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ABSTRACT 

The aim of this study was to determine the influence of compost and vermicompost 

produced from buffalo manure on soil bacterial diversity and activity in the presence 

and absence of the endogeic earthworm Metaphire posthuma. This experiment was 

carried out for 15 months with a maize-tomato-maize cycle under greenhouse 

conditions in Northern Vietnam. It showed a positive influence of compost and 

vermicompost on soil microbial properties, with higher cultivable bacteria, higher 

bacterial and catabolic diversity (Shannon diversity ‘H’ and Richness ‘S’) indices and 

higher enzymatic activities than control soils which only received mineral fertilizers. 

Differences also occurred between compost and vermicompost with lower activity and 

diversity in the soil amended with vermicompost, probably because of its higher 

molecular stability. The presence of M. posthuma led to divergent dynamics of bacterial 

community in soils amended with compost and vermicompost. Earthworms negatively 

influenced soil microbial properties in composted soil (lower Average Well Color 

Development ‘AWCD’), probably because of competition between bacteria and 

earthworms for organic resources and/or because of the consumption of microbes by 

earthworms. Conversely, the presence of earthworms increased bacterial diversity and 

activity with higher AWCD, and H and S indices for the vermicompost treatment, 

probably as a result of a stimulation of microorganisms that allow the degradation of 

stable organic matter and its further consumption by earthworms. In conclusion, this 

study clearly confirmed the different impacts of compost and vermicompost on 

bacterial activity and diversity and highlighted the importance considering the 

interaction of these organic substrates with local endogeic earthworms. 
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1. Introduction  

Increasing soil organic matter (SOM) stocks and stability by addition of organic 

amendment offers a good way to substantially improve soil quality and therefore 

agricultural sustainability [17, 28, 45]. Most of the studies aimed at comparing the 

influence of animal waste amendment on soil quality have been done using swine, 

poultry, cow or horse manure as original substrates [6, 51]. However, comparatively 

less research had been focused on buffalo manure, although it is often the main source 

of organic amendment for many farmers in Asia, especially in Vietnam [62] where it is 

usually applied on the fields several times per year as compost to improve soil fertility 

[18, 49, 50].  

 Understanding microbial and biochemical processes in soils are important for 

the management of farming systems [54]. The utilization of organic amendment usually 

leads to important modifications of both soil microbiological and biochemical 

properties [31, 42]. Several studies have indeed pointed out the higher microbial 

biomass and diversity in soils amended with compost [13]. Microbial respiration, 

enzymatic activities such as dehydrogenase and phosphatase activities, and N 

mineralization rates are also usually enhanced after the amendment of organic 

substrates [26, 41, 44].  

Soil macrofauna has also been considered as an important component of soil 

quality [53]. Amongst soil organisms, earthworms are considered as key soil engineers 

due to their influences on soil structural properties [32, 39]. As a consequence, 

earthworms regulate microbial populations with the elimination of some 

microorganisms and the proliferation of others [14, 19, 43, 47]. Earthworms have also 
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been used for the management of organic wastes and the production of high-quality 

compost called ‘vermicompost’ [21]. Vermicompost is especially interesting as an 

organic fertilizer because of its high contents of plant available nutrients (N, P, K) [20, 

21, 34]. The formation of vermicompost, which involves the activity of epigeic 

earthworms in controlled environments, appears to be a useful indirect avenue for 

improving physico-chemical properties of soils [21, 29]. Several studies also pointed 

out the specific structure and higher activity of bacterial communities in vermicompost 

[2, 51, 56, 63, 64, 65].  

Recent studies have compared the influence of compost and vermicompost from 

buffalo manure and purely chemical fertilizers on tropical soil quality and plant growth 

[4, 18, 33, 34, 49, 50]. These studies suggest that the application of composted and 

vermicomposted buffalo manure reduces significantly the amount of chemical 

fertilizers needed, as well as improving soil quality and reducing off-site effects such as 

nutrient leaching and water pollution. Recently, Amossé et al. [4] and Doan et al. [18] 

also showed that endogeic earthworms are more active when compost is used as 

fertilizer in comparison with vermicompost with a better development of earthworm 

abundance and biomass and cast production but variable effects on plant growth. 

