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Abstract

Between 1975 to 2011, aphid Relative Growth Rates (RGR) were modelled as a function of mean outdoor temperature and
host plant phenology. The model was applied to the grain aphid Sitobion avenae using data on aphid counts in winter
wheat at two different climate regions in France (oceanic climate, Rennes (western France); continental climate, Paris). Mean
observed aphid RGR was higher in Paris compared to the Rennes region. RGR increased with mean temperature, which is
explained by aphid reproduction, growth and development being dependent on ambient temperature. From the stem
extension to the heading stage in wheat, there was either a plateau in RGR values (Rennes) or an increase with a maximum
at heading (Paris) due to high intrinsic rates of increase in aphids and also to aphid immigration. From the wheat flowering
to the ripening stage, RGR decreased in both regions due to the low intrinsic rate of increase in aphids and high emigration
rate linked to reduced nutrient quality in maturing wheat. The model validation process showed that the fitted models have
more predictive power in the Paris region than in the Rennes region.
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Introduction

In light of global climate change, more research is needed to

study the effects of temperature trends and associated fluctuations

on living organisms. Changes in populations of indigenous or

invasive insect pests are one of the most important challenges

facing ecology and crop protection [2–4]. Pest outbreaks must be

modelled for forecasting and prospective purposes. Modelling

insect population dynamics requires the incorporation of various

driving factors. In particular, the vital stages in insect life cycles

depend heavily and almost instantaneously on ambient temper-

ature, the main abiotic factor influencing insect development.

Development of herbivorous insect species also depends on

biotic driving factors such as the phenology of the host plant.

Other biotic factors act at higher trophic levels on insect

development and include predators, parasitoids and entomopatho-

gens, which in turn depend on herbivore population accumulation

to survive. The insect food web is temperature dependent because

all organisms involved are ectothermal. The combined response of

insects to two or more driving factors is particularly difficult to

study experimentally because the interactions between these

factors require a large experimental design and thus expensive

testing chambers. Furthermore, in vitro results are often very

different from what is observed in nature [5–7].

A field-based ecological study, although more arduous, is

preferable to a laboratory-based one because it produces a realistic

set of parameters. We, therefore, attempted to model the

instantaneous increase of an insect population (Relative Growth

Rate or RGR) from data obtained in natura.

To model insect RGRs, we used an approach based on several

sets of data obtained from sampling winter wheat fields, with the

goal of providing a robust and simple basis for further modelling

and forecasting the populations of the grain aphid Sitobion avenae.

This aphid is a major agricultural pest in Europe [8–10] causing

direct damage in the spring by feeding on the sap of growing

wheat and indirect ones by transmitting plant viruses [11,12]. Two

different regions were selected for field data collection: Rennes

basin in western France, and the Paris basin; both having different

agro-climatic characteristics likely to influence aphid biology. The

Rennes region has an oceanic climate, with mild temperatures

allowing parthenogenetic aphids and their natural enemies to

survive on wheat during the winter. Conversely, in the more

continental climate of the Paris region, parthenogenetic aphids

generally do not overwinter in situ [13].

The basic premise behind our model is that the RGR of insects

with overlapping generations, such as aphids, varies continuously.

This variation is driven by environmental factors, among which

temperature and host-plant phenology play a key role [1].

Predators, entomopathogens and parasitoids have a more variable
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role due to their complex interactions with both their prey and

climate [14]. The influence of these predators can also be estimated

provided that accurate sampling of these organisms is available [15].

These natural enemies were initially ignored in the model, for sake

of simplicity, and then incorporated in samples for which data were

available [16]. The RGR of the aphid population was then

estimated for each sampling event, and related to temperature and

plant growth stage; this relationship is non-linear [17–19].

