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A B S T R A C T

Natural, H2O2 and MgCl2 - modified Light Weight Expanded Clay Aggregate (LECA) were used as fluoride

adsorbents. Characterization of LECA and its modified forms was done by infra-red, X-ray diffraction,

scanning electron microscope and X-ray fluorescence studies. The specific surface area of HML and

MGML was 3.34 and 3.97 times greater than that of NL (11.72 m2/g). Improved chemical composition of

Magnesium (as oxide) to 15.6% by 2 M MgCl2 solution was ascertained through XRF results. The fluoride

levels were reduced (within the safe limit of WHO: 0.5-1.5 mg/L�1) to 0.39 mg/L, 1.0 mg/L and 0.075 mg/

L respectively using natural (NL), H2O2 (HML) and MgCl2 - modified LECA (MGML) at a pH of 6.0 and

initial fluoride concentration of 10 g/L for an equilibrium time of 120 min. The sorption capacities of

8.53 mg/g, 17.83 mg/g and 23.86 mg/g were determined for NL, HML and MGML respectively. Validation

of kinetic and isotherm models was checked for the present fluoride sorption dynamics. The

thermodynamic data revealed that the present fluoride sorption was spontaneous, exothermic and ends

up with decrease in randomness. Prediction of fluoride sorption mechanism for onto natural and

modified LECA forms was also elucidated. Chloride and sulfate were the highly competing species

against fluoride sorption. Regeneration efficiency of the spent LECA materials prompted the ability of

MGML even after five cycles of adsorption-regeneration processes.

� 2014 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
ACCE1. Introduction

Fluoride ions naturally exist in soils and rock in various
concentrations and are then introduced to surface water from
snowmelt, rivers and streams, as well as groundwater [1]. Fluoride
concentration in surface water is usually less than 1 mg/L, while
lower or higher concentration of fluoride in groundwater is
observed, depending on the nature of soils or rocks [2]. Fluoride is
an essential element for human health body, since in standard
levels (0.75-1.5 mg/L) it prevents tooth decay [3]. If fluoride
concentration in drinking water exceeds standard levels, it can lead
to various diseases such as osteoporosis, arthritis, brittle bones,
* Corresponding author. Tel.: +98 2614336007/9; fax: +98 2614319188.

E-mail address: mansor62@gmail.com (M. Zarrabi).
cancer, infertility, brain damage, Alzheimer syndrome, and thyroid
disorder [4]. Fluorosis is a common disorder of ingestion of high
levels of fluoride in which teeth and bones are damaged. Skeletal
fluorosis is another health aspect of excessive fluoride which is
characterized by increased bone brittleness and a greater risk of
fractures [5,6]. In addition, fluoride can interfere in DNA synthesis,
as well as in metabolism of lipids, carbohydrates, proteins and
other minerals [6]. Despite the natural origin of fluoride in the
environment, many industrial activities such as pharmacy,
fluorspar mining, semiconductor process, aluminum electrolysis,
and electroplating, generating electricity, rubber and fertilizer
production release fluoride into environment and water bodies [7].
In Iran, fluoride concentrations ranging from zero to as high level as
20 mg/L can be found in groundwater resource. Since appropriate
levels of fluoride are necessary to bones and skeletal health, while
too high levels can damage human being, many works have been
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done on fluoridation-defluoridation of drinking water. In practice,
two distinct methods are used for the removal of fluoride from
aquatic solutions: sorption process and precipitation. Calcium and
aluminum salts are used for the precipitation of fluoride ions in
industrial wastewater. The latter produce significant amounts of
sludge which have to be treated to obtain a final safe product [6]. In
recent years, many researchers tested adsorption processes for
fluoride removal, involving among others Mn-Ce oxide [1], ceramic
adsorbent [2], natural stilbite zeolite modified with Fe (III) [3], acid
activated water treatment sludge [5], bi-metal doped micro- and
nano multi-functional polymeric adsorbents [8]. Lightweight
expanded clay aggregate (LECA) is characterized by a low density,
a high porosity, its natural pH and its thermal resistance (up to
1000 8C). LECA has tiny pores that retain moisture which act as air
pockets to facilitate floating on water. The appearance of LECA is
dark brown, leading to its use as building material for centuries [9].
Because of its porous structure, it can adsorb and retain
environmental pollutants. The main aim of the present work
was therefore to evaluate LECA for adsorption of fluoride ions from
contaminated water. Indeed, although LECA has been widely used
to remove several environmental pollutants, to the best of our
knowledge its use for fluoride removal has not been reported yet.
In addition, the studied LECA was modified with MgCl2 and H2O2 in
order to improve its adsorption capacity.

2. Materials and methods

2.1. Chemicals

All chemicals used in this work were obtained from Merck Co.
Analytical grade NaF was used for the preparation of fluoride stock
solution by dissolving an appropriate amount in deionized water.
The solution pH was adjusted and controlled during experiments
using 0.5 N NaOH or H2SO4 and measured by means of a Jenway,
model 3510 pH-meter. 2 M MgCl2 or 30% H2O2 were used for
adsorbent treatment. The natural LECA was purchased from Teb
Azma Co. (Karaj, Iran).

2.2. Adsorbent preparation

Natural LECA (NL), H2O2-modified LECA (HML) and MgCl2-
modified LECA (MGML) were tested for fluoride removal from
synthetic solutions. The adsorbent was first washed several times
with deionized water to remove any soil impurity until the
turbidity reached a value below 1 NTU. After primary washing, the
adsorbent was dried at 110 8C for 24 h to evaporate the remaining
water molecules. The dried adsorbent was then pulverized and
sieved to 10-30 meshes (841-2000 mm).

Regarding MgCl2-modified LECA (MGML), it was prepared by
transferring a portion of powdered LECA to a 1 L beaker contained
2 M MgCl2 solution and mixed for 24 h. The liquid to solid ratio was
50. Then, the modified adsorbent was filtered using a 0.45 mm filter
(Whatman) and rinsed with deionized water to remove MgCl2 in
excess; it was then dried at 110 8C for 24 h for subsequent use.

The same method was used to prepare the H2O2-modified
adsorbent.

