 

interactions (comBS2 and even comBS3 located in the far 3’ of the genomic region) could be correlated with the E2-501 

mediated regulations of TMPRSS2 and RIPK4. In contrast to what happens in MCF-7, the regulations of core TFF 502 

genes would thus be more influenced by distal than by local ERBSs in MDA::ER cells. Indeed, variations of the 503 

interactions made between ERBSs located within the TFF3 to TMPRSS3 (core TFF cluster) region appear less 504 

important than what was observed in the case of MCF-7 cells.  505 

In conclusion, these data indicate that there is no single major ERBS that organizes E2 responsiveness within this 506 

genomic region. Keeping in mind that 3C-based assays have the intrinsic limitation to be unable to ascertain the co-507 

occurrence of detected interactions in the same cell, we propose that the coordination of the transcriptional 508 

response of the TFF cluster to E2 mainly originates from a combinatorial engagement of ERBSs located within the 509 

TFF1 promoter in MCF-7 cells with two nearby ones (BS14 or BS16), and with those located in the distant 5’ region 510 

of the cluster in MDA::ER cells. 511 

 512 

E2 regulation of a given gene is driven by different ERBSs. Although highly informative, the above 3C data did not 513 

allow us to establish the exact contribution of each ERBS toward the specific regulation of the genes that they 514 

contact. To investigate at the molecular level the contribution of given ERBS in regulating specific genes, we used 515 

small triplex forming oligonucleotides (TFOs) to interfere with ER binding at a given BS (Fig. 8A). Such 516 

oligonucleotides that form Hoogsteen or reverse Hoogsteen hydrogen bonds with the purine-rich strand of DNA 517 

have already been used to inhibit the transcription of genes such as ets2 (54) or c-myc (55) [reviewed in (56, 57)]. 518 

We characterized 11 TFOs (Table 1) which were able i) to form DNA triplex in vitro (TFO anti-MCF-7 BS1 as example 519 
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in Fig. 8B, otherwise see Fig. S6); ii) to specifically bind to target sequences but not PKNOX1 promoter used here as 520 

a control (Fig. 8C and Fig. S6) and iii) to significantly disrupt ER binding on the corresponding ERBS (Fig. 8D and Fig. 521 

S6). Although all of the designed TFOs did not precisely target the center of each ERBS defined here as from the 522 

ChIP-chip profiles, we observed that their relative efficiency in disrupting ER binding was only mildly correlated to 523 

the distance separating the TFO target sequence to the center of the ERBS peak (Fig. 8E). The ability of TFOs to bind 524 

to their target sequence seemed also relatively independent of their chromatin status as evaluated from their 525 

relative enrichment by FAIRE (Fig. 8F). 526 

Subsequent RT-qPCR experiments showed that in a majority of tested cases, decreasing ER binding on one ERBS 527 

did impact the transcriptional status of the genes to which it was spatially close (Fig. 8G), but not on control genes 528 

(Fig. S7). However, the converse was also observed, with no observable impact of ER binding disruption, as for 529 

instance the associations between the MCF-7 BS4 and UBASH3A, BS6 and TMPRSS3 or MDA::ER BS10 and 530 

UBASH3A. This seems to imply that the binding of ER on some distant sites might not be essential for the regulation 531 

of the analyzed genes. Alternatively, this could also indicate a functional redundancy between the enhancers 532 

controlling the activity of the tested E2-sensitive genes. Abrogating ER binding on such site would be compensated 533 

for by the activity of the others. Additionally, the reduced ER mobilization provoked by TFOs diminished the 534 

frequencies of interactions linking the targeted ERBS with the promoters of their target genes (data not shown). 535 

Interestingly, these experiments also evidenced that decreasing ER binding on some sites affected the 536 

transcriptional status of genes that they did not contact. This was for instance observed in MCF-7 cells for the BS1 537 

on TFF3 levels, comBS1 on TMPRSS2, BS10 on TFF2, BS14 on TMPRSS2 and TFF3. And this was also true in MDA::ER 538 

for the BS10 on RIPK4 and BS12 on TMPRSS2, RIPK4 and TFF3 amounts in MDA::ER. As shown by Fullwood et al. 539 

(15) in ChiA-PET assays, the three-dimensional organization of chromatin can place distant ERBSs in spatial vicinity. 540 

We therefore evaluated whether targeting the recruitment of ER on one ERBS by a specific TFO could reduce its 541 

mobilization on another ERBS (Fig. S8). Results from these experiments indicated that the observed transcriptional 542 

“collateral” effects were due -at least in part- to the establishment of additional interactions between ERBSs 543 

themselves. For instance, the reduction of RIPK4 and TFF3 expressions by the TFO targeting the ERBS12 in MDA::ER 544 

cells could reflect a contact made between this ERBS12 and the ERBS16 that controls these genes. 545 