Because RGR is a relative derivative, it is the logarithmic

derivative of the population growth function; its estimation is

obtained by smoothing splines. Although quite well known by

statisticians [20–22], this method is very rarely used by ecologists,

to such the extent that many classical textbooks do not even

mention it [23]. Smoothing splines belong to the category of non-

parametric estimators of an underlying deterministic function

perturbed by environmental or endogenous noise. Empirical

estimators based on first-order differences are very sensitive to

weakly autocorrelated random noise whose extreme form is white

noise, or Brownian motion. Stone, as early as 1985, showed that

spline derivative estimators can achieve an optimal L2 rate of

convergence (in quadratic mean: lim
n??

E(jXn{X j2)~0 with Xn is

the spline derivative, X the convergence point and n is the number

of samples).

In this study, we analysed field data from 1975 to 2011 in both

Rennes and Paris regions in order to model S. avenae RGR linking

to its driving factors. The prediction overall quality of the model

was tested with two different datasets.

Materials and Methods

a) Sampling Methods
We collected the field data/samples ourselves and no permission

is required to obtain them.

Aphid population densities were assessed from field counts:

depending on winter wheat field infestation, fifty to 1000 tillers

were randomly chosen from quadrats for observation each week

from early May (stem extension stage) to mid-July (grain ripening

stage) and numbers of living S. avenae per tiller were recorded. For

each dataset, growth stages of wheat were recorded weekly

according to Zadoks’ numerical scale [24]. For data collected in

the Rennes region, numbers of S. avenae killed by entomopatho-

genic fungi (Entomophthorales) and insect parasitoid wasps

(aphidiid ‘mummies’) were also recorded.

Minimum, maximum and mean temperature data were daily

recorded in standard conditions (2 m high in a vented box) at a

weather station near the fields (50 m to 1 km).

We worked on four different datasets, two for estimating the

model parameters and two for validating the model. These latter

two datasets were not used for fitting the model parameters, but

only to check the predictive quality of the model. The first two

datasets will hereafter be referred to as the basic datasets, and the

latter two as the test datasets. Their content was as follows:

N the basic dataset for the Rennes region consists of S. avenae

population densities recorded each year in a winter wheat field

from 1975 to 1986 and in 1988, 1992, 1993, 2003 and 2004

Figure 1. Comparison of observed relative growth rates for the Rennes basic dataset (A) and the Paris basic dataset (B): minimum
(red line), mean (green line) and maximum (blue line).
doi:10.1371/journal.pone.0086825.g001

Insect Relative Growth Rate Modelling
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(17 fields), at the INRA Research Centre at Le Rheu, (Ille et

Vilaine département, France; 1u4797399W, 48u692199N). The

dataset includes 160 aphid and natural enemy counts on three

successive wheat cultivars, Champlein (1975–1980), Arminda

(1981–1993) and Lancelot (2003–2004) under variable weather

conditions.

N the basic dataset for the Paris region consists of S. avenae

population densities recorded in one wheat field for 12 years

from 1980 to 2011, near the Arvalis research station in

Boigneville (Essonne département, France; 48u2090699N,

2u2291499E). The dataset includes 102 aphid counts on

successive wheat cultivars (Arminda, Thésée and Fidel being

the most frequent), under variable weather conditions.

N the test dataset for the Rennes region consists of S. avenae

population densities and the number of aphids killed by

natural enemies, recorded in nine winter wheat fields from

1975 to 1982 for a total of 84 observations.

N the test dataset for the Paris region (47 observations) was

recorded in 2004 in nine winter wheat fields selected in several

areas around Paris.

Figure 2. S. avenae Relative Growth Rate (RGR) according to temperature (A, B)) and wheat growth stage (C, D) for the Rennes and
Paris basic datasets, respectively. Red circles, observed values; surface grid, modelled values.
doi:10.1371/journal.pone.0086825.g002

Table 1. Correlation of parameter estimates for the model
based on the Rennes dataset.