2.3. Batch experiments

All experiments were conducted in batch mode in 250 mL
polyethylene flasks. The following experimental parameters were
investigated: pH (2-10), temperature (10-50 8C), adsorbent mass (2-
10 g/L), initial fluoride concentration (5-20 mg/L) and contact time.
Optimized adsorption time for natural and modified LECA adsor-
bents were examined by varying the contact time at room
temperature, pH 7 and using 6 g/L of adsorbent. For this purpose,
ANUSCRIP
T

6 g of adsorbent was added to 1 L of solution in a polyethylene flask
containing fluoride ions at concentrations in the range 5 to 15 mg/L.
The mixture was shaken at 200 rpm (Hanna-Hi 190 M, Singapore).
Samples were taken at predetermined time intervals, filtered
(0.45 mm, Whatman), centrifuged (Sigma-301, Germany) and the
fluoride concentration was measured at a maximum wavelength of
570 nm by means of an UV-vis spectrophotometer (model 1700,
Shimadzu, Japan) according to standard methods for the examina-
tion of water and wastewater [10]. The removal efficiency (RE) was
calculated by means of the following equation (Eq. 1):

RE ¼ ðC0 � CeÞ � 100

C0
(1)

where RE (%) is the percentage of fluoride removed at equilibrium
time; C0 and Ce are the initial and equilibrium concentrations of
chromium (mg/L), respectively.

2.4. Adsorbent effect on electrical conductivity (EC) and turbidity

In order to measure the influence of adsorbents on EC and
turbidity of water, 6 g/L of (natural or modified) adsorbent was
taken in 250 mL of deionized water (i.e., free of fluoride ions) at pH
7 and shaken for 200 min at 200 rpm. At regular time intervals,
samples were taken for conductivity and turbidity measurements
(Jenway, Model 4520).

2.5. Isotherm study

Equilibrium experiments were conducted in 250 mL polyeth-
ylene flasks by adding 6 g/L of NL, HML and MGML to 250 mL of
fluoride solution at concentrations ranging from 5 to 20 mg/L. The
mixture was shaken at 200 rpm for 6 h at 25 8C to ensure that
maximum sorption was achieved. Adsorption results were then
analyzed by Langmuir, Freundlich and Temkin isotherm models.
The Langmuir isotherm model is based on the assumption of a
homogenous surface energy distribution. The non-linear Eq. (2)
and linear Eq. (3) shapes of the Langmuir model are described as
follows:

qe ¼
ðqmbCeÞ
ð1 þ bCeÞ

(2)

Ce

qe
¼ Ce

qm
þ 1

ðqmbÞ (3)

whereqeis the equilibrium amount of adsorbate (mg/g), Ce is the
equilibrium concentration of adsorbate (mg/L), qmis the maximum
adsorption capacity (mg/g) and b (L/mg) is the Langmuir constant.
The important feature of the Langmuir model can be described
based on the RL parameter expressed in Eq. (4):

RL ¼
1

ð1 þ bC0Þ
(4)

Adsorption is unfavorable for RL > 1, linear for RL = 1, favorable for
0 <RL < 1 and irreversible for RL = 0.

The Freundlich isotherm model which is appropriate for
heterogeneous systems is expressed in Eqs. (5) and (6).

qe ¼ K f Ce
1=n (5)

logðqeÞ ¼ logK f þ
1

nlogCe
(6)

where, qe is the amount of adsorbate (mg/g), Ce is the equilibrium
concentration of adsorbate (mg/L), Kf (mg1�1/n/L1/n/g) and 1/n are
the Freundlich constants. The affinity of the adsorbate is linked to
large values. For a favorable adsorption, the value of the Freundlich
constant (n) should be in the range of 1-10.
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Table 1
Chemical compositions of the natural LECA and its MgCl2- and H2O2-modified forms

and comparison to values reported in the literature [10].

Component wt%

NL HML MGML Ref. [14]

SiO2 61.67 62.64 57.82 62

Al2O3 18.51 18.08 16.47 18

MgO 3.97 3.62 4.59 3

P2O5 0.19 0.22 0.18 -

SO3 0.23 0.24 0.21 -

K2O 3.28 3.31 2.99 4

CaO 3.50 3.52 3.22 3

TiO2 0.65 0.69 0.60 -

Fe2O3 6.14 5.83 6.03 7

SrO 0.13 0.13 0.13 -

Na2O 1.54 1.50 1.41 2

Cl� - - 1.65 -

SiO2/ Al2O3 3.33, 3.46 3.51 3.44
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The Temkin isotherm is also available for heterogeneous surface
adsorption. The non-linear and linear forms of the Temkin model
are given by Eqs. (7) and (8):

qe ¼
RT

b1
lnðktCeÞ (7)

qe ¼ B1lnðktÞ þ B1lnðCeÞ (8)

where B1 = RT/b1, b1 is the adsorption heat (kJ/mol) and kt is the
equilibrium binding constant (L/g) corresponding to the maximum
binding energy. A high value of b1 shows a fast sorption of adsorbate
at initial stage. Similarly, a low kt value is related to weak bonding of
adsorbate onto the medium. By plotting qe versus ln(Ce) one can
deduce b1 and kt from the slope and the intercept of this curve,
respectively.

2.6. Kinetic modeling

Equilibrium time data were used to investigate kinetic model.
For this purpose, 6 g/L of natural and modified adsorbent were
added onto 250 mL fluoride solution containing 5-20 mg/L solute.
The pH was adjusted at 6 and then shaken at 200 rpm. Samples
were taken at regular time intervals to determine the solute
concentration. Pseudo-first order, pseudo-second order and
modified pseudo-first order kinetic models were considered.

2.6.1. Pseudo-first order model

Pseudo-first order kinetics is described by the following
equation Eq. (9) [11]:

dqt

dt
¼ k1ðqe � qtÞ (9)

where qe and qt are the amounts (mg/g) of adsorbate at equilibrium
and at time t (min) respectively; and k1 is the rate constant (1/min).
Integration of Eq. (9) at the boundary, qt = 0 at t = 0 and qt = qt at
t = t, gives Eq. (10):

Log 1 � qt

qe

¼ � k1

2:303

� �
t

��
(10)

2.6.2. Pseudo-second order model

Pseudo-second order kinetics is expressed as follows Eq. (11)
[11]:

dqt

dt
¼ k2ðqe � qtÞ

2 (11)

where k2 is the rate constant (g/mg min). Integration of Eq. (11) at
the boundary, qt = 0 at t = 0 and qt = qt at t = t and then
rearrangement to a linear form gives Eq. (12):

t

qt
¼ 1

k2q2
e

þ 1

qt
e

(12)

The value of k2and qe can be determined from the slope and the
intercept of the plot t/qt versus t, respectively.