The use of TFOs therefore allowed us to demonstrate the functional relevance of the interactions linking ERBSs 546 

to E2-regulated promoters we have characterized. Although limited to the ERBSs on which TFOs were able to 547 

disrupt ER recruitment, these data illustrate that the comERBS2 located in the close vicinity of the TFF1 promoter 548 

plays a central regulating role in both cell types. They also clearly indicate that the MDA::ER ERBS1 and MCF-7 549 

ERBS6 play prominent roles in the transcriptional activity of the genes included in the TFF locus. 550 

 551 

DISCUSSION 552 

We investigated here molecular processes allowing estradiol to co-regulate the transcriptional activity of genes 553 

clustered within a 2 Mb genomic region. Using a naturally E2-responsive breast cancer cell line (MCF-7) and a 554 
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cellular system with a forced E2-sensitity (MDA::ER) we interrogated whether these mechanisms could be triggered 555 

by ER on its own. Despite different chromatin contexts, ER was found to drive tight regulations of the TFF cluster in 556 

both cell types, relayed by its mobilization on distinct genomic regions. Interestingly, the chromatin status of 557 

MDA::ER ERBSs in native MDA-MB231 cells indicated that a number of ERBSs were already exhibiting an opened 558 

conformation and characteristics of functional enhancers: enrichment in FAIRE experiments (Fig. 1), presence of 559 

marks for poised or active chromatin (unpublished observations) and spatial vicinity with the promoters of 560 

considered genes (Fig. 3). Preparation of chromatin to ER binding in MCF-7 cells involves the actions of the pioneer 561 

factor FOXA1 (17, 18) which is not expressed in MDA::ER cells. Accordingly, MCF-7 specific ERBSs are all but four 562 

FOXA1 positive. By contrast, ERBSs in MDA::ER were principally not located at sites bound by FOXA1 in MCF-7, 563 

except the common ERBS2 and ERBS3 and ERBS13. Hence, it may be that other factors act in a similar way than 564 

FOXA1 in the MDA system, or that ER acts on its own. Motifs analysis performed on the entire set of MDA::ER 565 

ERBSs identified in our ChIP-chip data indicated that in addition to ERE motifs, GATA sites were also significantly 566 

enriched (not shown). This is consistent with reports showing that factors of this family, and in particular GATA3 567 

(47,58,59), are controlling ER activity. 568 

4C and 3C assays allowed the description of dynamic interactomes linking ERBSs to promoters of genes. Some 569 

of the detected interactions, however, engaged promoters of genes that were not regulated by E2 in our RT-qPCR 570 

or transcriptomic data, such as TMPRSS2, RIPK4 or TFF3 in MCF-7 cells. It is possible that these genes actually 571 

exhibit rapid transcriptional responses to estrogen as those evidenced by global run-on assays [GRO-seq (49-51)] 572 

that we would have missed in our analyses for sensitivity and timeliness reasons. In contrast with what would have 573 

been expected from an artificial cellular model as compared to a more “natural” one like MCF-7 cells, we found 574 

that the ER-mediated three-dimensional re-organization of the TFF cluster response to E2 is more important and 575 

more intricate in MDA::ER cells. Indeed, there were more singleton interactions in MCF-7 cells and the dynamics of 576 

the MCF-7 interactome following treatment with E2 was apparently lower than in MDA::ER cells. It could be 577 

hypothesized that the chromatin three-dimensional structure of this whole genomic region is already prepared for 578 

a response to E2 in MCF-7 cells, in contrast to the reconstituted E2-sensitive cellular model provided by MDA::ER 579 

cells. If true, this implies that, in MDA::ER cells, ER on its own is able to provoke important three-dimensional 580 

remodeling of the TFF locus to finely tune the transcription of target genes. Alternatively, the differing level of 581 

ploidy of our model cells (3 TFF loci in MDA::ER cells vs. 6 in MCF-7) may also impact the interpretation of the 582 

differences observed between both cell types. For instance, the presence of inactive or E2-insensitive loci may 583 

hamper and reduce the variations observed in either cell line. Unfortunately, we were unable to ascertain by RNA-584 

FISH that all loci were transcribed and regulated in these cells, presumably due to the small size of the TFF genes. 585 

However, E2-induced variations of the three-dimensional organization of the studied genomic region were 586 

observed in each of the 3 loci in MDA::ER cells. This suggests that all 3 loci may transcriptionally respond to E2 in 587 

this cell type. 588 

The regulatory unit that integrates the TFF cluster is of ~1 and ~2 Mb in size in MCF-7 and MDA::ER cells, 589 
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respectively. These dimensions are coherent with those defined for Topologically Associating Domains (TADs) from 590 

