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Abstract. The present paper is concerned with the elastic design optimisation of continuous composite 
beams. This optimisation is based on the analysis of the beam in the inelastic range including the concrete 
creep and shrinkage, the tension stiffening and temperature difference effects as well as the possible local 
buckling instability. The finite element program “Pontmixte” (adapted to study continuous beams at real scale 
with short time computation) is first presented with its different sections: Pre-design (in accordance with 
Eurocode specifications), Non linear finite element (FE) calculation and Post-processing. In order to valid the 
proposed model, the numerical results are compared to experimental test ones on the example of a twin-span 
beam in reduced scale (7.5m length for each span) without taking into account the local buckling 
phenomenon avoided in the experimental test by using web-stiffeners. After that, special attention is paid to 
study the influence of the local buckling instability on the moment redistribution percentages from hogging to 
sagging zones. The application concerns different 3-span beams of bridge at real scale with medium span 
lengths (40m - 60m - 40m). The post-buckling behaviour represented by moment-rotation curves (M-θ) is 
obtained by the simulation of a simplified 3D model using Castem FE code. The hyperbolic decreasing of 
these curves is computed in “Pontmixte” using a specific tortional spring FE in order to take into account the 
local buckling phenomenon. The influence of this instability on the moment redistribution percentages calls 
the Eurocode predictions into question. 
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1. Introduction 

Steel-concrete composite structures are common 
practice today in bridges and industrial buildings. The 
advantages of both materials lead to a very economic 
alternative especially in terms of high bearing 
capacity. The Structural Laboratory of INSA, Rennes, 
France set some experimental tests including one of a 
twin-span beam that will be used to valid the finite 
element model “Pontmixte”  (Guezouli, Yabuki 2006). 
Depending on the hogging cross-section class, the 
Eurocodes give the max moment redistribution 
percentages allowed in the case of cracked or 
uncracked elastic global analyses, so the knowledge 
about the influence of some phenomena in the 
inelastic range on the proposed values can reduce 
high rectification costs. The focus is on the relative 
less resistant classes of cross-sections that require an 
Elastic Global Analysis (EGA). The local buckling 
begins generally before reaching the elastic bending 
resistance for class 4 and between elastic and plastic 
resistances for class 3. Experimental and finite 
element studies on the local buckling of steel girders 
have been described in many papers (Skaloud, Rokey 
1972; Davies, Mandal 1979; Shanmugam, Wan 
Mohtar 2007) and the elastic as well as the inelastic 
behaviour of plate girders having uniform cross-
section along the beam is well understood. Without 
taking into account a specific classification of these 
cross sections, Skaloud and Rokey (1972) concluded 
that the ultimate load carrying capacity is influenced 
by the flexural rigidity of the flanges for girders 
having similar proportions to those employed in civil 
engineering construction and Porter et al. (1975) 

assumed that the failure will occur when a certain 
region of the web yields as a result of the combined 
effect of the inclined tensile membrane stress field 
and the web buckling stress. So, it appears that the 
combined rigidity of compressed flange and the web, 
for a steel panel under negative bending moment, 
remains the first parameter influencing the load 
carrying capacity of the cross-section.. 

2. The model “Pontmixte” 

Fig. 1 shows the main organisation of “Pontmixte” 
with its different options. The program has its graphi-
cal post-processor “Pmixtpost” for plotting needed 
variable all along the beam or against the increasing 
load (Guezouli, Aribert 2001). The continuous beam 
could be pre-designed with constant cross-section 
along the beam (for buildings) or different flange 
thicknesses on hogging zone than those in sagging 
zone (for bridges) (Brozzetti 2000; CEN 2004). The 
algorithm select the most critical loading cases on 
hogging and sagging zones between the possible ones 
(example: for a twin-span beam, 4 possible loading 
cases for asymmetrical beams reduced to 2 cases for 
symmetrical ones if both distributed and concentrated 
variable loads could be applied to the beam). In the 
case of class 3 or 4 cross-sections on hogging zone, 
the unknown values of bottom flange thicknesses 
could be found by an iterative process balanced be-
tween two critical loading cases: 
•  critical loading case in sagging zone: maximum 
moment close to the plastic resistant moment; 
•  critical loading case on hogging zone: maximum 
moment close to the elastic resistant moment. 