2.6.3. Modified pseudo-first order model

The modified pseudo-first order model which was first
empirically proposed by Yang and Al-Dury [12] and then theoreti-
cally derived by Azizian and Bashiri [13] and is given by Eq. (13):

dqt

dt
¼ km

qe

qt

� �
ðqe � qtÞ (13)

Integration of Eq. (13) at the boundary conditions mentioned
above leads to the following equation Eq. (14):

ln 1 � qt

qe

� �
þ qt

qe

¼ �kmt (14)
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2.7. Regeneration of the spent adsorbents

Regeneration tests for spent NL, HML and MGML were carried
out using deionized water, H2O2 (30% v/v) and 2 M MgCl2 solutions,
respectively. To saturate the adsorbents, experiments were
conducted with 6 g/L of adsorbent in 250 mL solution containing
10 mg/L fluoride and stirred at 200 rpm until equilibrium was
reached. The spent adsorbent was filtered, washed and dried at
55 8C for 24 h. The dried spent adsorbent was then added to
deionized water, H2O2 (30% v/v) or 2 M MgCl2 solution and let for
500 min; it was then filtered, washed several times with deionized
water and dried at 55 8C for 24 h. The regenerated adsorbent was
then tested for the adsorption of fluoride. The regeneration
percentage was calculated based on the comparison of the removal
efficiencies of fresh and regenerated adsorbents.

2.8. Determination of the zero point charge

The zero point charge was determined using 0.01 M solution of
NaCl as electrolyte by adding 0.1 M solutions of NaOH or HCl. For
this purpose, 50 mL electrolytes were introduced in beakers (8 on
the whole); pH was set to the desirable values in the range 2-12. 0.5
gram portions of adsorbent was then added into each beaker and
shaken for 48 h. The solutions were then filtered to remove the
adsorbent and the final pH of each beaker was measured. By
plotting the initial pH versus the pH after 48 h of agitation, the zero
point charge of the adsorbents determined to be 5.7, 6.1 and 5.9 for
natural, H2O2-modified and MgCl2-modified LECA respectively.

2.9. Effect of competing ions

The effects of chloride (250 mg/L), nitrate (35 mg/L), calcium
(50 mg/L), magnesium (50 mg/L) and sulfate (350 mg/L) were
examined. Conductivity and total dissolved solid (TDS) of water
solutions were adjusted by sodium chloride at 1850 ms/cm and
1150 mg/L, respectively. The simulated real sample was prepared
according to Karaj water supply system with some modifications.

3. Results and discussion

3.1. Adsorbent characteristics

The chemical compositions of the natural LECA (NL), H2O2-
modified (HML) and MgCl2-modified (MGML) adsorbents were
determined by means of an X-ray fluorescence spectroscopy (XRF)
instrument (Philips-Magix Pro, Netherland) and are summarized in
Table 1. According to the results, the natural LECA was a typical
aluminosilicate mineral with SiO2/Al2O3 ratio of 3.33. The chemical
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Fig. 1. XRD patterns of (a) natural LECA, (b) H2O2-modified LECA and (c) MgCl2-

modified LECA[Q - quartz (SiO2); O - orthoclase (KAlSi3O8); C - calcite (CaCO3);

A - anorthite (CaAl2Si2O8); D - dolomite (CaMg(CO3)2)].
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composition and the Si/Al ratio of the NL were very similar to those
reported in the literature [14]. The BET (nitrogen sorption isotherm-
Model ASAP 2000) specific surface area for the natural material was
11.72 m2/g; while it remarkably increased to 53.72 and 76.12 m2/g
after modification with H2O2 and MgCl2, respectively.

The chemical analysis data revealed that Mg2+ modification of
the NL led to an exchange of magnesium cations with other mobile
cations including calcium, sodium and potassium, leading to an
increase of the MgO content of the MGML by 0.62% and a decrease
of the CaO, K2O and Na2O contents by 0.28%, 0.29% and 0.13%,
respectively. From this and taking into account the XRD patterns,
which showed quite similar patterns for NL and MGML adsorbents,
it can be suggested that the dominant mechanism of modification
was ion-exchange. On the other hand, the chemical composition
of the H2O2-modified sample remained very close to the NL,
suggesting an almost negligible impact of hydrogen peroxide on
the chemical composition of the modified LECA.

The XRD patterns of the NL and its modified counterparts (i.e.,
HML and MGML), which were collected by means of a PHILIPS
Xpert pro with Cu Ka radiations (1.54056A8) generated at 40 kV
and 40 mA are displayed in Fig. 1a-c. The XRD analysis confirmed
the mineralogical composition of the samples. The X high
background and a very broad peak clearly indicated the presence
of amorphous phase in the samples. Apart from amorphous phase,
natural LECA appears with characteristic peaks of quartz, anor-
thite, calcite and dolomite can be seen amongst the crystalline
phases presented in the samples [15]. Anorthite is the calcium-rich
member of the plagioclase solid solution series with the ideal
formula of CaAl2Si2O8. [16].

As it can be seen, the XRD patterns of the modified adsorbents
remained almost intact showing that the modification processes
did not have any impact on the overall crystalline phases of the
natural LECA materials. According to XRD patterns, the most
mineral phase that contain Ca and Mg are most likely responsible
for the adsorption including calcite (CaCO3); anorthite (CaAl2Si2O8)
and dolomite (CaMg(CO3)2).

The SEM (LEO 1450 VP, England) micrographs of the LECA
samples are shown in Fig. 2a-c. While the overall morphology of
the NL and its modified counterparts were similar, the HML
sample showed smoother edges. Furthermore, smaller particu-
lates can be observed in the HML and MGML, which can be
attributed to the abrasion due to the 24 h of treatment (for
modification).