Hi-C and 5C data (60-62). Hence, the different number of estrogen-sensitive genes between MDA::ER and MCF-7 591 

cells could characterize the existence of cell-specific TAD geometries and differing boundaries. CTCF and 592 

RAD21/cohesin have been proposed to delineate regions of correlated transcriptional regulations (63-65), even if 593 

their presence might not systematically reflect a demarcation between insulated gene domains (66). Our data 594 

extend observations made in MCF-7 cells regarding the involvement of CTCF and RAD21 in the establishment of key 595 

connections between distant ERBSs and regulated promoters of the TFF cluster (53, 67). We further showed that 596 

RAD21 is required for the proper folding of this genomic region and its response to estrogen. Studies in MCF-7 or 597 

mice liver (53, 68) suggested that the main part of RAD21 actions on tissue-specific expression or estrogenic 598 

regulations would be CTCF independent. Accordingly, the limited overlap of RAD21 binding sites in MCF-7 and 599 

MDA::ER cells indicates that the MDA::ER specific cistrome of RAD21 engages cell-specific functions. Whether the 600 

cell-specific interactomes between ERBSs and gene promoters and the cell-specific size of the putative TFF TAD are 601 

directly linked to the differing RAD21 cistromes between MCF-7 and MDA::ER cells still remains an open question. 602 

One possible way to address this problematic would be to define the chromatin loops established between RAD21 603 

BSs by ChiA-PET experiments in both cell lines. 604 

Contrasting with the slight increase reported at the genome-scale by others (50, 51, 53), RAD21 recruitment to 605 

ERBSs in the TFF cluster was not significantly affected by E2. Whether this situation reflects an exception or a 606 

general behavior for clustered genes may constitute an interesting point to pursue the analysis of RAD21 role in 607 

organizing chromatin domains. On the other hand, our observations are coherent with a model in which active 608 

chromatin compartments are organized through constitutive loci (63-65). The characterization of physical contacts 609 

between RAD21 BSs through ChiA-PET may help in defining the cohesin complexes that organize such 610 

compartments where dynamic contacts between enhancers and genes would occur [as proposed in (69)]. The 611 

nature of the mechanisms that underlie the E2-mediated remodeling of the TFF domain may therefore be directly 612 

or indirectly under the sole control of ER or of the estrogenic response of the genes. For instance, Mediator, a 613 

protein complex loaded on active promoters can establish physical contacts between gene and promoters (70). In 614 

accordance with models of proximity ligation proposed by Gavrilov and coworkers (69), the recruitment of multiple 615 

proteins provoked by ER on its sites and its affinity with components of the transcriptional machinery would 616 

stabilize interactions that occur otherwise. It can also be inferred from this hypothesis that mobilization dynamics 617 

of the proteins recruited by ER on chromatin (7, 8) may at least partly be responsible for the dynamic property of 618 

ERBS-promoters physical contacts. Such a process was evidenced in the case of the CDKN1A gene promoter placed 619 

under the transcriptional control of another nuclear receptor, VDR (vitamin D3 receptor) (71). Accordingly, our 620 

kinetic 3C dissection of the three-dimensional reorganization of the TFF cluster indicates that all interactions 621 

between ERBSs and gene promoters do exist already in the absence of E2. Hormone and ER binding would then 622 

have to be considered as signals that remodel pre-existing conformations; a conclusion that seems to emerge from 623 

recent Hi-C data, which compared the global organization of MCF-7 chromatin in the absence of hormone and 624 
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following 50 min of treatment (72).  625 

A general problematic that emerged from genome-wide studies is the evidence that the number of interactions 626 

made between the BSs of a transcription factor and genes promoters are not systematically reflected at the 627 

transcriptional level (73). The use of TFOs allowed us to give further indications on how binding sites for a TF are 628 

mobilized in space and time in order to regulate the transcription of its target genes. Although already 629 

hypothesized (14, 17, 74), we demonstrate here the validity of the concept of functional redundancy between ER-630 

bound enhancers. Indeed, a single promoter can establish contacts with several ERBSs, and we demonstrated that 631 

the resulting buildout might be in some cases insensitive to a particular ERBS inactivation, providing robustness to 632 

the regulatory system. In other cases, the mobilization of ER on distinct master regulatory regions appears 633 

sufficient to provoke the transcriptional response of the gene. Comparing the enrichments of main vs. secondary 634 