 
Fig. 1. Main organisation of “Pontmixte” 

Different finite element analyses of composite 
beams have been carried out (Guezouli, Aribert 2001; 
Chung, Sotelino, 2006; Nguyen, Hjiaj, Uy, Guezouli 
2008). The finite element model (Fig. 2) concerned with 
the program “Pontmixte considers a concrete slab with 
reinforcing steels connected to a steel girder. The com-
posite beam finite element (node i to node j) has 4 de-
grees of freedom per node: 

{ } { }( ) ( ) ( ) ( )= θ θ
tc a c a

e i i j ji i j jd u u v u u v  (1) 

For the node “i” for example (Fig. 2), the longitu-
dinal displacements are: ui

(c) for the concrete slab and 
ui

(a) for the steel girder applied at each corresponding 
centre of gravity, the vertical displacement vi and the 
rotation θi both applied at the neutral axis of the entire 
composite cross-section. The stud slip is defined by: 

i
)a(

i
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ii duu θ×+−=γ     (2) 

where d is the distance between the slab and the girder 
neutral axis. 

First numerical integration is performed along the 
element (2 Gauss points) and the second one concerns 
each fibre constituting the entire composite cross-
section (Fig. 3). Non linear equations are solved using a 
step-by-step method including a secant algorithm (Fig. 
4). The automatic longitudinal mesh of the beam could 
be in accordance with the connection distribution or not. 
Along the beam, 5 Gauss points are necessary in the 
variable part of the beam (slope = 1/4) and 2 Gauss 
points are enough elsewhere. 
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Fig. 2. Composite beam finite element 

The calculation remains running until the imposed 
stopping calculation (such as reaching the elastic mo-
ment at intermediate support, or application of the 

whole defined loads etc.). This generally occurs before 
anyone of the following material failure criteria is 
reached: 

•  max compression in the concrete slab; 
•  max strain in the steel girder; 
•  max strain in the reinforcing steel; 
•  max slip of the stud. 

The convergence of the iterative process is tested 
on the norm of the displacements limited to 10-4. 
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Fig. 3. Cross-section integration 
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Fig. 4. Step-by step with secant algorithm 

The symmetrical stiffness matrix of the composite 
beam element (ij ) including a stud at the node “j” for 
example, is presented in Eq (3) with the following nota-
tion: 

( )c
ijk : the ij  value in the concrete stiffness matrix (6×6); 

( )a
ijk : the ij  value in the girder stiffness matrix (6×6); 

Rij: the ij  value in the stud stiffness matrix (3×3). 

The specific finite element for local buckling insta-
bility (Fig. 5) includes longitudinal displacements for 
the concrete slab and the girder connected to a tortional 
spring. The (Moment-Rotation) curve of the local buck-
ling will be followed as soon as the point (Mv, θv) is 

Pontmixte 

Pre-design Non Linear F.E. Pmixtpost 

Iterative process for cross-
section optimisation all along 
the continuous composite 
beam 

Material non linearities, creep, 
shrinkage, tension stiffening, 
temperature difference and 
local buckling 

Graphical post processing for 
different design variables 



reached. This point represents the beginning of the 
buckling and will be numerically established. 

The secant stiffness of the buckling finite element 
can be easily added at appropriate degrees of freedom in 
Eq (3). 
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Fig. 5. Local buckling element with tortional spring 

3. Material behaviours 

Material behaviour curves are shown on Fig. 6 using 
following Eqs: 

Concrete: ( )
( )c 2

cm

k

f 1 k 2

σ η− η=
+ − η

 (4) 

with: 
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0
c

m
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c
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The parameters c1 and c2 (Eq (5)) depend on the duc-
tility of the stud and can be easily obtained using a 
push-out test; usual values are: c1 = 0.7 and c2 = 0.8. In 
order to take into account the creep effect (Fig. 6d), the 
elastic modulus of the concrete is reduced to 

( ) ( ) /c aE E nφ= , where E(a) is the usual elastic modulus 

of structural steel and nφ is the modular ratio (for first 
steps loading: nφ = ∞, when the concrete slab is dry: nφ 
= 18 and leads to: nφ = 6). 
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Fig. 6a. Steel girder behaviour 
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Fig. 6b. Reinforcing steel behaviour 

 
Fig. 6c. Ductile stud behaviour 
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Fig. 6d. Concrete behaviour with creep 

The temperature difference effect is considered by a 
superposition of a tension Nsh in the concrete slab and a 
compression in the neutral axis of the composite cross-
section (homogenised with nφ = 12, Fig. 7) with: 

