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LOCAL BUCKLING INFLUENCE ON THE MOMENT REDISTRIBU-
TION PERCENTAGES FOR COMPOSITE CONTINUOUS BEAMS OF
BRIDGES
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Abstract. The present paper is concerned with the elasti@nlesptimisation of continuous composite
beams. This optimisation is based on the analyflsiseobeam in the inelastic range including thecrete
creep and shrinkage, the tension stiffening andpégature difference effects as well as the posddual
buckling instability. The finite element programdffitmixte” (adapted to study continuous beams dtsesde
with short time computation) is first presentedhaits different sections: Pre-design (in accordawié
Eurocode specifications), Non linear finite elem@) calculation and Post-processing. In ordesla the
proposed model, the numerical results are comgaredperimental test ones on the example of a spam
beam in reduced scale (7.5m length for each spathout taking into account the local buckling
phenomenon avoided in the experimental test bygusieb-stiffeners. After that, special attentiompéd to
study the influence of the local buckling instalyibn the moment redistribution percentages froggirg to
sagging zones. The application concerns differespa beams of bridge at real scale with mediunm spa
lengths (40m - 60m - 40m). The post-buckling bebawvirepresented by moment-rotation curvesgMs
obtained by the simulation of a simplified 3D modsing Castem FE code. The hyperbolic decreasing of
these curves is computed in “Pontmixte” using acsjpetortional spring FE in order to take into acot the
local buckling phenomenon. The influence of thistability on the moment redistribution percentagaks

the Eurocode predictions into question.

Keywords: Eurocodes, bridges, FEM, composite beams, lasekling, moment redistribution.

1. Introduction

Steel-concrete composite structures are common
practice today in bridges and industrial buildingke
advantages of both materials lead to a very ecomomi
alternative especially in terms of high bearing
capacity. The Structural Laboratory of INSA, Rennes
France set some experimental tests including orze of
twin-span beam that will be used to valid the &nit
element modeiPontmixté (Guezouli, Yabuki 2006).
Depending on the hogging cross-section class, the
Eurocodes give the max moment redistribution
percentages allowed in the case of cracked or
uncracked elastic global analyses, so the knowledge
about the influence of some phenomena in the
inelastic range on the proposed values can reduce
high rectification costs. The focus is on the ie&at
less resistant classes of cross-sections thatresqui
Elastic Global Analysis (EGA). The local buckling
begins generally before reaching the elastic bendin
resistance for class 4 and between elastic andigplas
resistances for class 3. Experimental and finite
element studies on the local buckling of steel gjisd
have been described in many papers (Skaloud, Rokey
1972; Davies, Mandal 1979; Shanmugam, Wan
Mohtar 2007) and the elastic as well as the inielast
behaviour of plate girders having uniform cross-
section along the beam is well understood. Without
taking into account a specific classification oésh
cross sections, Skaloud and Rokey (1972) concluded
that the ultimate load carrying capacity is influed

by the flexural rigidity of the flanges for girders
having similar proportions to those employed inilciv
engineering construction and Portet al. (1975)

assumed that the failure will occur when a certain
region of the web yields as a result of the combine
effect of the inclined tensile membrane stressdfiel
and the web buckling stress. So, it appears that th
combined rigidity of compressed flange and the web,
for a steel panel under negative bending moment,
remains the first parameter influencing the load
carrying capacity of the cross-section..

2. The model “Pontmixte”

Fig. 1 shows the main organisation of “Pontmixte”
with its different options. The program has itsgira

cal post-processor “Pmixtpost” for plotting needed
variable all along the beam or against the increpsi
load (Guezouli, Aribert 2001). The continuous beam
could be pre-designed with constant cross-section
along the beam (for buildings) or different flange
thicknesses on hogging zone than those in sagging
zone (for bridges) (Brozzetti 2000; CEN 2004). The
algorithm select the most critical loading cases on
hogging and sagging zones between the possible ones
(example: for a twin-span beam, 4 possible loading
cases for asymmetrical beams reduced to 2 cases for
symmetrical ones if both distributed and conceatiat
variable loads could be applied to the beam). & th
case of class 3 or 4 cross-sections on hogging, zone
the unknown values of bottom flange thicknesses
could be found by an iterative process balanced be-
tween two critical loading cases:

« critical loading case in sagging zone: maximum
moment close to the plastic resistant moment;

« critical loading case on hogging zone: maximum
moment close to the elastic resistant moment.