ERBSs in particular histone modifications, ER, Pol II, CTCF or RAD21 proteins, or even their relative frequencies of 635 

interaction with their target promoters, did not evidence a particular segregating characteristic. The differential 636 

recruitment of FOXA1, PBX1, GATA proteins or yet uncharacterized cofactors may account for the specific use of a 637 

given ERBS or the collaborative use of several ERBSs. Alternatively, the existence of a particular master regulatory 638 

region may originate from a coincident propitious folding of local chromatin due to high-order organization and the 639 

presence of cognate DNA sequences mobilizing ER. Finally, our dynamic 3C experimental data taken together with 640 

results obtained following transfection of TFOs also indicate that the role of one redundant enhancer towards that 641 

of another one may depend or shift over time or upon experimental condition. The latter was for instance 642 

suggested from data comparing the recruitment of ER when activated by EGF and E2 (75). 643 

Although limited by the target sequence requirements, the nucleic acid composition of 2 to 7% of the ERBSs 644 

identified by ChIP-seq appears compatible for the binding of TFOs. Extending the experimental workflow used in 645 

this study to this whole sub-population of ERBSs would give rise to a functionalized partial interactome that could 646 

greatly enhance our knowledge of the links existing between the functions of enhancers and the organization of 647 

the genome. Furthermore, as for ER, BSs for many transcription factors have been shown to be grouped around 648 

responsive genes in clusters of enhancers (76). Hence TFOs or modified TFOs with increased efficiencies such as 649 

PNAs (peptide nucleic acids) (77), LNAs (locked nucleic acids) (78) or bisLNAs (79) may constitute powerful 650 

molecular tools to assess for the generality of enhancer redundancy. 651 
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FIGURE LEGENDS 852 

FIG 1 Cell-specific E2-sensitive genes and ER binding sites in a 2 Mb genomic region including the TFF locus. (A) 853 

Venn diagram illustrating the overlap of identified E2-sensitive genes in MDA::ER and MCF-7 cells. (B) Heatmap 854 

representation of RT-qPCR results obtained on RNAs prepared from MCF-7, MDA::ER and MDA-MB231 cells treated 855 

for the indicated times with 10
-8

 M E2 and pre-treated for 36h with 10
-6

 M ICI164,384 where precised. Results are 856 

the log2 of the fold inductions of gene expression levels by E2 obtained in two independent triplicate experiments. 857 

(C) Integrated genome browser [IGB; (80)] illustration of the studied genomic region with RefSeq genes indicated. 858 

ER binding signal obtained in an ER ChIP-chip analysis performed using chromatin of MDA::ER cells treated for 50 859 

min with E2 is depicted in gray. MCF-7 data were obtained from published dataset (17). For the sake of clarity, only 860 

the highest 5% signals are shown. Grey and red boxes delineate cell-specific ER binding sites (ERBSs) whilst 861 

common ERBSs are in green. (D) Anti ER ChIP and FAIRE assays were conducted using chromatin prepared from 862 

MCF-7, MDA-MB231 or MDA::ER cells treated with E2 or ethanol (EtOH) as vehicle control for 50 min. Results 863 

shown within heatmaps are means from 6 to 9 values obtained in independent triplicate experiments. Values are 864 

fold enrichments over control samples and a negative control region (promoter of the transcriptionally active Rplp0 865 

gene). (E) Overlap of MDA::ER ERBSs with MCF-7 ones on regions spotted on the arrays. (F) Enrichment signals 866 

obtained for anti-RNA Polymerase II (Pol II) ChIP-chip experiments performed in MDA::ER cells treated for 50 min 867 

with E2 [MCF-7 data from (17)] were aligned on MCF-7 or MDA::ER ERBS identified within the regions spotted on 868 

the arrays and located more than 10 Kbp away from the TSS of any annotated gene. 869 

 870 

FIG 2 E2 provokes a three-dimensional reorganization of the TFF cluster in MDA::ER cells. (A) Locations of the BACs 871 

(B1 to B6 referring respectively to RP11-814F13, CTD-2337B13, RP11-35C4, CTD-260o11, RP11-113F1 and CTD-872 

1033M14) used to generate fluorescent probes for FISH experiments all along the genomic region of interest, 873 

illustrated as in Figure 1. Positions of the ERBSs are also indicated. (B) Analysis of the 3D volume of the TFF loci by 874 

DNA-FISH using a mix of all generated probes in cells treated with 10
-8

 M E2 or ethanol (EtOH) for 50 min. 875 

Representative pictures of these assays are on the left side of the panel, with magnified views of the three TFF loci 876 

present in MDA:ER cells. Quantitative measurements (n=416) of the 3D volume of the loci is shown at the right side 877 

of the panel with indicated Fisher t-test p-value. (C) Quantitative analysis of the distribution of distances separating 878 

indicated paired FISH probes. Values are shown within boxplots (top of the panel) or within quantile-quantile (Q-Q) 879 

plots representation of conditionally ranked measured distances (bottom). The normal distribution expected from 880 

non-variating distances is illustrated by the straight black line in each Q-Q plots. Non-parametric Fisher test p-881 

values are indicated when determined as significant, as well as the number of measurements made in at least three 882 

independent experiments. 883 

 884 

FIG 3 ERBS-promoters interactomes. (A) IGB visualization of MCF-7, MDA-MB231 and MDA::ER interactomes linking 885 