( ) ( ) /c a
sh shN A E n∞

φ= ε  and shshsh xNM ×= . If the tem-

perature difference between slab and steel girder is 
about ±5 °C, the total shrinkage including the tempera-
ture effect for usual concrete can vary from 

4105.3 −∞ ×=εsh (dry environment) to 42.5 10sh
∞ −ε = ×  

(most favourable environment). 
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Fig. 7 Temperature and shrinkage effect 

The tension stiffening effect (Fig. 8a) is limited be-
tween two lines: 
● uncracked stage (concrete and reinforcing steel resist-
ing together): 

1
)()(),( )1(1 ερ+=ε nAEF sss

, (6) 
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in tension); 
● full cracked stage (reinforcing steel resisting alone): 

2
)()(),( 2 ε=ε sss AEF . (7) 

Between both precedent limits, the tension stiffening 
is acting since the beginning of the concrete cracking 
corresponding to a stress equal to fctm (Fig. 8b). Contrary 
to the homogenization in steel equivalence of the rein-
forced slab in tension used to obtain the Eq (6), the 
homogenization must be done now in concrete equiva-
lence to obtain the limit of the uncracked stage ε1,max 
corresponding to fctm. 
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Fig. 8a. Tension stiffening phenomenon 

If 1,max1 ( , )( , ) ssF F
εε > , the average strain corre-

sponding to the tension stiffening effect is defined with 
the following relationship : 2 maxmε = ε −β∆ε , where 

maxβ∆ε  represents the part due to the concrete between 

cracks with the parameter β = 0.4 for high adherence 
bars. Using a hyperbolic model for max∆ε  and consider-

ing the Eqs (6) – (7), εm becomes: 
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Fig. 8b. Tension stiffening model 

4. FE model validation 

The pre-design algorithm leads for the twin-beam under 
investigation (Fig. 9) to a hogging cross-section of class 
3. In sagging zones, the cross-section is assumed to be 
of classe 1 because the slab is fully connected to the 
girder. An uncracked elastic global analysis is used with 
the following material mechanical characteristics: 
● concrete slab Young’s modulus: E(c)

 = 36000 MPa; 
● steel girder Young’s modulus: E(a)

 = 190000 MPa; 
● reinforcing steel Young’s modulus: E(s)

 = 200000 
MPa. 

The self weight is taken into account (4.17 kN/m for 
sagging zones and 4.26 kN/m for hogging ones). Only 
concentrated loads are applied on the beam, a load P 
applied at the left mid-span increases proportionally to a 
load Q applied at the right mid-span. 
- For the first critical loading case (the one concerning 
the sagging zone), only P is applied, 
- For the second critical loading case (the one concern-
ing the hogging zone), both P and Q are applied propor-
tionally. 

 

Fig. 9. Geometrical characteristics of the twin-beam 

It is assumed that the hogging zone concerns 15% 
of the span length on each side of the intermediate sup-
port. For this zone, the pre-design algorithm proposes 
15 mm for the bottom flange thickness while for other 
cross-sections in sagging zones only 10 mm are re-
quired. The top flange thickness is equal to the bottom 
one. After the beam pre-design, a non linear calculation 
is carried out with the following loading history: the 
load P applied at the left mid-span increases proportion-



ally to the load Q applied at the right mid-span until 550 
N. At this load level, Q remains constant and P still 
increases until reaching one of the failure criteria de-
scribed above. Mechanical characteristics are summa-
rised in Table 1. Figs. 10 and 11 respectively, show that 
the comparison between numerical and experimental 
results is satisfactory both for deflexion (unfortunately 
the measurements under the load Q have not been 
done), and for the bending moment under the load P at 
the intermediate support. Numerical and experimental 
failures are reached by concrete cracking under the load 
P for P + Q ≈ 1400 kN giving: 
● maximum displacement under P: 

max 48=exprimentalw mm; max 45numericalw mm=  

● maximum moment at intermediate support: 

max 960experimentalM kNm− = ; max 963numericalM kNm− =  

● maximum moment (kNm) under P: 

max 1140experimentalM kNm+ = ; max 1130numericalM kNm+ =  

It is noted that the real conditions of the specimen 
test where considered in this numerical simulation tak-
ing into account the tension stiffening, the concrete 
creep and shrinkage as well as the temperature differ-
ence effect. Without these options, the results could not 
be as close as those obtained. 