Pontmixte

v v
Pre-design > Non Linear F.E. > Pmixtpost
v v v

Iterative process for crosg Material non linearities, creep, Graphical post processing fqf
section optimisation all along shrinkage, tension stiffening, different design variables
the continuous composite | temperature difference angd
bean local buckling

Fig. 1. Main organisation of “Pontmixte”

Different finite element analyses of compositewhole defined loads etc.). This generally occurise
beams have been carried out (Guezouli, Aribert 200Janyone of the following material failure criteria i
Chung, Sotelino, 2006; Nguyen, Hjiaj, Uy, Guezoulireached:

2008). The finite element model (Fig. 2) concernath e max compression in the concrete slab;
the program “Pontmixte considers a concrete slgh wi « max strain in the steel girder;
reinforcing steels connected to a steel girder. ddm- « max strain in the reinforcing steel;
posite beam finite element (node i to node j) hake4 « max slip of the stud.

grees of freedom per node: ) ) )
The convergence of the iterative process is tested

t . . . _4
{de} ={q(°) q(a) ) Lic) l]ja) y 9,—} (1) on the norm of the displacements limited t6°10

For the node “” for example (Fig. 2), the longitu- ‘-’ 2 Gauss points

dinal displacements are;© for the concrete slab and
u® for the steel girder applied at each corresponding
centre of gravity, the vertical displaceme#ntand the

28 fibres

6 fibres

rotation 6; both applied at the neutral axis of the entire 20 fibres
composite cross-section. The stud slip is defined b 6 fibres
yi = ui(c) _Ui(a) +d % ) Fig. 3. Cross-section integration

whered is the distance between the slab and the girder F 3

neutral axis. ﬁ é

First numerical integration is performed along the
element (2 Gauss points) and the second one cancern
each fibre constituting the entire composite cross- =
section (Fig. 3). Non linear equations are solvsidgia Secant iterations
step-by-step method including a secant algorithig. (F
4). The automatic longitudinal mesh of the beamiadtou
be in accordance with the connection distributionat. m » U
Along the beam, 5 Gauss points are necessary in the
variable part of the beam (slope = 1/4) and 2 Gauss

Convergence at tl
first loading step

Fig. 4. Step-by step with secant algorithm

points are enough elsewhere. The symmetrical stiffness matrix of the composite
: . . beam elementijj including a stud at the node “j” for
V(l) 4O 0 4O 0 (k) example, is presented in Eq (3) with the followinga-
' tion:
Gl d
q @ D ‘ug q > D I ki]@ - theij value in the concrete stiffness matrix (6x6);

kiga): theij value in the girder stiffness matrix (6x6);
{} J E % ; R;: theij value in the stud stiffness matrix (3x3).
Composite beam  Stud ~ Composite beam The specific finite element for local buckling iast
bility (Fig. 5) includes longitudinal displacemenfisr
Fig. 2. Composite beam finite element the concrete slab and the girder connected totinai
The calculation remains running until the imposedSPring- The (Moment-Rotation) curve of the locatku

stopping calculation (such as reaching the elase N9 Will be followed as soon as the point (M) is
ment at intermediate support, or application of the



reached. This point represents the beginning of the The secant stiffness of the buckling finite element

buckling and will be numerically established.

can be easily added at appropriate degrees ofdneéual

Eq (3).
kP o K} K3 K3 0 K Kis
kY kD K3 0 K3 K Ky
(K2 +K2) (2+K3) K4 K (K k) (K K2
(K9 +k®) 2 K (42 Hd) (K kY 3)
Kl =
[ ] (kz(li) + Rll) Ri» 2 (lég) + |33)
(kz(ti) + Rzz) 2 ( Ko + I33)
(K2 +k2) (K9 +42)
| Sym (k@ +K2 +R) |
: © ®
*********** e i § N “0
0 @ fu(S)
4@ £ e
y
‘\&Atan(E(s) €®
Fig. 5. Local buckling element with tortional spring ® Ee(S) ul(s)se(s) uz(sjse(s) ”
3. Material behaviours Tension

Material behaviour curves are shown on Fig. 6 using
following Eqs:

(c) _ A2
Concrete o =kﬂ—ﬂ 4)
- f, 1+(k-2)n
(©)
with: n =i—> 0 andk =1.1Ecm‘:—m
swd Q=Q (1-e*)" 5)

The parameters andc, (Eq (5)) depend on the duc-
tility of the stud and can be easily obtained using
push-out test; usual values ace= 0.7 andc, = 0.8. In
order to take into account the creep effect (F@), the
elastic modulus of the concrete is reduced to

E® = E®/n,, whereE® is the usual elastic modulus
of structural steel and, is the modular ratio (for first

steps loadingn, = «, when the concrete slab is dry;
= 18 and leads ta, = 6).