Infrared (IR) spectroscopy was used as a complementary
technique to XRD in order to obtain a qualitative characterization
of the samples. The IR spectra were obtained in the range of 4000-
450 cm�1 wavelength by means of a Bruker (VERTEX 70,
Germany). The Fourier transform infrared (FTIR) spectrometer
was equipped with a 4 cm�1 resolution and worked in transmis-
sion mode using spectroscopic grade KBr pellets. The samples
were prepared as pressed KBr disks and the obtained FTIR spectra
are displayed in Fig. 3a-c. The presence of a strong broad in-plane
bending and stretching vibrations at about 1066 cm�1 illustrated
the existence of Si–O–Si bonds (siloxane groups). Bending and
stretching modes of absorbed water molecules in the NL sample
appeared at 3451 and 1640 cm�1, respectively. The correspond-
ing peaks of HML and MGML appeared at slightly lower
wavelengths, 3444 and 1639 cm�1 (for HML) and 3419 and
1635 cm�1 (for MGML), respectively. Furthermore, a band at
3600-3650 cm�1 can be attributed to the stretching mode of the
hydroxyl groups [17]. These –OH groups get transformed into
–+OH2 under acidic conditions and developed an affinity over
fluoride ions in solution.

The absorption band at 1640 cm�1 can be assigned to the H–O–
H bending vibrations of water molecules adsorbed on the NL
sample. The intensity and the location of this band slightly
changed in the HML and MGML samples that can be attributed to
the H2O content of the samples due to the modification process.
The decrease in the intensity of the band at 1066 cm�1(with
respect to symmetry of the surface Si–O–Si vibration) may be due
to the effect of modification of LECA which develops perturbation
in the electric field near by the Si groups due to more positively
charged groups at the proximity [18]. Nevertheless, the sharp
band observed at 461 cm�1 can be considered as the fundamental
n1, and can be easily attributed to the presence of a quartz phase
[19].
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Fig. 2. SEM images of (a) Natural LECA, (b) H2O2-modified LECA and (c) MgCl2-

modified LECA.

Table 2
Parameters collected from kinetic models.

Fluoride concentration

Parameters 5 mg/L 10 mg/L 15 mg/L 20 mg/L

Natural LECA

Pseudo-first order k1 0.026 0.025 0.023 0.021

qe, calc 0.69 1.51 2.33 3.13

qe, exp 0.68 1.51 2.31 3.12

R2 0.96 0.98 0.97 0.97

Pseudo-second order k2 0.24 0.21 0.20 0.17

qe, calc 0.75 1.66 2.57 3.33

qe, exp 0.68 1.51 2.31 3.12

R2 0.997 0.994 0.996 0.998

Modified pseudo-first

order

km 0.017 0.021 0.025 0.025

qe, calc 0.69 1.53 2.31 3.13

qe, exp 0.68 1.51 2.31 3.12

R2 0.98 0.99 0.97 0.98

H2O2 modified LECA

Pseudo-first order k1 0.027 0.026 0.023 0.021

qe, calc 0.81 1.580 2.41 3.22

qe, exp 0.79 1.578 2.40 3.21

R2 0.97 0.95 0.95 0.94

Pseudo-second order k2 0.28 0.21 0.17 0.17

qe, calc 0.84 1.70 2.50 3.34

qe, exp 0.79 1.59 2.40 3.20

R2 0.99 0.99 0.99 0.99

Modified pseudo-first

order

km 0.015 0.025 0.024 0.025

qe, calc 0.8 1.61 2.43 3.22

qe, exp 0.79 1.59 2.40 3.20

R2 0.97 0.95 0.96 0.93

MgCL2 modified LECA

Pseudo-first order k1 0.029 0.027 0.024 0.022

qe, calc 0.712 1.533 2.351 3.14

qe, exp 0.71 1.53 2.35 3.13

R2 0.96 0.97 0.97 0.98

Pseudo-second order k2 0.25 0.23 0.19 0.16

qe, calc 0.8 1.68 2.53 3.3

qe, exp 0.71 1.53 2.35 3.13

R2 0.99 0.99 0.99 0.99

Modified pseudo-first

order

km 0.013 0.014 0.013 0.017

qe, calc 0.712 1.532 2.351 3.137

qe, exp 0.71 1.53 2.35 3.13

R2 0.98 0.98 0.97 0.96
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The effect of the contact time and the initial fluoride
concentration on the removal efficiency is shown in Fig. 4a-c. As
can be seen, fluoride uptake in initial stage was high for all
adsorbents and the highest sorption rate was observed for the
MgCl2 modified adsorbent. Rapid sorption of solute at initial stage
is considered as a helpful adsorbent property for practical use.
Removal of fluoride increased for increasing contact time until
reaching equilibrium after 75 min for all adsorbents. This duration
(75 min) was therefore considered thereafter. After 75 min contact
time and depending on the initial fluoride concentration, about 68-
87%, 72-89 and 74-93% of fluoride were removed by natural, H2O2-
and MgCl2-modified LECA, respectively. Following removal per-
centage, sorption capacity also increased for increasing initial
fluoride concentration, from 1.23 to 2.06 mg/g, 2.37 to 2.43 mg/g
and 2.43 to 3.03 mg/g for initial fluoride concentrations increasing
from 5 to 20 mg/L for natural, H2O2- and MgCl2-modified LECA,
respectively. This may be due to an increase in the driving force
with increasing initial solute concentration. For a given mass of
adsorbent, the active sites for sorption of solute are fixed; therefore
sorption capacity may decrease for increasing initial solute
concentration [8]. However, in the present work, for a given mass
of adsorbent, the sorption capacity increased for increasing
fluoride concentrations, showing that the internal part of the
adsorbent was also used for fluoride sorption. On the other hand,
the sorption rate, k2 (Table 2) decreased for increasing fluoride
concentrations, showing that penetration of fluoride onto internal
part of adsorbent was slower than on the surface part.

Many researchers have tested various adsorbent for fluoride
removal. In the removal of fluoride by orange waste gel loaded
with some earth ions, 3 h contact time was reported to be optimal
for sorption capacity [20], and using hydrous zirconium oxide,
200 min was needed for equilibrium [21]. It was also reported that
10 h contact time are needed in the removal of fluoride by granular
ferric hydroxide to reach equilibrium [22]. In all cases and in
agreement with our findings, sorption capacity increased with
increasing fluoride concentration [20-22].