This validation does not include the local buckling 
phenomenon because the concrete cracking (max com-
pression) occurred before as the failure criterion. For 
this reason, the simulation of a continuous beam at real 
scale with hogging cross-sections of class 3 or 4 appears 
necessary to simulate the local buckling using the spe-
cific finite element defined in Fig. 5. 

Table 1. Mechanical characteristics 

Material Parameters values 

Concrete 
slab 

Ecm = 36 000 MPa, fck = 40 MPa, 
fcm = 48 MPa, ft = 2 MPa, 
εm = 0.0022, εr

(c) = 0.004 

Steel girder 
E(a) = 190 000 MPa, fy

(a) = 475 MPa, fu
(a) 

= 620 MPa, µ1
(a) = 10, µ2

(a) = 28 

Reinforcing 
steel 

E(s) = 200 000 MPa, fy
(s) = 443 MPa, fu

(s) = 
565 MPa, µ1

(s) = 1, µ2
(s) = 32, εu

(s) = µ2
(s) 

εe
(s) 

Stud 
Qu = 80 000 N, c1 = 0.7, c2 = 0.8, 
γmax = 6 mm 
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Fig. 10 Comparison of deflexions 
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Fig. 11. Comparison of bending moments 

5. Influence of local buckling on the moment redis-
tribution for a continuous beam at real scale 

Firstly, the pre-design of the 3-span beam leads to a 
hogging cross-section of class 3 and a bottom flange as 
well as the web of class 3 (Fig. 13). Mechanical charac-
teristics are given in Table 2. 

Table 2. Mechanical characteristics 

Material Parameters values 

Concrete 
slab 

Ecm = 35 000 MPa, fck = 40 MPa, 
fcm = 48 MPa, ft = 3.5 MPa, 
εm = 0.0025, εr

(c) = 0.0035 

Steel girder 
E(a) = 210 000 MPa, fy

(a) = 355 MPa, fu
(a) 

= 510 MPa, µ1
(a) = 10, µ2

(a) = 25 
Reinforcing 

steel 
E(s) = 200 000 MPa, fy

(s) = 400 MPa, fu
(s) 

= 432 MPa, µ1
(s) = 1, µ2

(s) = 25 

Stud 
Qu = 174 900 N, c1 = 0.7, c2 = 0.8, 
γmax = 6 mm 

For reminder, the whole cross-section class is the 
max one between the compressed flange and the web. 
Table 3 shows different cross-sections provided for by 
this investigation taking care to be always in the case of 
a girder cross-section of class 3. The cross-section ob-
tained by the pre-design is noted H5, it represents the 
less resistant one by comparison to the other ones (H1 to 
H4) for which the thicknesses were arbitrarily increased 
or decreased in order to vary the classes of the bottom 
flange and the web from class 1 to 3. It should be noted 
that the flange thicknesses in sagging zones remain the 
same for all the beams, the web thickness is constant all 
along each beam, the selfweight of the girder becomes 
different from one beam to another and the critical posi-
tion of concentrated variable loads Q is the same for all 
the beam in the case of type A (symmetrical loading 
case) and supposed the same in the case of type B 
(asymmetrical loading case). It is pointed out that only 
the pre-designed beam remains optimized at ULS and 
SLS. Geometrical characteristics of hogging cross-



sections are given in Table 4 with also some arbitrary 
modifications proposed for the web and the bottom 
flange giving always a girder cross-section of class 4 on 
hogging. The traffic loads applied to the bridge (here a 
twin-steel girder bridge) have values in accordance with 
the Model 1 of EN 1991-2 Part 2, namely a “U.D.L.” of 
9 kN/m2 for the lane 1 and 2.5 kN/m2 for the lanes 2 and 

3, and a Tandem System with 2 axle loads each equal to 
300 kN. In the transverse direction the traffic loads are 
distributed according to a linear influence line. Finally, 
the numerical characteristic values of traffic loads for 
the most loaded lane are: q = 31.2 kN/m and Q1 = Q2 = 
406 kN (with the distance 1200 mm). 
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Fig. 12. Pre-design results and critical loading cases 

Table 3. Cross-sections under investigation on hogging zone – Class 3 

Cross-section Web thickness, mm Web Class Bottom flange 
thickness, mm 

Bottom flange 
class 

Cross-section 
class 

H1 30 1 50 3 

3 
H2 25 2 50 3 
H3 20 3 60 1 
H4 20 3 55 2 
H5 20 3 50 3 

 