A o®

‘\f\tan(E@

e 1@ @ |,@ @
Tension

Fig. 6a.Steel girder behaviour

ture effect

Fig. 6b. Reinforcing steel behaviour

Q
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Fig. 6¢.Ductile stud behaviour
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Tension -Afem -°*®  Compression

Fig. 6d. Concrete behaviour with creep

The temperature difference effect is considerea by

for

usual

superposition of a tensidd, in the concrete slab and a
compression in the neutral axis of the compositssr
y section (homogenised witm, = 12, Fig. 7) with:
Ny, =€ A2E?/n and M, =N, xx,. If the tem-
perature difference between slab and steel girder i

aboutt5 °C, the total shrinkage including the tempera-
concrete can vary from

€9, =35x10™ (dry environment) to €3, =2.5x10"
(most favourable environment).



Concrete
slab alone F (se2) E (S'glvmaX)

N N © = En= 1- 9
< = =N A m E(S) A(S) P (1+ np) |:( $€m) ®)
A .
. Fe Flse:)
A &

Composite sg -
Ng + Mgt Nsr + Mgt cross-section F( e

....
-
o

Fig. 7 Temperature and shrinkage effect

. . . . s €1, max . el®) >
The tension stiffening effect (Fig. 8a) is limitbd- Uncracker ™ Tension y
tween two lines: stage stiffening
e uncracked stage (concrete and reinforcing steidtre
ing together): Fig. 8b. Tension stiffening model
FG8) = EGAG @+ np)e; . ©6) 4. FE model validation
() A(c) The pre-design algorithm leads for the twin-beameun
with: n= and p=—— (A®the area of the slab investigation (Fig. 9) to a hogging cross-sectiblass
E© A 3. In sagging zones, the cross-section is assumée t
in tension); of classe 1 because the slab is fully connectethé¢o
o full cracked stage (reinforcing steel resistingna): girder. An uncracked elastic global analysis isduséth
(562) — () A(S) the following material mechanical characteristics:
F>f2) = ES A, @)

e concrete slab Young's modulus“& 36000 MPa;

. y (a= .

Between both precedent limits, the tension stifigni ° ste_elfglr(_jer Youn|g$ modylus.aEa }90(()3?;1 Mzngoo
is acting since the beginning of the concrete drack ':/IF[Zm orcing steel Young's modulus: &=
corresponding to a stress equal.te (Fig. 8b). Contrary : L :
to the homogenization in steel equivalence of #ia-r The self weight is taken into account .(4'17 kN/m fo
forced slab in tension used to obtain the Eq (8¢ t sagging zones and 4.26 kN/m for hogging ones). Only
homogenization must be done now in concrete equivé:_onc_entrated Ioads_are apphed on the beam, a Road
lence to obtain the limit of the uncracked stage, applied at the left mid-span increases proportigrala
corresponding t6. X load Q applied at the right mid-span.

P 9 Wetm. - For the first critical loading case (the one cenming

feq the sagging zone), only P is applied,
Slmax -___cm (8) -F - .
(© -1.-1 or the second critical loading case (the onecenon
E¥@L+n"p) . ; :
ing the hogging zone), both P and Q are appliegqrro
N© tionally.
A
P 15800 VQ
€94 | |
& BAgmax [ EEEEE RN 1
3| ! e T 3750 2625 | 5%, ]
\ #12 110 70 [ 1200 1
] — 1202 e I Bl ]
X 28 [2s [
i’ 16 600 16
Fig. 8a.Tension stiffening phenomenon L_—ﬁjlrs 10
If F&) > FGRLma)  the gqverage strain corre- 180 180
sponding to the tension stiffening effect is dedirvith Hogging zone Sagging zone

the following relationship :€,, = &, —BAg,,., Where
BAeg, . represents the part due to the concrete between

cracks with the paramet@ = 0.4 for high adherence
bars. Using a hyperbolic model fd,,,, and consider-

Fig. 9. Geometrical characteristics of the twin-beam

It is assumed that the hogging zone concerns 15%
of the span length on each side of the intermediape
port. For this zone, the pre-design algorithm psmso
ing the Eqs (6) — (7km becomes: 15 mm for the bottom flange thickness while foresth
cross-sections in sagging zones only 10 mm are re-
- x quired. The top flange thickness is equal to thttobo
EGOAR) " pbem) T EBAF(+np)  one. After the beam pre-design, a non linear catmn
is carried out with the following loading historthe
load P applied at the left mid-span increases pipo