DpnII fragments encompassing ERBS or promoter regions of indicated genes, as detected by 4C-qPCR on chromatin 886 
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prepared from cells treated for 50 min with 10
-8 

M E2. Shown are RefSeq genes coordinates along chr21, as well as 887 

the positions of ERBS with grey, red and green boxes delineating MDA::ER, MCF-7 or common ERBS. 4C data are 888 

represented as lines linking one ERBS to its target promoters. MCF-7 interactions are in red, MDA::ER ones in grey 889 

and those shared between MDA::ER and MDA-MB231 in orange. (B) Venn diagrams depicting the overlapping 890 

interactions characterized in this study and to those identified in published ER ChiA-PET dataset (15) restricted to 891 

loops involving the gene promoters that served here as 4C baits. (C) Stacked histograms illustrating the overlap of 892 

the 4C-detected interactions for each tested promoters in the different cell lines. (D and E) Cytoscape (41) circular 893 

layouts of the networks of interactions that link E2-regulated genes to ERBS in MCF-7 (D) and in MDA::ER (E) cells. 894 

The sizes of the nodes are directly related to the number of interactions they direct. 895 

 896 

FIG 4 CTCF and cohesin recruitment on ERBSs. (A) MDA::ER anti-ER, CTCF or RAD21 ChIP-Seq or ChIP-chip signals 897 

visualized under IGB as in Figure 1. All data were obtained from cells treated with 10
-8

 M E2 for 50 min. (B) Overlaps 898 

on array-spotted regions between RAD21 or CTCF binding sites determined in this study in MDA::ER cells and those 899 

previously determined in MCF-7 (53). (C) Overlap of RAD21 and CTCF binding sites with ERBSs. (D) Repartition of 900 

CTCF and RAD21 BS within the interactions between ERBS and gene promoters identified by 4C. (E) CTCF and 901 

RAD21 ChIP-qPCR were performed on chromatin prepared from MCF-7 or MDA::ER cells treated for 4h with 10
-8

M 902 

E2 or ethanol (EtOH) as vehicle control. Fold enrichment of the precipitated proteins on tested sequences was 903 

normalized over control ChIP and negative region (PKNOX1 promoter) values. Data shown are mean values ± SD 904 

obtained in three independent triplicate experiments. The line depicts the significance threshold applied (Fold 905 

enrichment>2). (F) Boxplots of MACS normalized reads of RAD21 ChIP-seq experiments performed in the absence 906 

or presence of E2 in MCF-7 cells [dataset from (53)]. Values shown are mean counts measured in a 500 bp window 907 

centered on indicated binding sites located within the 2 Mb genome region studied. Calculations were also made 908 

on random sites of similar mean size and in equal number than the shared CTCF/RAD21 BSs. 909 

 910 

FIG 5 CTCF and cohesin organize the E2-responsiveness of the TFF cluster. (A) Amounts of indicated mRNA were 911 

evaluated in untreated MDA::ER cells following 72h of transfection with either control siRNA (directed against the 912 

Luciferase gene, siLuc) or siRNAs targeting mRNAs of interest. Results shown are mean data ± SEM of values 913 

obtained in at least 5 different experiments (n ranges from 15 to 18), normalized to the expression of control 914 

PKNOX1 gene. Wilcoxon test was used to identify statistically relevant variations from control siLuc/EtOH condition: 915 

p-value <0.001 (***), <0.01 (**). (B) Western blots assaying the expression of RAD21, CTCF, ER and hCAPD2 916 

(loading control) in cells transfected with the indicated siRNAs. (C) 3C-qPCR experiments following the impact of 917 

the reduction in CTCF and RAD21 contents on the interactions between indicated ERBS and gene promoters. 918 

Results shown originate from one representative experiment out of two and are expressed as the log2 of values 919 

normalized to those obtained in the control siLuc condition. (D) Quantitative DNA-FISH analysis of the distribution 920 

of distances separating paired fluorescent probes in transfected MDA::ER cells. Results are illustrated as in Figure 3. 921 
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(E) Heatmaps summarizing RT-qPCR results obtained in at least 3 independent triplicate experiments following the 922 

transfection of control siLuc or siRNAs directed against CTCF or RAD21 expression and a 4h treatment of the cells 923 

with 10
-8 

M E2 or EtOH as vehicle control. Expression levels were normalized to the PKNOX1 internal control and 924 

reported to those calculated for the siLuc EtOH condition. The fold inductions of these genes expression by E2 are 925 