Table 4. Cross-sections under investigation on hogging zone – Class 4 

Cross-section Web thickness, mm Web Class Bottom flange 
thickness, mm 

Bottom flange 
class 

Cross-section 
class 

K1 30 1 35 4 

4 

K2 25 2 35 4 
K3 20 3 35 4 
K4 15 4 60 1 
K5 15 4 55 2 
K6 15 4 50 3 
K7 15 4 35 4 

 

 
 
 

 
 
 



5.1. A 3-D FE model for buckling curves (M-θθθθ) 

The 3-D model developed on Cast3M (2003) (Fig. 13) 
represents the steel girder as well as the stiffeners 
meshed by 4-nodes shells, the studs are meshed using 
3D beams to ensure the displacements continuity with 
the shells (same degrees of freedom) and the reinforcing 
bars are replaced by equivalent shells supposed at the 
top of the studs. The panel length is equal to twice the 
web height (hw) beginning from the cross-section H-H. 

 

Fig. 13. Simplified 3-D model 

 It is supposed that on hogging zone the concrete 
slab is totally cracked so it does not need to be model-
lized. Nevertheless, very stiff springs should be model-
lized to keep same distance between the top flange of 
the girder and the reinforcing bars during the loading. 
It’s pointed out that the springs have no influence on the 
shear behavior of the studs (Faella, Martinelli, Nigro 
2002; Guezouli, Hjiaj, Nguyen 2008). This simplifica-
tion requires common mesh nodes between the studs 
and the reinforcing bars. The comparison of the trans-

verse displacements of the web at ultimate limit state 
(Figs 14a, 14b) shows clearly that the addition of very 
stiff spring elements to the model has a negligible influ-
ence on the mechanical behaviour and the studs appear 
working exclusively in shear. The model is loaded by 
applying a displacement at its end to avoid possible 
geometrical element distortion. The vertical displace-
ment Uz equal to 200 mm is applied in 10 steps. 

The curves (M-θ) are plotted for different cross-
sections of class 3 (Fig. 15) and of class 4 (Fig. 16). The 
rotation capacity of the cross-section is similar for all 
the cross-sections. The max point of each curve repre-
sents the beginning of the local buckling (Mv, θv). After 
this point, a hyperbolic decreasing model (Eq (10)) 
could be adopted with appropriate values for M0, Mv 
and θv (M0 represents a horizontal asymptotic line). The 
web thickness has a largest influence on these curves 
than the bottom flange one (on the initial stiffness and 
also on the max hogging moment). The decreasing 
curves after buckling is similar with nearly the same 
value of buckling rotation (θv ≈ 0.014 rad). The curve 
related to Eq (10) plotted for H1 as an example, gives a 
good prediction for the behaviour after buckling. The 
buckling rotation is also nearly the same in the case of 
cross-section of class 4 (θv ≈ 0.012 rad). 

( )0 0 ,v
v vM M M M

θ
= + − ∀θ ≥ θ

θ
 (10) 

Remarks: 

● Before setting about a non-linear stability calculation, 
a linear stability one is carried out and the whole dis-
placement field is reduced by a scale of 1/20 in the aim 
to represent an initial deformation of the specimen. 
● There is no significant sense to talk about available 
rotation capacity at the intermediate support for cross-
sections of classes 3 and 4 because of the local buckling 
instability. 

 
Fig. 14a. Without springs 

 
Fig. 14b. With springs 
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H1 : Web(tw=30mm-C1)-Flange(tfi=50mm-C3)

H2 : Web(tw=25mm-C2)-Flange(tfi=50mm-C3)

H3 : Web(tw=20mm-C3)-Flange(tfi=60mm-C1)
H4 : Web(tw=20mm-C3)-Flange(tfi=55mm-C2)
H5 : Web(tw=20mm-C3)-Flange(tfi=50mm-C3)

Prediction for H1 (example)

H1 : (Mv, θv) = (50000 kNm, 0.014 rad) - M0 = 48600 kNm

H2 : (Mv, θv) = (44400 kNm, 0.014 rad) - M0 = 42900 kNm

H3 : (Mv, θv) = (37000 kNm, 0.014 rad) - M0 = 35500 kNm

H4 : (Mv, θv) = (37000 kNm, 0.014 rad) - M0 = 35500 kNm

H5 : (Mv, θv) = (37000 kNm, 0.014 rad) - M0 = 35500 kNm θv Beginning
 of buckling

 

Fig. 15. 3-D calculations and buckling curves – Class 3 

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60
Rotation (rad.x10-3)

H
o

g
gi

n
g

 m
o

m
e

n
t (

kN
m

) 
   

  
  

   
 .