B F(Sxiz) F(Svsz) F(Svsz) F(Svsz) F(svslmax)
em = EGA® PG




ally to the load Q applied at the right mid-spatillsb0 Fig. 10 Comparison of deflexions
N. At this load level, Q remains constant and M sti 1 eAn

increases until reaching one of the failure critedie-
scribed above. Mechanical characteristics are summa
rised in Table 1. Figs. 10 and 11 respectivelywstimat

the comparison between numerical and experimental
results is satisfactory both for deflexion (unforately

the measurements under the load Q have not been
done), and for the bending moment under the load P
the intermediate support. Numerical and experinienta
failures are reached by concrete cracking undelod

P for P + Q= 1400 kN giving:

e maximum displacement under P:

Wﬁq)(é&rimentalz 48mm; W:;Lg)r(]erical =45mm

e maximum moment at intermediate support:

M r;:))((perimentalz 960<Nm; M —numerical _ 96KNm

Load "P + Q" (kN

-1500 -1000 -500 0 500 1000 1500
Hogging moment (kN Sagging moment (KNn

max .
; kN der P —@— Numerical curve under P
e maximum moment (kNm) under P: —+— Experimental curve under

M rexperimental— 1 J AqeNm; M humencal = 113(kNm —4A— Numerical curve
—>— Experimental curve

U

It is noted that the real conditions of the specime
test where considered in this numerical simulatia Fig. 11. Comparison of bending moments
ing into account the tension stiffening, the cotere
creep and Shrinkage as well as the temperatum‘diﬁ 5. Influence of local bUCinng on the moment redis-
ence effect. Without these options, the resultdccoat  tribution for a continuous beam at real scale

be as close as those obtained. Firstly, the pre-design of the 3-span beam leads to

This validation does not include the local bucklinghogging cross-section of class 3 and a bottom éaam
phenomenon because the concrete cracking (max cofell as the web of class 3 (Fig. 13). Mechanicalrab-
pression) occurred before as the failure criteribar ~ teristics are given in Table 2.
this reason, the simulation of a continuous beaneait
scale with hogging cross-sections of class 3 qspears ~ 1able 2.Mechanical characteristics

necessary to simulate the local buckling usingsipe- Material Parameters values
cific finite element defined in Fig. 5. E.m= 35 000 MPafy= 40 MPa,
Concrete ¢ - 48 MPaf,= 3.5 MPa
Table 1. Mechanical characteristics slab cm™ ’(‘C)_ : !
en= 0.0025¢£, = 0.0035
Material Parameters values Steel girder E® =210 000 MPa4i,/? = 355 MPaf,®
Concrete  Eem= 36 000 MPafq,= 40 MPa, 9 =510 MPay,® = 10,,® = 25
fom= 48 MPaf;= 2 MPa, Reinforcing E® = 200 000 MP4&,® = 400 MPaf,®
slab 9 y
ey = 0.0022¢,© = 0.0(0)4 o steel =432 MPap,® = 1,1,9 = 25
. E® = 190 000 MP4,'® = 475 MPaf,® Qu=174 900 N¢; =0.7,c, = 0.8,
Steel girder _ 620 MPa,® = 10,1,® = 28 Stud Yoo = 6 MM
o E®=200000 MP4," = 443 MPaf,® = _ _ _
Reinforcing 565 MPay,® = 1,1, = 32,6, = i, For reminder, the whole cross-section class is the
steel 1 K2 BT
£ max one between the compressed flange and the web.
Q. =80000Ng; =0.7,c,= 0.8, Table 3 shows different cross-sections providedbfpr
Stud Vinay = 6 MM this investigation taking care to be always in ¢thse of
a girder cross-section of class 3. The cross-sectn
1600 ' tained by the pre-design is noted H5, it represdms
00 Concrete ciackmq undet less resistant one by comparison to the other gtieso
< 1400 H4) for which the thicknesses were arbitrarily esed
1200 or decreased in order to vary the classes of thi®ro
o 1000 - flange and the web from class 1 to 3. It shoulchdieed
;_ F% ® {Q that the flange thicknesses in sagging zones rethain
= 800 ; same for all the beams, the web thickness is cohath
S 600 | : along each beam, the selfweight of the girder besom
— A different from one beam to another and the critpzzdi-
400 - —@— Numerical curve under P tion of concentrated variable loads Q is the samnall
200 | —&— Numerical curve under Q the beam in the case of type A (symmetrical loading
—+— Experimental curve under H case) and supposed the same in the case of type B
0