The mechanism of adsorption (such as chemical reaction,
diffusion control and mass transfer) was determined from kinetic
models, and hence time-concentration profiles of the sorption of
fluoride by natural and modified LECA adsorbents were analyzed
by pseudo-first order, pseudo-second order and modified pseudo-
first order kinetic models. As can be seen from Table 2, equilibrium
data were accurately fitted onto all kinetic models; however and
since the pseudo second order kinetic model led to the highest
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Fig. 3. FTIR spectra of (a) Natural LECA, (b) H2O2-modified LECA and (c) MgCl2-modified LECA.
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Fig. 4. Influence of the contact time and the initial phosphorous concentration on the removal efficiency of (a) natural LECA, (b) H2O2-modified LECA and (c) MgCl2-modified

LECA (conditions: pH 5.5; dose - 6 g/L; stirring rate - 200 rpm; temperature - 20 8C).
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Acorrelation coefficient, only pseudo-second order kinetic results
are shown and the related parameters are collected in Table 2.

For the three kinetic models, the standard error was in the range
0.02-0.2 (Table 2), confirming the closeness between experimental
and calculated qe values. For initial fluoride concentration in the
range 5-20 mg/L, the sorption rate by pseudo-first order model for
natural, H2O2- and MgCl2-modified LECA was found in the range
0.026-0.021 min�1, 0.027-0.021 min�1 and 0.029-0.022 min�1

respectively (Table 2). If sorption kinetics obeys to pseudo-first-
order model, the variation in k1 with initial concentration should
increase linearly with increasing initial concentration [23], as
shown(Fig. 5a-c) for the first-order rate constants, R2 = 0.98, 0.97
and 0.99 for NL, HML and MGML, respectively. Regarding the
pseudo-second order model, for initial fluoride concentration in
the range 5-20 mg/L, the rate constants were found to be in the
ranges 0.24-17 g/mg/min, 0.28-17 g/mg/min and 0.25-16 g/mg/
min for natural, H2O2 and MgCl2 modified LECA respectively.
Contrarily to the pseudo-first order model, the pseudo-second
order rate constant is not necessarily linearly linked to the initial
solute concentration [23]. However, the pseudo-second order rate
constant was found to linearly decrease with increasing initial
fluoride amount. For initial fluoride concentration in the range 5-
20 mg/L, the rate constants for modified pseudo-second order
model were found to increase with fluoride concentration and
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Fig. 5. Pseudo-second order kinetic model for (a) natural LECA, (b) H2O2-modified LECA and (c) MgCl2-modified LECA.
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were in the range 0.017-0.024 min�1, 0.015-0.028 min�1 and
0.013-0.017 min�1 for natural, H2O2 and MgCl2 modified LECA,
respectively.

3.3. Influence of the pH

The role of pH is significant in the control of the surface charge
of the adsorbent and in the removal of the adsorbate from the
solution. Therefore, its effect on fluoride adsorption was examined
(Fig. 6a). Maximum fluoride sorption occurred for pH in the range
5.5-6.3. Maximum fluoride removal yields at pH 6 were 79.4%,
83.0% and 81.2% for natural, H2O2- and MgCl2-modified LECA,
respectively. Therefore and surprisingly, LECA adsorbents exhib-
ited relatively high sorption capacities for fluoride anion near its
natural pH. The higher point of zero charge (PZC) of LECA (5.5-6
depending of the used adsorbent), leading to a more extensive
protonation of its surface at the working pH conditions (pH 5.5) can
account, at least partially, for this behavior. At these pH values, the
adsorbents surfaces are positively charged. In this case, it can be
considered that adsorption is mainly controlled by the combined
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Table 3
Thermodynamic parameters for the three adsorbents.

DH8 DS8 DG8

T (K) 293 303 313 323 333

NL �16719 �58.88 �621.1 �989.8 �1663.1 �2335.3 �2962.3

HML �6447 �22.15 �42.4 �260.7 �499.4 �703.1 �928.1

MGML �7688 �27.23 �325.3 �554.8 �803.9 �1038.2 �1456.5
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effects of chemical and electrostatic interactions between the
oxide surface and the fluoride ions in solution, as well as by the
availability of active sites on the oxide surfaces [14]. The anionic or
H2O displacement on the metal oxide surface through columbic
forces and/or ligand exchange may be attributed to the fluoride
removal of the present system. Fluoride uptake capacity of the
three LECA adsorbents decreased in pH ranges 2-6 and 6-10. The
lower fluoride adsorption of natural, H2O2- and MgCl2-modified
LECA below pH 6 may be attributed to the competition between
adsorption behavior and the formation of hydrofluoric acid.
According to the fluoride speciation, hydrogen fluoride was
predominant at pH less than 3.18 [24]. On the other hand, the
decrease in fluoride removal under alkaline conditions may be due
to the competition of excess hydroxyl ions with fluoride ions for
active sites on the used adsorbents [25]. The change in final pH
(Fig.6b) in the present work was in agreement with other findings,
such as the removal of fluoride with hydrous manganese oxide-
coated alumina [26] and carboxylated aerobic granules containing
Ce(III) [27].

The optimal pH found in this work (6) was in agreement with
the reported optimal pH (in the range 5-7), as shown for the
removal of fluoride by La3+ impregnated cross-linked gelatin [28].
Using Fe(III)-loaded ligand exchange cotton cellulose adsorbent,
optimal fluoride sorption was observed at pH 4, while fluoride
removal was not significantly affected in the pH range 4-9 [29]. pH
in the range 4-7 and 3-6.5 were found to be optimal for the removal
of fluoride by activated alumina and manganese-oxide-coated
alumina [30] and by granular ferric hydroxide [22]. Therefore,
fluoride removal driven by acidic environment appears to be
suitable for the present sorption system.

In the fluoride sorption process, the essential participation of
interactive oxide surface with active sites and prioritization of
anionic displacement through columbic forces are also associated.
The columbic interaction is also acknowledged from BBSi+ and Si –
OH2

+ species [31] resulting from bond breaking or deprotonation
of BBSi – OH groups on the surface of LECA particles.
ANUSCRIPThe predicted mechanism for the adsorption of fluoride under
acidic conditions is mainly corroborated as follows (15).