Sm b k

b 0.52

k 0.52 0.41

a 0.53 0.99 0.33

doi:10.1371/journal.pone.0086825.t001

Table 2. Correlation of parameter estimates for the model
based on the Paris dataset.

sm b k

b 20.24

k 20.70 0.14

a 20.30 0.96 0.18

doi:10.1371/journal.pone.0086825.t002

Insect Relative Growth Rate Modelling
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b) Statistical Analyses and Modelling Tools
For each field, the observed RGR at each sampling date was

calculated from the grain aphid abundance curve. This curve was

affected by strong noise resulting mainly from the sampling

process. This noise made it difficult to estimate the derivatives with

respect to time. Smoothing is known to improve greatly the

estimates of the derivatives when the random fluctuations are

faster than the underlying process [25]. Weekly data points were

then smoothed by cubic splines [26]. A cubic spline is a function

constructed from piecewise third-order polynomials that pass

through a set of control points. For example, consider a collection

of n known points (x1,y1), . . . ,(xi,yi),:::,(xn,yn). To obtain a

smoothing spline for a given degree of smoothing (i.e. a given

smoothing parameter), the control points are moved iteratively,

using a technique such as the Gauss-Newton procedure, until a

minimum in the residual sum of squares is reached (ordinary least

squares). The choice of the smoothing parameter was carried out

automatically by maximizing the cross-validation function (CVF,

[25]), a feature included in the smooth.spline function in R [27]. To

estimate the RGR of aphids, we considered the logarithmic

derivative of the smoothing curve, which directly gave an estimate

of the instantaneous relative rate of increase.

This instantaneous relative rate of increase (RGR) is well known

in population dynamics [28] and the observed RGR was defined by:

RGR~
dn

ndt
~

d

dt
ln n ð1Þ

where n is the number of aphids and t represents time (in days) and

RGR’s unit measure is expressed as aphid/aphid/day (1/day).

This analysis of RGR was carried out in three steps:

1. Transformation of the time-series data on the number of

aphids to ln(n+1) (to avoid the undefined logarithms for zero

counts);

2. Smoothing of the logarithmic series using the cubic spline

method; the smoothing parameter was chosen by finding the

best value of the CVF [25]; the smoothed curve and the

unsmoothed process were visually inspected to detect any

anomalies. None occurred.

3. Calculation of the derivative of the spline functions at each

observation time; this is the logarithmic derivative of the

smoothed series and provides an estimate of RGR.

Although spline derivative estimators are generally robust, De

Brabanter et al. [22] recently suggested a way to improve

estimators by replacing the smoothing splines with a local

polynomial regression, in an attempt to avoid choosing a

smoothing parameter [29]. Nevertheless, in our case, the use of

the cross-validation function (CVF) gave quite satisfying estimators

growth and was therefore used to also estimate the derivatives.

c) Modelling the Aphid RGR
We used non-linear regressions [30] of the weekly observed

RGR calculated separately for each basic dataset on the weekly

mean of mean daily temperatures and weekly wheat growth stage.

The non-linear regression model had the form:

RGRi ~ f (si,hi,Q)z"i for iE½1,n� ð2Þ

where RGRi is the response variable, i.e. aphid RGR, f is a known

function, hi the temperature, si the wheat growth stage, Q the

parameter vector and ei random errors. The unknown parameter

vector Q is estimated from the data by minimising the sum of the

squared residuals.

Because the obtained data are likely to be autocorrelated within

each field, a Durbin-Watson test was performed to evaluate this

degree of autocorrelation. This test was used mainly as a

precaution, because the main goal of this work was to estimate

the parameters, not to test model significance.

We considered the overall quality of prediction for both basic

and test datasets by considering the bisector (the line where the

fitted values are equal to the observed values) and the residuals

from the bisector considered as an ideal model. The ratio of the

Figure 3. Prediction map of the model for the Rennes region according to temperature (6C) and wheat growth stage (Zadoks scale).
Coloured areas, predicted RGR; red circles, observed RGR.
doi:10.1371/journal.pone.0086825.g003
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residual sum of squares over the overall sum of squares of the

observed values, corrected by their degrees of freedom, is

considered as an index of model quality, and subtracting this

ratio from one is an index of goodness of fit. This index is

equivalent to a coefficient of determination (R2). We set

R2~1{

(n{1)
Pn

i~1

(Pi{Oi)
2

n
Pn

i~1

(Oi{ O
{

)2
ð3Þ

where n is the number of cases, Pi the ith predicted value, and Oi

the ith observed value.