‘ w w w T (asymmetrical loading case). It is pointed out thally
0 10 20 30 40 50 60 the pre-designed beam remains optimized at ULS and
Vertical displacement under loads (i SLS. Geometrical characteristics of hogging cross-



sections are given in Table 4 with also some ahjtr 3, and a Tandem System with 2 axle loads each egual
modifications proposed for the web and the bottonB00 kN. In the transverse direction the trafficdsare
flange giving always a girder cross-section of gldon  distributed according to a linear influence linéndfly,
hogging. The traffic loads applied to the bridgeréha the numerical characteristic values of traffic lsdadr
twin-steel girder bridge) have values in accordanite ~ the most loaded lane are: g = 31.2 kN/m and Q1 =Q2
the Model 1 of EN 1991-2 Part 2, namely a “U.D.bf” 406 kN (with the distance 1200 mm).

9 kN/n for the lane 1 and 2.5 kNfnfor the lanes 2 and

22200 ®
Critical loading case B 1 Variable loads (Qandq) Permanent loads (G)
30000 :
Critical loading case A T
[T T T |||||||||||||||||||||||||||||||||3 T e e e e T T T T TIOTTI T
60009000 | /9000 6000
«H «S -
[ 1 |
ﬁl \ «S iy Zﬁ
|: 4000( ::‘H 6000C . 4000( :|
[ " (550x250) with 1% of reinforcing bars | | "~ (5500x250) with 1% of reinforcing bars |
307 (90(x45) 30" (900x13.5)
<«— (200x20) <«— (2000x20)
(90x50) (90x15)
H-H S-S

Fig. 12.Pre-design results and critical loading cases

Table 3. Cross-sections under investigation on hoggj zone — Class 3

Cross-section Web thickness, mm Web Class Bottomdlang Bottom flange Cross-section
thickness, mm class class
H1l 30 1 50 3
H2 25 2 50 3
H3 20 3 60 1 3
H4 20 3 55 2
H5 20 3 50 3

Table 4. Cross-sections under investigation on hom zone — Class 4

Cross-section Web thickness, mm Web Class Bottomdlang Bottom flange Cross-section
thickness, mm class class
K1 30 1 35 4
K2 25 2 35 4
K3 20 3 35 4
K4 15 4 60 1 4
K5 15 4 55 2
K6 15 4 50 3
K7 15 4 35 4




5.1. A 3-D FE model for buckling curves (M) verse displacements of the web at ultimate limatest

. Figs 14a, 14b) sh learly that the additi
The 3-D model developed on Cast3M (2003) (Fig. 13 195 -+a ) shows clearly that the additioverty

h | aird I h . tiff spring elements to the model has a negligibfie-
represents the steel girder as well as the SUNegn.o o, the mechanical behaviour and the studsaappe
meshed by 4-nodes shells, the studs are meshed us

3D b ¢ the displ i tinuit _tWOrking exclusively in shear. The model is loaded b
eams to ensure the displacements continuitly wi applying a displacement at its end to avoid possibl

the shells (same degrees of freedom) and the reinfp geometrical element distortion. The vertical dispta
bars are replaced by equivalent shells supposedeat o .\, equal to 200 mm is applied in 10 steps.
top of the studs. The panel length is equal to éwitee The curves (MB) are plotted for different cross-

web height §,) beginning from the cross-section H-H. sections of class 3 (Fig. 15) and of class 4 (E&). The
7 rotation capacity of the cross-section is similar &ll
: % the cross-sections. The max point of each curvesrep
sents the beginning of the local buckling,(M,). After
this point, a hyperbolic decreasing model (Eq (10))
could be adopted with appropriate values fog, M,
T _ and®, (M, represents a horizontal asymptotic line). The
ﬂ web thickness has a largest influence on theseesurv
h, than the bottom flange one (on the initial stiffnesd
also on the max hogging moment). The decreasing
curves after buckling is similar with nearly thenmsa
value of buckling rotationg( ~ 0.014 rad). The curve

=
Symmetry
conditions

Vertical
support

Stiffener related to Eq (10) plotted for H1 as an exampleegia
A and B (top flange and bars): good prediction for the behaviour after bucklindieT
For all the nodes along X axis: Uyy = 0 ' buckling rotation is also nearly the same in theecaf
If same conditions for C (bottom flange): cross-section of class 8,(= 0.012 rad).
(M- &) curve concerns only local buckling otherwise _ e,
it may includes also the lateral tortional buckling M =M, +(Mv -M O)F' 828, (10)
Fig. 13.Simplified 3-D model Remarks:

It is supposed that on hogging zone the concretg Before setting about a non-linear stability cadtioin,
slab is totally cracked so it does not need to bele g linear stability one is carried out and the whois-
lized. Nevertheless, very stiff springs should bedet-  placement field is reduced by a scale of 1/20 eatm
lized to keep same distance between the top flafige to represent an initial deformation of the specimen
the girder and the reinforcing bars during the ingd e There is no significant sense to talk about abégla
It's pOinted out that the Springs have no influenoehe rotation Capacity at the intermediate Support farss-
shear behavior of the studs (Faella, Martinelligli  sections of classes 3 and 4 because of the locklibg
2002; Guezouli, Hjiaj, Nguyen 2008). This simpléic instability.
tion requires common mesh nodes between the studs
and the reinforcing bars. The comparison of thastra

7
7

o

5
- id
T il

Fig. 14a.Without springs Fig. 14b.With springs



80000

H1 : (M, 8,) = (50000 kNm, 0.014 rad) - g 48600 kNm
H2 : (M,, 8,) = (44400 kNm, 0.014 rad) - g 42900 kN
H3: (M,, 8,) = (37000 kNm, 0.014 rad) - M= 35500 kNm
o H4 : (M,, 8,) = (37000 kNm, 0.014 rad) - = 35500 kN
600007 6v Beginning H5 : (M,, 8,) = (37000 kNm, 0.014 rad) - 4= 35500 kNrr

70000+

e of bucklingﬁ‘

< 50000- PO 0O—O—O0—O0—O0—O0

<

£ 000

5 40000

S M—C&—%—Oh—(H
[@)]

-5, 30000+

(@]

2 =@—H1 : Web(tw=30mm-C1)-Flange(tfi=50mm-C3)
T

={=H2 : Web(tw=25mm-C2)-Flange(tfi=50mm-C3)
—&— H3 : Web(tw=20mm-C3)-Flange(tfi=60mm-C1)
—X*— H4 : Web(tw=20mm-C3)-Flange(tfi=55mm-C2)
—0— H5 : Web(tw=20mm-C3)-Flange(tfi=50mm-C3)
—O— Prediction for H1 (example)

0 10 20 40 50 60

20000

10000

30
Rotation (rad.x18)

Fig. 15.3-D calculations and buckling curves — Class 3

80000
=@—K1 : Web(tw=30mm-C1)-Flange(tfi=35mm-C4)
={=K2 : Web(tw=25mm-C2)-Flange(tfi=35mm-C4)
. 70000+ == K3 : Web(tw=20mm-C3)-Flange(tfi=35mm-C4)
—0— K4 : Web(tw=15mm-C4)-Flange(tfi=60mm-C1)
600004 —%— K5 : Web(tw=15mm-C4)-Flange(tfi=55mm-C2)
— o —+— K6: Web(tw=15mm-C4)-Flange(tfi=50mm-C3)
g B Beginning —¢— K7: Web(tw=15mm-C4)-Flange(tfi=35mm-C4)
~ 50000 of buckling | —O— Prediction for K1 (example)
= >
g
5 40000
g
g
£, 30000
(o))
% /
20000+ K1 : (M,, 8,) = (44800 kNm, 0.012 rad) - ¢4 43500 kNm|
K2 : (M, 6,) = (40000 kNm, 0.012 rad) - M= 39000 kNm
10000+ K3: (M, 6,) = (34500 kNm, 0.012 rad) - M= 33500 kNm
K4 : (M,, 6,) = (28000 kNm, 0.012 rad) - M 25500 kNm
O '::‘ T T T 1 1
0 10 20 30 40 50 60

Rotation (rad.x18)

Fig. 16.3-D calculations and buckling curves — Class 4

5.2. The results where M;E‘ém) — the numerical hogging moment obtained for

The moment redistribution percentage is calculatid

_ _ L —(uncr)_ . .
the following Eq; H-H cross-sectionM ¢z’ — the hogging moment obtained

by a virtual elastic calculation (using the samadiag level
—‘M ;&rgldn) —M1_+2‘ N); M1, ,— the hogging moment resulting only from the first

*x100 (11) and second loading steps corresponding respectieelhe
selfweight of the girder and the one of the corectkat is still

—(uncr, -
_ ‘ME((jL.de) ~My,

—(uncr, -
‘MEEJL.JRd) ~My




wet (Guezouli, Aribert 2004; Guezouli 2007; Guezoul stribution percentage, the cross-sections seamiseto
relatively resistant;

Yabuki 2008). During these steps, the cross-sedsonot
considered resisting as a composite cross-sectipthis part
of bending moment must be subtracted to the onérede
previously. The proposed hyperbolic model is coraguh the
user friendly program “Pontmixte” and different #ipgtions
are carried out with appropriate values of the rhqdeame-

ters (M), M, and 6,). The stopping calculation criterion is

either reaching the plastic resistant moment irgisagzone
(generally occurs for the critical loading casdygie A) or the
elastic moment resistant at the intermediate suggenerally
occurs for the critical loading case of type B).