K1 : Web(tw=30mm-C1)-Flange(tfi=35mm-C4)
K2 : Web(tw=25mm-C2)-Flange(tfi=35mm-C4)
K3 : Web(tw=20mm-C3)-Flange(tfi=35mm-C4)
K4 : Web(tw=15mm-C4)-Flange(tfi=60mm-C1)
K5 : Web(tw=15mm-C4)-Flange(tfi=55mm-C2)
K6: Web(tw=15mm-C4)-Flange(tfi=50mm-C3)
K7: Web(tw=15mm-C4)-Flange(tfi=35mm-C4)
Prediction for K1 (example)

θv Beginning
 of buckling

K1 : (Mv, θv) = (44800 kNm, 0.012 rad) - M0 = 43500 kNm

K2 : (Mv, θv) = (40000 kNm, 0.012 rad) - M0 = 39000 kNm

K3 : (Mv, θv) = (34500 kNm, 0.012 rad) - M0 = 33500 kNm

K4 : (Mv, θv) = (28000 kNm, 0.012 rad) - M0 = 25500 kNm

 

Fig. 16. 3-D calculations and buckling curves – Class 4 

5.2. The results 

The moment redistribution percentage is calculated with 
the following Eq: 

( ) ( )
1 2 1 2. .

( )
1 2.

100

uncr num
Ed Rd el Rd

uncr
Ed Rd

M M M M
R

M M

− −− −
+ +

− −
+

− − −
= ×

−
 (11) 

where ( )
.
num

el RdM − – the numerical hogging moment obtained for 

H-H cross-section; ( )
.
uncr

Ed RdM − – the hogging moment obtained 

by a virtual elastic calculation (using the same loading level 

λ); 1 2M −
+ – the hogging moment resulting only from the first 

and second loading steps corresponding respectively to the 
selfweight of the girder and the one of the concrete that is still 



wet (Guezouli, Aribert 2004; Guezouli 2007; Guezouli, 
Yabuki 2008). During these steps, the cross-section is not 
considered resisting as a composite cross-section so, this part 
of bending moment must be subtracted to the ones defined 
previously. The proposed hyperbolic model is computed in the 
user friendly program “Pontmixte” and different applications 
are carried out with appropriate values of the model parame-
ters (M0, Mv and θv). The stopping calculation criterion is 
either reaching the plastic resistant moment in sagging zone 
(generally occurs for the critical loading case of type A) or the 
elastic moment resistant at the intermediate support (generally 
occurs for the critical loading case of type B). 

5.2.1. Results for the beams of class 3 

Different variables concerned with the Eq (11) without 
and with taking into account possible local buckling are 
given respectively in Tables 5, 6. The variation of the 
hogging moment against the cumulative load (Figs 17, 
18, 19), show that: 
•  for the beams H1 and H2, the elastic resistant moment 
is reached before the buckling characteristic point (Mv, 
θv): no influence of local buckling on the moment redi-

stribution percentage, the cross-sections seams to be 
relatively resistant; 

•  for the beams H3, H4 and H5, without taking into 
account the local buckling, the rule of 10% redistri-
bution predicted in the Eurocodes seams to be ques-
tionable especially for loading case of type A but 
the occurrence of local buckling decreases the value 
of the numerical hogging moment increasing con-
sequently the value of the redistribution R. This 
value becomes finally over than 10% for both load-
ing cases. Because of local buckling, the calculation 
stops for lower values of λ (λbuckling ≤ λno buckling) es-
pecially for loading case of type B and necessary 

the elastic moment (uncr)

Ed.RdM −  changes and the value 

of R consequently. In the column of λ (Tables 4, 5), 
the letters correspond to the stopping calculation 

criterion for each beam [(A) → .pl RdM +  and (B) → 

.el RdM − ]. 