� MOH þ H2O þ F�$ MOHþ2 þ F� þ OH�$ MOHþ2 � � � F�

þ OH�$ M � F þ H2O þ OH� (15)

Similar studies conducted on fluoride sorption at acidic pH
range were reported in literatures [32,33].

3.4. Influence of the adsorbent dosage

The influence of the adsorbent dosage was studied in the range
2-10 g/L for the three adsorbents and results are shown in Fig. 7.
Removal efficiency increased with the mass of adsorbent and
hence the higher percentage was observed for 10 g/L adsorbent. At
pH 5.5, for increasing adsorbent mass from 2 to 10 g/L, removal
efficiency increased from 52 to 89%, 57 to 99% and 55.3 to 97.4% for
natural, H2O2- and MgCl2-modified LECA respectively, in agree-
ment with an increase in active sites for a higher amount of
adsorbent. In close relation with the increase of sorption yields,
adsorption capacity also increased from 0.86 to 1.50 mg/g, 0.97 to
1.71 mg/g and 0.92 to 1.62 mg/g for natural, H2O2- and MgCl2-
modified LECA, respectively. The linear increase of the adsorption
capacity for increasing adsorbent dosage indicated the accessibili-
ty of a larger number of sorption sites at higher dosage to adsorb
fluoride ions.

3.5. Influence of the temperature

The temperature effect in the range 20-60 8C was examined and
thermodynamic parameters were calculated and summarized in
Table 3. As shown in Fig. 8a, while the effect of temperature on
fluoride adsorption onto H2O2- and MgCl2-modified LECA seemed
to be negligible, a lower maximum fluoride adsorption onto
natural LECA was observed at 60 8C.

The Arrhenius equation was used to evaluate the nature of the
adsorption (either physical (5-40 kJ/mol) or chemical (40-800 kJ/
mol):

lnkd ¼ lnA0 � Ea
RT (16)

where Ao is the temperature independent factor called
’’frequency factor," Ea the activation energy (kJ/mol), R is the gas
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law constant (8.314 J/mol/K), and T is the absolute temperature (K).
A plot of ln k versus 1/T yields to a straight line, from which the Ea

and Ao can be obtained from the slope and the intercept,
respectively. In the present work, the value of Ea was observed
to be 85.89 kJ/mol, 27.23 kJ/mol and 22.15 kJ/mol for natural,
H2O2- and MgCl2-modified LECA respectively, indicating chemical
adsorption rather than physisorption for adsorption of fluoride
onto natural LECA, while onto H2O2- and MgCl2-modified LECA
physisorption mechanism, involving weak interactions (i.e.,
hydrogen bonding) between the adsorbent and the sorbate was
shown.

Thermodynamic parameters were determined for tempera-
tures ranging from 20 to 60 8C using the equilibrium constant
kd(qe/Ce). The change in free energy (DG8) was determined from the
following Eq. (17):

DG0 ¼ �RTlnKd (17)

where, DG8 is the standard free energy (kJ/mol). The parameters of
enthalpy DH8 (kJ/mol) and entropy DS8 (kJ/mol) related to the
adsorption process were calculated from the following Eq. (18):

lnKd ¼
DS0

R
�DH0

RT
(18)

The parameters of enthalpy (DH8) and entropy (DS8) can be
calculated from the slope and the intercept of the linear plot of ln kd

versus 1/T. Fig.8 shows the thermodynamic plots and the related
parameters are collected in Table 3. The values of DH8 were
negative for all systems; showing that the sorption reaction was
exothermic in nature. The negative DS8value characterized a
decrease in randomness at the solid/liquid interface during the
sorption process. In addition, the values of standard free energy
(DG8) were negative indicating that the sorption was not
thermodynamically spontaneous. The negative DG8 values in-
creased with respect to the increase in temperature from 293 to
333 K.
AN
3.6. Influence of the adsorbent on conductivity (EC) and turbidity

Partial dissolution of adsorbent in the surrounding solution
may have an impact on the adsorption process impacting ions
uptake capacity. The hardness of an adsorbent is a major aspect
and hence to assess for its stability in aqueous solution, the
monitoring of conductivity (EC) and turbidity may be useful. The
corresponding experiment was carried out using de-ionized
water. As shown in Fig. 9a and b, EC and turbidity increased with
time for both natural and modified LECA. EC increased from 5 to
13 (ms/cm), 5 to 17 (ms/cm) and 7 to 24 (ms/cm) for natural, H2O2-
and MgCl2-modified LECA respectively. This increase can be
attributed to the presence of some soluble constituents from the
adsorbents.

Turbidity increased from 0.2 to 1.2 NTU, 0.1 to 0.17 NTU and
0.19 to 1.22 NTU for natural, H2O2- and MgCl2-modified LECA
respectively. However, it should be noted that such increase in EC
and turbidity after 300 minute contact time appeared very low if
compared with EC and turbidity in real wastewater. Therefore, the
present adsorbents may have only a limited impact on the
conductivity and the turbidity of aqueous solutions.

3.7. Influence of ionic strength

Electrolytes have an important role in solute adsorption, since it
can influence the electrostatic interactions between the solute and
the adsorbent on the one hand, and the surface charge of the
adsorbent on the other hand. In addition, electrolyte ions may
compete with solute to adsorb on the adsorbent [34]. Therefore,
the ionic strength was investigated by adding 0.01, 0.02 and
0.04 mol/L of NaCl in the presence of 10 mg/L fluoride concentra-
tion. As shown in Fig. 10a-c, removal efficiency decreased with an
increase in ionic strength. Without the addition of NaCl, the
removal efficiencies after 120 min were 88.0%, 91.0% and 90.1% for
natural, H2O2- and MgCl2-modified LECA, respectively. It was in
agreement with the decrease previously reported for the removal
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Fig. 10. Influence of ionic strength on fluoride removal efficiency by (a) natural

LECA, (b) H2O2-modified LECA and (c) MgCl2-modified LECA(conditions: pH 5.5;

contact time - 120 min; stirring rate - 200 rpm;).
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ACCEPof fluoride by granular ferric hydroxide for increasing ionic
strength [22].