5.2.1. Results for the beams of class 3

Different variables concerned with the Eq (11) with
and with taking into account possible local buadlare
given respectively in Tables 5, 6. The variationttod
hogging moment against the cumulative load (Figs
18, 19), show that:

17

« for the beams H1 and H2, the elastic resistant emm

is reached before the buckling characteristic pglif,

6,): no influence of local buckling on the momentired

« for the beams H3, H4 and H5, without taking into
account the local buckling, the rule of 10% redlistr
bution predicted in the Eurocodes seams to be ques-
tionable especially for loading case of type A but
the occurrence of local buckling decreases theevalu
of the numerical hogging moment increasing con-
sequently the value of the redistribution R. This
value becomes finally over than 10% for both load-
ing cases. Because of local buckling, the calcutati
stops for lower values of (\PUeKing < \no bucking ag_
pecially for loading case of type B and necessary

the elastic momenM _'" changes and the value

of R consequently. In the column ®f{Tables 4, 5),
the letters correspond to the stopping calculation

criterion for each beam [(A)- M;,.Rd and (B) -

Mei.ral-

Table 5. Hogging and sagging bending (kNm) — Relatdo Table 3 (class 3)

All options — Local buckling not included

Beams M MR M., My MM M, A R, %

Loading case of type A (for reminder see Fig. 13)

H1 - 41706 - 43653 - 17232 - 48958 37058 37563 1.71(B) 7

H2 - 39825 - 41166 - 16987 - 47072 33374 33541 1.51(A) 6

H3 - 37698 — 39046 - 17090 - 51843 29228 29462 1.35(A) 6

H4 - 37632 - 38712 - 16927 — 48487 29285 29462 1.35(A) 5

H5 - 37556 - 38340 - 16745 - 45150 29350 29462 1.35(A) 4
Loading case of type B (for reminder see Fig. 13)

H1 - 41722 - 47264 - 17232 - 48958 32472 37563 1.54(B) 18

H2 - 40529 - 45027 - 16987 - 47072 29742 33541 1.40(B) 16

H3 - 45685 - 49123 - 17090 - 51843 28872 29462 1.60(B) 11

H4 - 42460 - 45793 - 16927 — 48487 27625 29462 1.42(B) 11

H5 — 39969 — 43146 — 16745 - 45150 26948 29462 1.35(B) 12

Table 6. Hogging and sagging bending (kNm) — Relatdo Table 3 (class 3)
All options — Local buckling included
Beams M " MR ML, Moo MM My, A R, %

Loading case of type A (for reminder see Fig. 13)

H1 - 41706 - 43653 - 17232 - 48958 37058 37563 1.71(A) 7

H2 - 39825 - 41166 - 16987 - 47072 33374 33541 1.51(A) 6

H3 - 36379 — 39046 - 17090 - 51843 29229 29462 1.35(A) 12

H4 - 36371 - 38712 - 16927 — 48487 29285 29462 1.35(A) 11

H5 - 36362 — 38340 - 16745 - 45150 29350 29462 1.35(A) 9
Loading case of type B (for reminder see Fig. 13)

H1 - 41722 - 47264 - 17232 - 48958 32472 37563 1.54(B) 18

H2 - 40529 - 45027 - 16987 - 47072 29742 33541 1.40(B) 16

H3 - 36220 - 46051 - 17090 - 51843 28074 29462 1.41(B) 34

H4 - 36578 — 44832 - 16927 — 48487 27335 29462 1.36(B) 29

H5 — 36746 — 43146 — 16745 - 45150 26995 29462 1.35(B) 24
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Table 7. Hogging and sagging bending — Related table 4 (class 4)

All options — Local buckling not included

Beams K1 K2 K3 K4 K5 K6 K7
Loading case of type A (for reminder see Fig. 13)
A 1.35(B) 1.22(B) 1.01(B) 1.22(A) 1.15(A) 1.15(A) 0.81(B)
R, % 24 19 16 2 1 -0.0 12
Loading case of type B (for reminder see Fig. 13)
A 1.15(B) 1.01(B) 0.88(B) 1.46(B) 1.35(B) 1.15(B) 0.74(B)
R, % 30 28 25 7 8 9 21

Table 8. Hogging and sagging bending (kNm) — Relatedo Table 4 (class 4)