also shown on the right side of the panel as relative to those measured in cells transfected by the siLuc. Results 926 

originate from at least 4 independent triplicate experiments. 927 

 928 

FIG 6 Dynamic three-dimensional reorganization of the studied genomic region in MCF-7 cells. Summary of one 3C 929 

experiment representative from two, performed on chromatin sampled from MCF-7 cells treated from 0 to 80 930 

minutes with 10
-8 

M E2. As indicated, the size of the bubble that corresponds to one interaction is proportional to 931 

the fold changes in frequencies of interaction as compared to the basal (t0) situation. The location of the gene 932 

promoters that served as anchors is illustrated on the top of each subpanel and the ERBSs on the left. Distance 933 

scale is accurate (2 Mb between ticks) but had to be broken in some instances for sake of figure size and clarity. 934 

Bubbles highlighted in orange are those commented in the main text and those in yellow correspond to 935 

interactions made by the ERBS located within the TFF1 promoter (comERBS2). 936 

 937 

FIG 7 Dynamic three-dimensional reorganization of the studied genomic region in MDA::ER cells. Summary of one 938 

3C experiment representative from two, performed on chromatin sampled from MDA::ER cells treated from 0 to 80 939 

minutes with 10
-8 

M E2. Results are illustrated as in Figure 6. 940 

 941 

FIG 8 Functionalization of MDA::ER and MCF-7 interactomes. (A) Triplex forming oligonucleotides (TFOs) were 942 

designed to interfere with ER binding and thus to identify the roles of ER on specific BSs for the regulation of E2-943 

sensitive genes. (B) Formation of DNA triplex as analyzed by gel-shift. Increasing amounts of TFO (25 to 1,500 pmol) 944 

were added to 25 pmoles of target DNA duplexes and incubated for 16 h at 37 °C. Control was made using an 945 

unspecific TFO (Ctrl TFO) at the highest concentration. Complexes were separated by electrophoresis and stained 946 

with methylene blue. (C) MCF-7 cells were transfected for 36 h with 10 µmol of TFO or biotinylated (Biot-) TFO 947 

directed against the ERBS1, subjected to cross-linking and sonicated chromatin was then incubated with 948 

streptavidin-coated beads. Amounts of captured DNA were analyzed by qPCR. Values are mean ± SD of two 949 

independent duplicates, and are expressed as % of captured DNA relative to input DNA normalized to the amounts 950 

of recovered negative control region (Rplp0 promoter). (D) Anti-ER ChIP-qPCR performed on MCF-7 cells 951 

transfected as previously and treated for 50 min with 10
-8 

M E2. Results are mean values ± SD of three independent 952 

triplicates expressed as relative enrichment towards the PKNOX1 promoter. (E) Fold changes in ER mobilization 953 

measured by ChIP-qPCR on each tested ERBS following the transfection of corresponding TFO was plotted against 954 

the distance separating the sequence targeted by the TFO from the center of the ERBS defined from ChIP-chip data. 955 

(F) Amounts of streptavidin-captured DNA following the transfection of Biot-TFOs are plotted against the relative 956 
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chromatin accessibility of their target regions as measured by FAIRE experiments in control conditions (ethanol 957 

vehicle control, EtOH). (G) RT-qPCR experiments performed on MCF-7 and MDA::ER cells transfected with the 958 

indicated TFOs. Boxes at the left of each heatmap indicate identified interactions by 4C. Experimental values were 959 

normalized to those obtained in untransfected cells and expressed as log2. Data originate from at least three 960 

independent duplicate experiments.  961 



TABLE 1. Sequences and characteristics of TFOs. 

Target sequence 

Distance from 

ERBS center 

Off-target vs. 

specific e-

valuesa 35 bp probe sequenceb 

     