All calculations (non-linear regression, ANOVAs and Durbin-

Watson tests) were carried out using R freeware [27].

Results

a) The Observed RGR
The mean observed RGR (Figure 1) was higher in Paris (0.076

aphid/aphid/day (1/day)) than in Rennes (0.047 aphid/aphid/

day (1/day)), as were its maximal values (0.45 and 0.29,

respectively). The minimal value of RGR is of the same order in

both regions (20.5).

b) The Parametric Model
We used the deterministic function for f(.):

RGR~
a1 ln (hM{h)za2 ln (sM{s)

1z exp ({k(s{sm))z exp ({bh)
ð4Þ

Where hM is the maximum lethal temperature, sM the latest

wheat growth stage allowing aphid feeding, sm the position of the

left inflexion point for the response to wheat growth stage. a1,a2, b

and k are parameters required to fit the model.

Figure 4. Prediction map of the model for the Paris region according to temperature (6C) and wheat growth stage (Zadoks scale).
Coloured areas, predicted RGR; red circles, observed RGR.
doi:10.1371/journal.pone.0086825.g004

Table 3. Analysis of variance for the Rennes-based model.

Source SS df MS F P-value

Total 1.8189 159 0.011439

Model 0.4783 4 0.119583 13.94 9.57335e-10

Error 1.3382 156 0.008578

SS, sums of squares; df, degrees of freedom; MS, mean squares; F, F test.
doi:10.1371/journal.pone.0086825.t003

Table 4. Analysis of variance for the Paris-based model.

Source SS df MS F P-value

total 3.025 101 0.02995

model 1.537 4 0.38430 20.52 2.62135e-12

error 1.835 98 0.01872

SS, sums of squares; df, degrees of freedom; MS, mean squares; F, F test.
doi:10.1371/journal.pone.0086825.t004

Insect Relative Growth Rate Modelling
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This function had the following features:

– response to wheat growth stage is sigmoidal on the left, and falls

sharply on the right until wheat reaches stage 92 (grain

ripening);

– response to the temperature increases until a thermal

maximum (30uC), and then sharply decreases.

Equation (4) is an ad hoc response to these features well-known

from experimental data [19,31].

This model was therefore fitted to the observed RGR by non-

linear ordinary least squares (R, nls function, Gauss-Newton

method). After identification of the parameters (sm, b, k, a1 and

a2), we used Equation (4) to predict the RGR, given temperature

and wheat growth stage.

Figure 5. Validation of the models for the Rennes (left-hand panels, A, C, E) and Paris (right-hand panels, B, D, F) datasets without
natural enemies. Plot of observed versus predicted values (A, B); red line, bisector (equality of prediction and observation); green line, regression
line constrained to origin. Histograms of prediction residuals (C, D); red line, zero residual (desired mean); green line, mean of residuals; blue line,
median. Plot of residuals against predicted values (E, F).
doi:10.1371/journal.pone.0086825.g005

Insect Relative Growth Rate Modelling
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c) The Predicted Aphid RGR and Temperatures
For a given growth stage, aphid RGR increased progressively

with temperature (Figures 2A and 2B). This was due to the direct

effect of temperature on the intrinsic rate of increase in aphids

[19].

d) The Predicted Aphid RGR and Wheat Growth Stage
To analyse the relationship between aphid RGR and wheat

growth stage, we divided Figures 2C and 2D into three parts:

N 1st part: from stem elongation (stage 30) to heading (stage 50),

there was a plateau in the modelled RGR values around 0.1

for the Rennes data, and an increase from 0.02 to a value

around 0.15 at heading for the Paris data.