 
 

 

Table 5. Hogging and sagging bending (kNm) – Related to Table 3 (class 3) 

All options – Local buckling not included 

Beams 
(num)

el.RdM −
 

(uncr)

Ed.RdM −
 1 2M −

+  pl.RdM −
 (num)

SdM +
 pl.RdM +

 λ R, % 

Loading case of type A (for reminder see Fig. 13) 
H1 − 41706 − 43653 − 17232 − 48958 37058 37563 1.71(B) 7 
H2 − 39825 − 41166 − 16987 − 47072 33374 33541 1.51(A) 6 
H3 − 37698 − 39046 − 17090 − 51843 29228 29462 1.35(A) 6 
H4 − 37632 − 38712 − 16927 − 48487 29285 29462 1.35(A) 5 
H5 − 37556 − 38340 − 16745 − 45150 29350 29462 1.35(A) 4 

Loading case of type B (for reminder see Fig. 13) 
H1 − 41722 − 47264 − 17232 − 48958 32472 37563 1.54(B) 18 
H2 − 40529 − 45027 − 16987 − 47072 29742 33541 1.40(B) 16 
H3 − 45685 − 49123 − 17090 − 51843 28872 29462 1.60(B) 11 
H4 − 42460 − 45793 − 16927 − 48487 27625 29462 1.42(B) 11 
H5 − 39969 − 43146 − 16745 − 45150 26948 29462 1.35(B) 12 

 

Table 6. Hogging and sagging bending (kNm) – Related to Table 3 (class 3) 

All options – Local buckling included 

Beams 
(num)

el.RdM −
 

(uncr)

Ed.RdM −
 1 2M −

+  pl.RdM −
 (num)

SdM +
 pl.RdM +

 λ R, % 

Loading case of type A (for reminder see Fig. 13) 
H1 − 41706 − 43653 − 17232 − 48958 37058 37563 1.71(A) 7 
H2 − 39825 − 41166 − 16987 − 47072 33374 33541 1.51(A) 6 
H3 − 36379 − 39046 − 17090 − 51843 29229 29462 1.35(A) 12 
H4 − 36371 − 38712 − 16927 − 48487 29285 29462 1.35(A) 11 
H5 − 36362 − 38340 − 16745 − 45150 29350 29462 1.35(A) 9 

Loading case of type B (for reminder see Fig. 13) 
H1 − 41722 − 47264 − 17232 − 48958 32472 37563 1.54(B) 18 
H2 − 40529 − 45027 − 16987 − 47072 29742 33541 1.40(B) 16 
H3 − 36220 − 46051 − 17090 − 51843 28074 29462 1.41(B) 34 
H4 − 36578 − 44832 − 16927 − 48487 27335 29462 1.36(B) 29 
H5 − 36746 − 43146 − 16745 − 45150 26995 29462 1.35(B) 24 
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Fig. 17a. (θ – M) – Case A – Beam H3 
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Fig. 18a. (θ – M) – Case A – Beam H4 

0

20

40

60

80

100

120

140

-50000 -40000 -30000 -20000 -10000 0
Hogging moment (kNm)

C
u

m
u

la
tiv

e 
lo

ad
 (

kN
/m

) 
   

 

Case A - No buckling
Case A - buckling

- 37556  → - 36362

 

Fig. 19a. (θ – M) – Case A – Beam H5 
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H3 - Case B - Without buckling
Virtual Elastic calculation (    = 1.60)λ

Mv = - 37000 kNm

 

Fig. 20a. H3 case B without buckling 
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Fig. 17b. (θ – M) – Case B – Beam H3 

0

20

40

60

80

100

120

140

-50000 -40000 -30000 -20000 -10000 0
Hogging moment (kNm)

C
u

m
u

la
tiv

e
 lo

a
d

 (
kN

/m
) 

  
  

Case B - No buckling
Case B - buckling

  - 42460 →  - 36578↓

 

Fig. 18b. (θ – M) – Case B – Beam H4 
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Fig. 19b. (θ – M) – Case B – Beam H5 
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H3 - Case B - With buckling
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Fig. 20b. H3 case B with buckling 



Table 7. Hogging and sagging bending – Related to Table 4 (class 4) 

All options – Local buckling not included 

Beams K1 K2 K3 K4 K5 K6 K7 
Loading case of type A (for reminder see Fig. 13) 

λ 1.35(B) 1.22(B) 1.01(B) 1.22(A) 1.15(A) 1.15(A) 0.81(B) 
R, % 24 19 16 2 1 − 0.0 12 

Loading case of type B (for reminder see Fig. 13) 
λ 1.15(B) 1.01(B) 0.88(B) 1.46(B) 1.35(B) 1.15(B) 0.74(B) 

R, % 30 28 25 7 8 9 21 
 

Table 8. Hogging and sagging bending (kNm) – Related to Table 4 (class 4) 