All options — Local buckling included

Beams K1 K2 K3 K4 K5 K6 K7
Loading case of type A (for reminder see Fig. 13)
A 1.35(B) 1.22(B) 1.01(B) 1.15(A) 1.15(A) 1.15(A) 0.81(B)
R, % 24 19 16 53 52 50 20
Loading case of type B (for reminder see Fig. 13)
A 1.15(B) 1.01(B) 0.88(B) 1.35(B) 1.22(B) 1.08(B) 0.74(B)
R, % 30 28 25 67 61 55 29

It must be noted that the beams H1 and H4 havment redistribution percentage appears more importa
been arbitrary defined on hogging zone strongen thain the case of class 4 than in the case of class 3.
the one obtained by the pre-design optimization){H5
this leads necessary to valueshat 1.35. For example,
the loading case B of the beam H3, the numericatibe This study attempted to show that it is possiblsitou-
ing moment can be plotted along the beam by comparlate at a real scale the behaviour in the inelaatige of
son to the virtual elastic calculation. Without abc @ steel-concrete composite bridge beam with aivelat
buckling (Fig. 20a) the elastic hogging bendingls simple finite element formulation. The comparisdn o

. . . numerical and experimental results in the casetoira
tained while the lower layer of the girder bottolanfe span beam in reduced scale (1/2) ensures the tiatida

rea_ches its elastic limit (this occurs _f/k)rz 1.60, val_ue of the proposed model. After that, the main interes
which the curves are plotted for). It is clear tf@tthis  concerned the beams with cross-sections of clasmi3
critical loading case, the left intermediate suppisr 4 on hogging zone that are generally subjectechéo t
mostly concerned with the local buckling than tlghtr  local buckling instability. A prior study was comoed
one (see the dot-line corresponding to buckling mowith the post-buckling behaviour of a 3D panel agh
ment). If the local buckling is taken into acco@Rtg. ging zone to obtain the moment-rotation relatiopshi
20b), the same stopping calculation criterion ttiae  Corresponding to these cross-section classes. &rhyp

one described before is obtained for a lower logdinPolic model was proposed depending on 3 parameters:

level A = 1.41). First finite element begins to buckle on.the buckling point (M, 8,) and the horizontal asymptot-

the left intermediate subport in accordance witk th ' line M = M,. This model was computed in the code
! : upp ' Wi “Pontmixte” and several numerical simulations were

corresponding buckling model and the equilibrium ofcq ried out to show the significant influence of thcal

the forces along the beam must be carried outldd®  pyckiing instability on the moment redistributioerp
buckling is extended on both sides defining theezoncentage from hogging to sagging zones in the chse o
subjected to this instability. 3-span beam bridge at real scale. This influenpeans
closely linked to the class combination of the com-
5.2.2. Results for the beams of class 4 pressed flange and the web of the girder. The local

In the case of class 4, Tables 7, 8 summarize tdly buckling mostly occurs when the web is of a higher
values of the moment redistribution percentages. Egass (less resistant) than the compressed flanghis

: ase, if the local buckling is not taken into acttpthe
(11) has to be calculated with moments under Ioadrule of 10% moment redistribution proposed by the

corresponding to the specific value &f These values g\ rocodes is questionable especially for the laadin
are generally less than 1.35 because most of thebe case of type A. If the local buckling is taken irdo-
are less resistant than the pre-designed one. dd@ | count, the calculation of the moment redistributjmt-
buckling appears also more sensible for loading cds centage after buckling until elastic resistant motrie
type B than the one of type A. Very low values of Rgiven only for information and it must not be indéd
especially for the loading case A are increasingwh in the elastic design because specific constructieas-
the local buckling is taken into account. Sometimegires (web-stiffeners) are required to avoid thealloc
could be negative meaning that the redistributien jPuckling instability and consequently assures thesp
inverted and happens from mid-spans to intermedia ility of this redistribution. Skaloud and Zoérnesov

: : ) 005) paid attention to the post-buckled behavamat
supports. The influence of local buckling on the-mo =0 strength of slender webs; similar approach

could be carried out for steel-concrete composiiznts

6. Conclusions



and easily computed in the code “Pontmixte”. ThisNguyen, Q.H.; Hjiaj, M.; Uy, B. and Guezouli, S.G&)

future prospect could give important informatioroab Nonlinear F.E. analysis of composite beafsros-

the_influence of the “breathing” web on the moment tee| 2008 Gratz, Austria.

redistribution percentage. Chung W.; Sotelino, 2006. E.D. Three-dimensional
finite element modeling of composite girder bridges
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