N 2nd part: After the heading stage, aphid RGR decreased slowly

to medium milk stage (stage 75) in both regions.

N 3rd part: After stage 75, aphid RGR decreased sharply until

grain ripening (stage 90) in both regions.

e) Estimation of the Model Parameters from the Basic
Datasets

We fit equation (4), setting sM to 92, hM = 30 and a~a1~a2.

We obtained the following values for the coefficients:

N For the Rennes dataset: sm~91:75, b~0:04, k~{0:11 and

a~{0:13;

N For the Paris dataset: sm~32:91, b~{0:05, k~1:11 and

a~{0:53.

All parameter correlations were lower than 0.95 in absolute

value (Tables 1 and 2), except the correlation between a and b

which appeared to be very strongly correlated. We were unable,

however, to find a reparametrisation of Equation (4) that would

reduce this correlation.

Figures 3 and 4 show in three dimensions how the surface

model fit the observed points. The value of R2 for our model was

equal to 26.30% for Rennes and 50.81% for Paris. Although the

model explains only a small proportion of the total variance, the

analysis of variance (ANOVA) showed that this proportion was

highly significant, with a P-value equal to 9.57e-10 (Table 3) for

Rennes and 2.62e-12 (Table 4) for Paris. The Durbin-Watson test

indicated a positive autocorrelation of residuals (DW = 0.83, P-

value = 5.27e-14 for Rennes and DW = 1.09, P-value = 2.37e-06

for Paris). Close to 1, this positive autocorrelation was significant,

but moderate. It indicates however that the F values may be

inflated and the standard deviations of the coefficients underes-

timated. Nevertheless, the estimation of standard deviation is only

asymptotic in the case of non-linear regression, and is not known

very accurately.

When a linear relationship with the weekly numbers of aphids

killed by two natural enemies, Entomophthorale fungi, and

parasitoids, is included in the model for the Rennes dataset, we

obtain a new model:

RGR~
a( ln (30{h){ ln (92{s))

1zexp({k(s{sm))zexp({bh)
zaEzbM ð5Þ

E stands for the number of aphids killed by Entomophthorale

fungal disease, and M for the number of mummies (cadavers of

aphids killed by a parasitoid wasp) in the sample.

h represents temperature; s, wheat growth stage and coefficients

had the following values: sm~9:04ez01, b~4:16e{02,

k~{1:24e{01, a~{1:34e{01, a~7:53e{06 and

b~{1:44e{04.

The value of R2 is slightly better (27.70%) than in the model

without natural enemies, with the density of aphids killed by

natural enemies contributing significantly to the variance of the

results. The Durbin-Watson test value was 0.83 and the P-value

was 5.02e-14.

f) Validation of the Model on the Test Dataset
In the case of the Rennes and Paris test datasets, regarding

overall quality of prediction (Equation 4), values of R2 were

24.90% and 49.60%, respectively. The predictive quality of the

models was far better for the Paris dataset than for the Rennes

dataset. Figures 5A and 5B show the plots of the predicted values

against the observed values for the Paris and Rennes study fields,

respectively. The figures show that there was little bias, with slopes

close to approximating unity: t comparison between Paris (1.25),

and Rennes (0.97), suggests that the prediction bias was very small.

The R2 of these regressions was very close to that calculated for

the bisector: R2 = 23.10% for Rennes and R2 = 49.50% for Paris.

Figures 5C and 5D show the histogram of the residuals in both

cases that show residuals to be strongly skewed, positively for the

Rennes dataset (Figure 5C) and negatively for the Paris dataset

(Figure 5D). The similarity of the mean and the median to zero

confirm the weak bias of the prediction average, but indicated

some skewness in variability, particularly affecting large values of

RGR observed for the Paris dataset, and small values in the

Rennes dataset. This skewness is confirmed by the plot of the

residuals against the predicted values (Figures 5F and 5E), for

which there is no simple ecological explanation. Some possible

reasons will be discussed below.