MCF-7 BS1 UGGUGTUUGGUUUGGUUGG 276 -1.95 [1] CACAGACGTGGAAGGAAAGGAATGAGGATGATATT 

MCF-7 BS4 UGGGUGUGUUGGGUCUUGGUUU 479 -5.74 [1] TGACCCTAAAGGAACAGGGAAGAGAGGGATTCAGC 

MCF-7 BS6 UUUUGUUUGGGUUGGUCUG 2 -1.95 [1] TGGGCACTGACAGGAAGGGAAAGAAAACAGCCTGC 

MCF-7 

BS10 

GUUGGUUCGUUGGUGUUU 248 -1.98 [1] GATCTTCCTAAAGAGGAAGCAAGGAAGCCAGCCTC 

MCF-7 

BS14 

UUGUUCGGUUUGUGGUGG 511 -2.02 [2] GATCTGATGGAGGAGAAAGGCAAGAACATGTGCGA 

MCF-7 

BS16 

GGGGUTGUGGUGGUGGUGUUU 355 -5.28 [2] AGGTGTCCAAAGAGGAGGAGGAGTAGGGGCAACAG 

MDA::ER 

BS1 

UGUUGUUUUGUGGTGGGUG 371 -1.98 [1] CTAGGATGTGAGGGTGGAGAAAAGAAGACGTGAGG 

MDA::ER 

BS10 

UUUGGGUCGUGUUGGUGG 273 -1 [1] GCAGGAGATGGAGGAAGAGCAGGGAAATAGAAGCT 

MDA::ER 

BS12 

UGGGUGGTUUUGUGGUGGGGUU 301 -5.74 [1] AGGTGACCAAGGGGAGGAGAAATGGAGGGACATTC 

Common 

BS1 

UGGUUUGUUGGGUGUGUGUGUG 185 -1.74 [2] GGAGTTAGAGAGAGAGGGAAGAAAGGAGGGAGGGA 

Common 

BS2 

UUUUUUUGUGGGUGGUCGGG 450 -3.93 [1] GGCTGGGGGCAGGAGGGAGAAAAAAATAGTATATA 

a Expressed as log(Inv(off target/specific target)). The number in brackets indicates the number of off-targets in the top5 hits determined from 

BLAST (http://blast.ncbi.nlm.nih.gov/). b Nucleotides targeted by the TFOs are in bold italic. Only the sense oligonucleotide is indicated. 



TABLE 2. Genomic regions spotted on microarrays. 

Chromosome Start a Stop a Cluster Regulated in Top gene a 

      

1 16,920,000 18,300,000 Yes MDA::ER PADI1 

1 150,450,000 151,200,000 No MCF-7 LCE3B 

2 118,600,000 123,280,000 Yes MDA::ER INHBB 

3 49,890,000 51,600,000 Yes Both SEMA3B 

7 72,600,000 73,200,000 Yes MDA::ER CLDN4 

8 67,060,000 68,460,000 Yes MCF-7 MYBL1 

9 138,882,000 139,620,000 Yes MCF-7 ENTPD2 

10 43,500,000 44,600,000 No MCF-7 CXCL12 

10 99,800,000 100,130,000 No MDA::ER LOXL4 

11 1,500,000 3,300,000 Yes MDA::ER TH3 

11 93,800,000 94,930,000 Yes MCF-7 FUT4 

12 9,600,000 10,920,000 Yes MDA::ER KLRC3 

12 14,100,000 16,300,000 Yes MCF-7 ART4 

14 91,800,000 96,600,000 Not in MCF-7 Both SerpinA1 

16 21,500,000 24,420,000 Yes MCF-7 SCCN1C1 

16 54,600,000 55,900,000 Yes MDA::ER MT1X 

16 65,600,000 66,240,000 Yes MDA::ER HSF4 

17 35,530,000 37,440,000 Yes Both KRT9 

19 54,150,000 54,480,000 Yes MCF-7 LHB 

20 21,000,000 26,800,000 Yes MDA::ER ACSS1 

21 36,200,000 47,000,000 Yes Both TFF1 

22 48,720,000 49,380,000 Yes MDA::ER MAPK12 

X 36,600,000 39,600,000 Yes Both SYTL5 
 

a Genomic coordinates are given from the hg18 assembly of the human genome. b Gene exhibiting the most  

important fold-change in expression upon E2 treatment in either MDA::ER or MCF-7 cells. 
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Locations of the BACs (B1 to B6 referring respectively to RP11-814F13, CTD-2337B13, RP11-

35C4, CTD-260o11, RP11-113F1 and CTD-1033M14) used to generate fluorescent probes for FISH 

experiments all along the genomic region of interest, illustrated as in Figure 1. Positions of the 

ERBSs are also indicated. (B) Analysis of the 3D volume of the TFF loci by DNA-FISH using a mix 

of all generated probes in cells treated with 10-8 M E2 or ethanol (EtOH) for 50 min. Representative 

pictures of these assays are on the left side of the panel, with magnified views of the three TFF loci 

present in MDA:ER cells. Quantitative measurements (n=416) of the 3D volume of the loci is shown 

at the right side of the panel with indicated Fisher t-test p-value. (C) Quantitative analysis of the 

distribution of distances separating indicated paired FISH probes. Values are shown within boxplots 