In addition, the formation of inner-sphere complex or outer-
sphere complex may influence the ions sorption rate at various
ionic strengths. The former is a complex in which ligands replace
water molecules from the inner coordination sphere and form
bonds directly to solute ions. The latter is a complex in which there
are no bonds between ligands and solute ions. For inner-sphere
complex forming ions, increasing in ionic strength may increase
the adsorption capacity or has no effect on adsorption capacity. On
the other hand, outer-sphere complex forming ions leads to a
decrease of the adsorption capacity for increasing ionic strength.
The latter complex is formed mainly by electrostatic interactions
and usually contains more than one water molecule between the
solute and adsorbent functional groups [35]. From this and due to
the decrease of the removal efficiency for increasing ionic strength,
the adsorption of fluoride by the considered adsorbents was due to
the formation of outer-sphere complex between fluoride and LECA
(Fig.10).

It can also be noted that the decrease in the removal efficiency
for increasing ionic strength was higher for natural LECA than
ANUSCRIPmodified LECA. This phenomenon may be due to competing effect
of Na+ and Cl� ions with fluoride ions to adsorb onto natural LECA.

3.8. Regeneration of spent adsorbent

Regeneration of the spent adsorbent is a key factor which
targets the real economy of adsorption system. In addition, the
reusable and recoverable aspects can be realized. Therefore, in the
present work the spent adsorbent was regenerated to assess its
reusability. Fig. 11 shows the regeneration percentage for spent NL,
HML and MGML. For spent natural LECA, after 300 min contact
time with de-ionized water, only 82% of used adsorbent could be
regenerated. For spent HML and MGML, about 98% was regener-
ated after 180 min and 200 min respectively. The above first-time
regenerated adsorbents underwent a mechanical agitation with
10 mg/L of fluoride solution and followed by second-time
regeneration process with de-ionized water. The results after
second regeneration were found to be about 38%, 63% and 92% for
NL, HML and MGML respectively for the corresponding contact
times. In the same way, the regeneration efficiency was found to be
about 11%, 27% and 92% respectively after fifth cycle. A drastic fall
in the regeneration efficiency was observed in NL and HML
adsorbents but the efficiency was very much consistent which
decreased to about 83% with a minimum loss of 9% after second
regeneration. Evidently, it can be concluded that 2 M MgCl2 can be
used for LECA modification on one hand and for the regeneration
process of the spent MGML on the other hand.

3.9. Adsorption isotherms

Equilibrium data were fitted onto Langmuir, Freundlich and
Temkin isotherm models. Isotherm parameters for natural and
modified LECA adsorbents are collected in Table 4, showing an
accurate fit of equilibrium data for the three isotherm models,
confirmed by the closeness of the regression values, with however
a slightly higher correlation coefficient for the Freundlich model.
The surface of the adsorbent contained most likely heterogeneous
moieties which were uniformly distributed on the surface,
accounting for Langmuir, Freundlich and Temkin isotherms [36].
The high value of the adsorption heat (b1), as well as the low value
of the equilibrium binding constant (kt) confirmed the fast sorption
of fluoride at initial stage and the weak bonding of fluoride on the
natural medium surface if compared to the modified adsorbents.

For increasing initial solute concentration, the value of the
separation factor (RL) decreased from 0.47 to 0.08, 0.92 to 0.53 and
0.41 to 0.06 for NL, HML and MGML, respectively (not shown). A
favorable adsorption was therefore shown (0 < RL < 1), which was
also confirmed by the Freundlich constant (n), 2.55, 2.27 and 1.16
for NL, HML and MGML, respectively.
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Table 4
Adsorption Isotherm parameters for fluoride adsorption onto NL, HML and MGML.

Langmuir

NL HML MGML

qm(mg/g) 8.525 17.83 23.86

b (L/mg) 0.219 0.151 0.285

r2 0.95 0.97 0.94

Freundlich

NL HML MGML

kf 0.521 0.535 0.777

n 2.554 2.273 1.616

r2 0.98 0.99 0.99

Temkin

NL HML MGML

kt 1.712 1.162 1.079

b1 19.82 18.04 12.88

r2 0.97 0.93 0.92
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Fig. 12. Time-courses of fluoride concentrations during treatment in the optimal

conditions (conditions: pH 5.5; Dose - 6 g/L; temperature - 20 8C).
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The maximum sorption capacity at the expense of the
minimum energy was shown for HML from the qm and b values,
17.83 mg/g and 0.151 L/mg respectively.

Maximum sorption capacity according to the Langmuir
constant (qm) was found to be 8.53, 17.83 and 23.86 mg/g for
NL, HML and MGML, respectively. Table 5 listed maximum
sorption capacities for adsorbents recently used for fluoride
removal. As can be seen, maximum sorption capacity for natural
LECA was higher than most of them, except polypyrrole-alumina
composite, polyaniline-alumina composite, nano-alumina, hy-
droxyapatite, Fe(OH)3 and Fe:Al hydrous oxide. For H2O2-and
MgCl2-modified LECA, only Fe(OH)3 and Fe:Al hydrous oxide
showed higher maximum sorption capacity. The potential of
natural and modified LECA for fluoride adsorption was therefore
confirmed.
ACCEPTED
Table 5
Maximum sorption capacity of some adsorbents for fluoride adsorption.

Adsorbent qmax(mg/g) Reference

Ceramic adsorbent 2.16 [2]

Natural stilbite zeolite modified with Fe(III) 2.31 [3]

Magnesia-loaded fly ash cenospheres 5.10 [7]

Saponifiedorange juice residue (Al) 1.03 [25]

Saponified orange juice residue (Ti) 0.93 [25]

Saponified orange juice residue (Sn) 1.18 [25]

Saponified orange juice residue (La) 1.07 [25]

Polyaniline/alumina composite 13.0 [39]

Polypyrrole/alumina composite 12.0 [39]

Bone meal 4.99 [40]

Treated bone meal by H2O2 6.85 [40]

La-incorporated chitosan beads 4.7 [41]

Uncalcined meixnerite 5.8 [42]

Calcined meixnerite 10.4 [42]

Al/Fe dispersed in porous granular ceramics 1.78 [43]

Light weight concrete materials 5.15 [44]

Modified amberlite resin 3.21 [45]

Nano-alumina 14.0 [46]

Calcium chloride modified natural zeolite 2.25 [47]

Hydroxyapatite 16.38 [48]

Al(III) modified calcium hydroxyapatite 3.57 [48]