We examined the proportion of cases where RGR was

predicted in the wrong direction (predicted to be positive, but

where a negative value is observed and vice versa). In these cases,

the movement of the population is growing when decreasing and

decreasing when actually growing according to sign error matrices

(Tables 5 and 6). However, there were relatively few observed

Table 5. Error matrix for the Rennes validation model.

Predicted values

Positive Negative

Observed values

Positive 58 2

Negative 12 12

doi:10.1371/journal.pone.0086825.t005

Table 6. Error matrix for the Paris validation model.

Predicted values

Positive negative

Observed values

Positive 43 1

Negative 3 0

doi:10.1371/journal.pone.0086825.t006

Insect Relative Growth Rate Modelling
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cases: it was found that 14 cases (16.67% of the total) occurred in

Rennes and only 4 cases (8.51% of the total) in Paris.

Discussion

There was no single model with common parameters for the

Rennes and Paris regions, probably due to the different climatic

factors acting on the two populations. Any possible common

model would have required accepting a very poor fit and even

poorer validation. Aphid population dynamics, when observed in

the field, varies greatly between an oceanic climate, as exemplified

in Rennes, and a more continental one, such as experienced in the

Paris region. The continental RGR was generally higher than the

oceanic one, even with the same conditions of temperature and

plant phenology (Figure 1). One explanation is that, in oceanic

areas, overwintering parthenogenetic aphids spend winter with

their natural enemies, which exert a continuous, although hardly

detectable, deleterious pressure affecting their RGR. In contrast,

more continental areas are free of aphids and their enemies at the

end of winter because parthenogenetic aphid forms have been

killed by very cold, freezing conditions. Continental areas are

invaded in early spring by healthy, immigrating aphids that

multiply without being regulated by natural enemies.

Despite the difficulties to estimate accurately aphid RGR from

field data, we found a satisfying qualitative agreement between this

estimation and the data obtained from the literature [19,32].

For a given temperature, the estimated RGR was quantitatively

and noticeably lower than that observed in laboratory experiments

[19]. In laboratory experiments, there is no mortality factor other

than temperature itself, but in the field, aphid mortality occurs

randomly. Natural populations are subject to attacks from

parasitoids, entomophthorales and predators (coccinellids, syr-

phids, chrysopids, carabids, spiders) that reduce the growth rate of

aphids. The maximum predicted RGR was about 0.25 in both

Rennes and Paris. These values were also lower than the

maximum observed by Dean [19], which was about 0.3. Dean

[19] found these maxima occurred at 22uC. The slope of increase

between 6 and 22 degrees was steeper in Paris than in Rennes.

Since there were no observed mean daily temperatures higher

than 22uC in all our data records, we could not observe the phase

of decrease in the RGR above 22.5uC, as described by Dean [19]

and reported for many insects [33,34].

The relationship of RGR with wheat growth stage is more

difficult to compare with controlled experiments, because this type

of study is scarce [31], due to the great difficulty of setting them

up. However, we found what was expected: a plateau or an

increase in the aphid RGR from early wheat growth stages to

heading, followed by a decline. This feature was clearly observed,

especially in the Paris region. From stem elongation to heading, we

observed an increase in RGR linked to immigration and

reproduction [35,36]. From heading to ripening, the decrease in

RGR was mainly due to a low intrinsic rate of increase and to

emigration [1], both of which are responses to the decrease in the

nutrient quality of the host [8,37], as well as to the action of

natural enemies [16,31].

All these points of agreement with laboratory studies indicate

that, although the random residuals around the model are large,

the model extracts a signal from the data that is identifiable and

coherent.

In contrast to expectations, temperature did not appear to be

the most influential factor driving aphid RGR. The effect of the

wheat growth stage appeared to be much more important. There

are two possible explanations for this result:

– Firstly, the effects of these two factors are strongly confounded

in field observations, because both plant growth and aphid

development depend heavily on temperature.