All options – Local buckling included 

Beams K1 K2 K3 K4 K5 K6 K7 
Loading case of type A (for reminder see Fig. 13) 

λ 1.35(B) 1.22(B) 1.01(B) 1.15(A) 1.15(A) 1.15(A) 0.81(B) 
R, % 24 19 16 53 52 50 20 

Loading case of type B (for reminder see Fig. 13) 
λ 1.15(B) 1.01(B) 0.88(B) 1.35(B) 1.22(B) 1.08(B) 0.74(B) 

R, % 30 28 25 67 61 55 29 
 

It must be noted that the beams H1 and H4 have 
been arbitrary defined on hogging zone stronger than 
the one obtained by the pre-design optimization (H5); 
this leads necessary to values of λ ≥ 1.35. For example, 
the loading case B of the beam H3, the numerical bend-
ing moment can be plotted along the beam by compari-
son to the virtual elastic calculation. Without local 
buckling (Fig. 20a) the elastic hogging bending is ob-
tained while the lower layer of the girder bottom flange 
reaches its elastic limit (this occurs for λ = 1.60, value 
which the curves are plotted for). It is clear that for this 
critical loading case, the left intermediate support is 
mostly concerned with the local buckling than the right 
one (see the dot-line corresponding to buckling mo-
ment). If the local buckling is taken into account (Fig. 
20b), the same stopping calculation criterion than the 
one described before is obtained for a lower loading 
level (λ = 1.41). First finite element begins to buckle on 
the left intermediate support in accordance with the 
corresponding buckling model and the equilibrium of 
the forces along the beam must be carried out. The local 
buckling is extended on both sides defining the zone 
subjected to this instability. 

5.2.2. Results for the beams of class 4 

In the case of class 4, Tables 7, 8 summarize only the 
values of the moment redistribution percentages. Eq 
(11) has to be calculated with moments under loads 
corresponding to the specific value of λ. These values 
are generally less than 1.35 because most of the beams 
are less resistant than the pre-designed one. The local 
buckling appears also more sensible for loading case of 
type B than the one of type A. Very low values of R 
especially for the loading case A are increasing when 
the local buckling is taken into account. Sometimes 
could be negative meaning that the redistribution is 
inverted and happens from mid-spans to intermediate 
supports. The influence of local buckling on the mo-

ment redistribution percentage appears more important 
in the case of class 4 than in the case of class 3. 

6. Conclusions 

This study attempted to show that it is possible to simu-
late at a real scale the behaviour in the inelastic range of 
a steel-concrete composite bridge beam with a relative 
simple finite element formulation. The comparison of 
numerical and experimental results in the case of a twin-
span beam in reduced scale (1/2) ensures the validation 
of the proposed model. After that, the main interest 
concerned the beams with cross-sections of class 3 and 
4 on hogging zone that are generally subjected to the 
local buckling instability. A prior study was concerned 
with the post-buckling behaviour of a 3D panel on hog-
ging zone to obtain the moment-rotation relationship 
corresponding to these cross-section classes. A hyper-
bolic model was proposed depending on 3 parameters: 
the buckling point (Mv, θv) and the horizontal asymptot-
ic line M = M0. This model was computed in the code 
“Pontmixte” and several numerical simulations were 
carried out to show the significant influence of the local 
buckling instability on the moment redistribution per-
centage from hogging to sagging zones in the case of a 
3-span beam bridge at real scale. This influence appears 
closely linked to the class combination of the com-
pressed flange and the web of the girder. The local 
buckling mostly occurs when the web is of a higher 
class (less resistant) than the compressed flange. In this 
case, if the local buckling is not taken into account, the 
rule of 10% moment redistribution proposed by the 
Eurocodes is questionable especially for the loading 
case of type A. If the local buckling is taken into ac-
count, the calculation of the moment redistribution per-
centage after buckling until elastic resistant moment is 
given only for information and it must not be included 
in the elastic design because specific constructive meas-
ures (web-stiffeners) are required to avoid the local 
buckling instability and consequently assures the possi-
bility of this redistribution. Skaloud and Zörnerova 
(2005) paid attention to the post-buckled behaviour and 
ultimate strength of slender webs; similar approach 
could be carried out for steel-concrete composite beams 



and easily computed in the code “Pontmixte”. This 
future prospect could give important information about 
the influence of the “breathing” web on the moment 
redistribution percentage. 
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