Synthetic siderite 1.71 [49]

Fe:Al hydrous oxide 91.7 [50]

Fe(OH)3 76.98 [50]

Natural LECA 8.525 Present work

H2O2-Modified LECA 17.83 Present work

MgCl2-Modified LECA 23.86 Present work
ANUSCRIP3.10. Fluoride removal at optimal condition and effect of competing

ions

The removal of fluoride (20 mg/L) was investigated in the
optimal conditions, namely at pH 6, 20 8C and using 10 g/L of
adsorbent. Experiments were conducted until fluoride concentra-
tion reached drinking water standards (0.75-1.5 mg/L). Fig. 12
shows that after 180 min contact time, fluoride reached concen-
tration values below 0.39, 0.1 and 0.075 mg/L for NL, HML and
MGML, respectively. Standard fluoride levels for drinking water
was therefore reached after only 120 min (0.69 mg/L), 90 min
(0.73 mg/L) and 75 min (0.79 mg/L) contact times for NL, HML and
MGML, respectively.

However, various ions co-exist in drinking water which may
influence the adsorption of the target ion. In addition and to
confirm the efficiency of the considered system, tests on real
samples should be implemented. The effect of competing ions such
as SO4

2�, NO3
�, Cl�, Ca2+, Na+, phosphates, Mg2+ and many other

ions have been the purpose of several works in the available
literature, and hence the effects of nitrate (35 mg/L), calcium
(50 mg/L), magnesium (50 mg/L), sulfate (250 mg/L), chloride
(250 mg/L), carbonate (100 mg/L) and bi-carbonate (100 mg/L)
were examined. The conductivity was adjusted to 1500 mms/cm
using NaCl. In a first step, the sorption capacity was examined at
20 mg/L initial fluoride concentration with 10 g/L adsorbent at pH
6 in a single system. The reaction time was conducted until the
fluoride concentration reached a value below 1.5 mg/L.

In a single system (containing only fluoride and one of the
mentioned ions) and in the optimal conditions, the desirable
fluoride concentration (1.5 mg/L) was observed in the ranges 180-
310 min, 95-420 min and 100-230 min with NL, HML and MGML
respectively. It should however be noted that in the presence of
chloride the required fluoride concentration was not achieved,
even after 550 min contact time with NL. The whole results can be
summarized as follows:

NL : Cl� > NO�3 > SO2�
4 > Mgþ2 > Caþ2

HML : Cl� > SO2�
4 > NO�3 ¼ Mgþ2 > Caþ2

MGML : SO2�
4 > Cl� > Mgþ2 > NO�3 ¼ Caþ2

In a second step, fluoride removal was examined in binary
systems. The results show that after 600 min contact time fluoride
concentration decreased from 20 to 5.43 mg/L for NL, while the
required concentration (1.5 mg/L) was reached after 575 and
315 min in the case of HML and MGML respectively, showing the
efficiency of the modified LECA.

Therefore, the required fluoride concentration can be achieved
in the presence of competing ions, but at the expense of a higher
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contact time. It can also be observed that in the presence of SO4
2�,

NO3
� and Cl�, the required time is higher than those observed for

Mg+2 and Ca+2. The negligible effect of Ca+2 on the fluoride
adsorption on modified and non-modified LECA can be attributed
to increasing positive charge on the oxide surfaces and/or forming
a positively charged surface or formation of calcium fluoride
[25,37]. The higher interference effect was observed for Cl� and
SO4

2�, Which may be due to formation of inner and outer sphere
complexes, whereas it was lower in the case of chloride which can
form only outer sphere complexes [38].

Some disagreement can be found in the literature regarding the
effect of competing ions. In the removal of fluoride using orange
waste loaded with multi-valent metal ions, it was reported that the
influence of coexisting NO3

� and Cl� ions for fluoride removal from
binary mixture appeared negligible. But, the presence of Ca2+ ions
in the fluoride solution enhanced the uptake capacity, whereas in
the presence of SO4

2� lower fluoride adsorption was observed [25].
In the removal of fluoride by acid activated water treatment
sludge, NO3

�, CO3
2� and SO4

2�were found to had an adverse effect
on fluoride adsorption capacity, while sorption capacity increased
in the presence of Fe+2, Na+ and Ca+2 [5]. The slight increase in
fluoride removal previously reported in the presence of chloride
and nitrate ions [2] was not in agreement with the present work,
contrarily to the slight decrease observed in the presence of sulfate
[2]. In the removal of fluoride by Al-Ce hybrid adsorbent, the
impact of some ionic species was found to be in the following
order: HPO4

2� > SO4
2� > SiO3

2� > HCO3
� > Cl� [4]; the negligible

chloride effect was not in agreement with our findings, contrarily
to the high sulfate effect.

To summarize the effect of competing ions, it was found that
positively charged ions have positive or negligible effect on
fluoride adsorption, while negatively charged ions had an adverse
effect on fluoride adsorption. The increase of fluoride adsorption in
the presence of positively charged ions may be due to increasing
net positive charge on the adsorbent or the formation of complex
with fluoride ions, while negatively charged ions may compete
with fluoride ions to adsorb on the adsorbent.

4. Summary

Modification of natural LECA with H2O2 and MgCl2 improved
the specific surface area, as well as adsorption capacity. The results
show that fluoride removal increased with increasing initial
fluoride concentration, adsorbent mass and reaction time and
decreased with increasing pH and ionic strength. With respect to
the other parameters, pH showed the most significant impact; it
influences the positive charge on the adsorbent and hence
improved adsorption capacity. Equilibrium data were accurately
fitted onto Freundlich, Langmuir and Temkin isotherm models,
with the highest correlation coefficient found for the Freundlich
isotherm model. Maximum sorption capacity was 8.53, 17.83 and
23.86 mg/g for NL, HML and MGML, respectively. Among pseudo-
first order, pseudo-second order and modified pseudo-first order,
pseudo second order model was found to give the best kinetic
fitting. The considered adsorbents had only a limited impact on
conductivity and turbidity of fluoride solutions. After five cycle
adsorption and/or regeneration, about 11, 27 and 83.4% of spent
NL, HML and MGML were regenerated, showing the efficiency of
Mg2+ modification. Negatively charged ions had a competing effect
on fluoride adsorption.
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