– Second, the observation design also unavoidably confounds

temperature and phenology. It is very unlikely to observe

advanced plant growth stages at low temperatures because

these stages occur in the summer and, likewise, to observe early

growth stages at high temperatures because these stages occur

in the early spring. This is clearly visible in Figures 3 and 4,

where each pair of temperature and plant growth stage is

confined to a delimited diagonal area in the plots.

In addition to these confounding effects, field data is also subject

to complex environmental noise and sampling errors. Thus,

focusing on only two model predictors may seem questionable

because many other effects can influence aphid RGR. Two

important natural enemy groups were included (Entomophthorale

fungal diseases and parasitoid wasps) that increased model

complexity, but did not help improve the model fit (R2, 27.7%

vs. 26.3% without natural enemies). This may be attributed to two

possibilities: (1) our observations are biased, reflecting the recent

past rather than the actual effect of these antagonists; (2) we

ignored the effect of many well-known polyphagous aphid

enemies, such as coccinellids, syrphids, chrysopids, carabids and

spiders. It would be worthwhile to include data on these

polyphagous predators, but they are unlikely to become available

for forecasting models [10,16]. Furthermore, including this kind of

data, even in detailed deterministic models, is difficult, because the

occurrence of these predators is quite irregular and unpredictable.

Although fundamentally interesting, multiple predator-prey dy-

namics involve an immense sampling effort that is impractical to

carry out for the purposes of forecasting.

Results of the validation process show that the fitted models are

much more predictive in the Paris region than in the Rennes

region. Nevertheless, both exhibit a very weak bias on average,

neither overestimating nor underestimating the RGR values,

although the errors were strongly skewed in different directions in

the two datasets. We obtained good qualitative validations.

However, unexpectedly high values were often observed, and

poorly predicted for the Paris region whereas in the Rennes

region, unexpectedly low negative values were observed. These

contrasted types of error may be due to the differences in climate,

whereby, the mild oceanic climate in Rennes allows aphids to

coexist throughout the year with their regulators, whereas the

populations of the Paris region result mainly from immigrants

from the west, joined later by the populations of parasites,

predators and diseases. These events cannot be observed at a large

scale easily, and are thus not taken into account in our non-linear

models. However, the overall absence of bias indicates that host

plant stage and the temperature are the main factors that explain

the population dynamics of these insects. Our two models are

therefore useful, with their estimated parameters, as a compre-

hensive population dynamics model.

Finally, fitting the effects of temperature and host plant

phenology on observed data has seldom been done for insect

populations. Even though models based on laboratory experiments

may produce better predictions [38], our model is probably more

robust and realistic because it is based on data collected in natural

conditions. Furthermore, many combinations of temperature and

phenology occur in natura that are almost impossible to mimic

properly in an experimental design.

Lastly, our RGR modelling would be a convenient sub-model

for large scale spatio-temporal forecasting. For example, in a

reaction-diffusion system [39] representing spatially explicit
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dynamics of S. avenae, replacing a constant reaction term by our

RGR model improve the model’s overall predictive and explan-

atory power [40]. Both such RGR and reaction-diffusion models

were designed for practical use and for scientific research

purposes. In practical terms, our objective is to develop a

decision-support system underpinned by RGR models and field

data collected from aerial trapping of aphids in a European

network of suction traps [41,42]. In terms of research, these

models can be used to help predict the effect of global warming on

the spread and increase of pest aphid populations [4]. Our models

thus represent the first, essential albeit arduous, step to these future

applications.
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d’hiver. Acta Oecologica Oecologia Applicata 5: 153–172.

11. Dixon AFG (1998) Aphid Ecology. London, United Kingdom: Chapman and

Hall.
12. Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between

aphids and men: A review of aphid damage and control strategies. Comptes
Rendus Biologies 333: 539–553.

13. Dedryver CA, Gelle A (1982) Biologie des pucerons des céréales dans l’ouest de

la France IV - étude de l’hivernation de populations anholocycliques de
Rhopalosiphum padi L., Metopolophium dirhodum Wlk. et Sitobion avenae F. sur
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