(top of the panel) or within quantile-quantile (Q-Q) plots representation of conditionally ranked 

measured distances (bottom). The normal distribution expected from non-variating distances is 

illustrated by the straight black line in each Q-Q plots. Non-parametric Fisher test p-values are 

indicated when determined as significant, as well as the number of measurements made in at least 

three independent experiments.
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FIG 5 CTCF and cohesin organize the E2-responsiveness of the TFF cluster. (A) Amounts of indicated mRNA were evaluated in untreated MDA::ER cells 

following 72h of transfection with either control siRNA (directed against the Luciferase gene, siLuc) or siRNAs targeting mRNAs of interest. Results shown 

are mean data ± SEM of values obtained in at least 5 different experiments (n ranges from 15 to 18), normalized to the expression of control PKNOX1 

gene. Wilcoxon test was used to identify statistically relevant variations from control siLuc/EtOH condition: p-value <0.001 (***), <0.01 (**). (B) Western 

blots assaying the expression of RAD21, CTCF, ER and hCAPD2 (loading control) in cells transfected with the indicated siRNAs. (C) 3C-qPCR experi-

ments following the impact of the reduction in CTCF and RAD21 contents on the interactions between indicated ERBS and gene promoters. Results shown 

originate from one representative experiment out of two and are expressed as the log2 of values normalized to those obtained in the control siLuc 

condition. (D) Quantitative DNA-FISH analysis of the distribution of distances separating paired fluorescent probes in transfected MDA::ER cells. Results 

are illustrated as in Figure 3. (E) Heatmaps summarizing RT-qPCR results obtained in at least 3 independent triplicate experiments following the transfec-

tion of control siLuc or siRNAs directed against CTCF or RAD21 expression and a 4h treatment of the cells with 10-8 M E2 or EtOH as vehicle control. 

Expression levels were normalized to the PKNOX1 internal control and reported to those calculated for the siLuc EtOH condition. The fold inductions of 

these genes expression by E2 are also shown on the right side of the panel as relative to those measured in cells transfected by the siLuc. Results 

originate from at least 4 independent triplicate experiments.
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FIG 6 DDynamic three-dimensional reorganization of the studied genomic region in MCF-7 cells. Summary of one 3C experi-

ment representative from two, performed on chromatin sampled from MCF-7 cells treated from 0 to 80 minutes with 10-8 M E2. 

As indicated, the size of the bubble that corresponds to one interaction is proportional to the fold changes in frequencies of 

interaction as compared to the basal (t0) situation. The location of the gene promoters that served as anchors is illustrated on 

the top of each subpanel and the ERBSs on the left. Distance scale is accurate (2 Mb between ticks) but had to be broken in 

some instances for sake of figure size and clarity. Bubbles highlighted in orange are those commented in the main text and those 

in yellow correspond to interactions made by the ERBS located within the TFF1 promoter (comERBS2).
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Figure 7

FIG 7 Dynamic three-dimensional reorganization of the studied genomic region in MDA::ER cells. Summary of one 

3C experiment representative from two, performed on chromatin sampled from MDA::ER cells treated from 0 to 80 

minutes with 10-8 M E2. Results are illustrated as in Figure 6.
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FIG 8 Functionalization of MDA::ER and MCF-7 interactomes. (A) Triplex forming oligonucleotides (TFOs) were designed to interfere with ER binding and thus to 

identify the roles of ER on specific BSs for the regulation of E2-sensitive genes. (B) Formation of DNA triplex as analyzed by gel-shift. Increasing amounts of TFO 

(25 to 1,500 pmol) were added to 25 pmoles of target DNA duplexes and incubated for 16 h at 37 °C. Control was made using an unspecific TFO (Ctrl TFO) at the 

highest concentration. Complexes were separated by electrophoresis and stained with methylene blue. (C) MCF-7 cells were transfected for 36 h with 10 µmol of 

TFO or biotinylated (Biot-) TFO directed against the ERBS1, subjected to cross-linking and sonicated chromatin was then incubated with streptavidin-coated 

beads. Amounts of captured DNA were analyzed by qPCR. Values are mean ± SD of two independent duplicates, and are expressed as % of captured DNA relative 

to input DNA normalized to the amounts of recovered negative control region (Rplp0 promoter). (D) Anti-ER ChIP-qPCR performed on MCF-7 cells transfected as 

previously and treated for 50 min with 10-8 M E2. Results are mean values ± SD of three independent triplicates expressed as relative enrichment towards the 

PKNOX1 promoter. (E) Fold changes in ER mobilization measured by ChIP-qPCR on each tested ERBS following the transfection of corresponding TFO was 

plotted against the distance separating the sequence targeted by the TFO from the center of the ERBS defined from ChIP-chip data. (F) Amounts of streptavidin-

captured DNA following the transfection of Biot-TFOs are plotted against the relative chromatin accessibility of their target regions as measured by FAIRE experi-

ments in control conditions (ethanol vehicle control, EtOH). (G) RT-qPCR experiments performed on MCF-7 and MDA::ER cells transfected with the indicated 

TFOs. Boxes at the left of each heatmap indicate identified interactions by 4C. Experimental values were normalized to those obtained in untransfected cells and 

expressed as log2. Data originate from at least three independent duplicate experiments. 