Therefore, the aim of this study was to determine the influence of the interaction 

between organic fertilization (compost vs. vermicompost produced from buffalo 

manure) and endogeic earthworm activity on soil microbial diversity, activity and some 

associated biochemical properties. We used soil samples from the experiment carried 

out by Doan et al. [18] to test our hypotheses: (1) that organic fertilization should 

increase microbial activities and diversity but that this effect should be more 
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pronounced when vermicompost was used, and (2) that these effects should be 

increased in the presence of endogeic earthworms. 

 

2. Materials and Methods 

2.1. Soil properties and organic amendments 

The soil was sampled in the 0-10 cm layer of a fallow in the red river delta (Dong Ngac 

commune, Ha Noi, Vietnam, 21°5'28"N, 105°47'2"E), air-dried and sieved at 2 mm to 

discard stones and litter residues. This soil is described as Eutric Fluvial [23, 30] with 

low organic carbon (OC = 9.7 mg g-1) and nutrient content (total nitrogen = 0.9 mg g-1; 

total phosphorus, P2O5 = 1.8 mg g-1; available phosphorous = 0.46 mg g-1; and total 

potassium, K2O = 1.1 mg g-1). Soil was alkaline (pHH2O = 8.0, pHKCl = 7.7) and mainly 

sandy (61.0% sand, 28.7% silt and 10.3% clay, mainly kaolinite). Compost and 

vermicompost were produced in a farm in Dong Cao village from domestic buffalo 

manure after 3 months of maturation in two different and separated units, as reported by 

Jouquet et al. [33]. The procedure adopted was based on local farmer’s knowledge. 

Briefly, buffalo manure was placed in 500 L bags and covered by a lid to prevent 

evapotranspiration and moisture addition due to rainfall, thereby conserving compost 

humidity and preventing anaerobic conditions due to rainwater addition. Every 1–2 

weeks the compost was mixed thereby increasing aeration and favouring aerobic 

conditions. Vermicomposting was carried out in a similar way, the only difference 

being the addition of earthworms. The compost was significantly more alkaline and 

with higher C but lower N contents than the vermicompost substrate (pHH2O = 8.5 (SE: 

0.2) and 7.5 (SE: 0.1), OC = 178 (SE: 3) and 164 mg g-1 (SE: 8), and N = 14 (SE: 1) 



Doan Thu et al. published in European Journal of Soil Biology 

 7 

and 16 mg g-1 (SE: 1) respectively for compost and vermicompost). Concentration in P 

and K were similar between compost and vermicompost with 14 (SE: 2) and 11 mg g-1 

(SE: 1), respectively for total P and K. More information on the chemical properties of 

these substrates and those of the buffalo manure that was used to produce compost and 

vermicompost can be found in Ngo et al. [50]. The earthworm species used to produce 

vermicompost was Eisenia andrei.  

 

2.2. Greenhouse experiment 

The experiment was carried out during 15 months in a greenhouse at the Soil and 

Fertilizer Research Institute (SFRI), in Hanoi, Vietnam. The air humidity was always 

high, between 75 and 100% and the average daily temperature varied from 15 to 25°C 

during the year. The experiment was set up in 10 L baked clay pots filled with 5 kg of 

soil mixed thoroughly with compost, vermicompost, or the equivalent amount of 

inorganic nutrients, applied as mineral fertilizers (n = 3 replicates). These amendments 

were repeated after each vegetation period, in total 3 times during the experiment. The 

amount of compost and vermicompost was calculated to be equivalent to applying 20 t 

ha-1 (dry weight) of organic substrate (90.5 g pot-1). Mineral fertilizers were urea 

(CH4N2O, %N = 46.3%), potash (K2O, %K = 60%) and phosphate (P2O5, %P = 16%). 

The equivalent amount of N, P and K found in compost and vermicompost was applied 

in the control soil as mineral fertilizers. When necessary, additional nutrients were also 

applied to the compost and vermicompost substrates (more information on the 

experiment is available in Doan et al. [18]). This protocol allowed us to compare the 

influence of substrates which had exactly the same N, P and K content. Thereafter we 
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planted common agricultural crops: maize (June to September 2008, variety LNS 222), 

tomato (November 2008 to April 2009, variety HT14), and maize again (June to 

September 2009, variety LNS 222). For the three dates, only one plant was grown per 

pot. The influence of the treatments on plant growth and yield, and SOM quality can be 

found in Doan et al. [18] and Ngo et al. [50], respectively. Briefly, this study showed 

that plant yield was always higher for the mineral treatment and that the beneficial 

positive effect of vermicompost decreased over time. Overall plant yields were always 

the highest for the mineral and lowest for compost treatments. Although the application 

of vermicompost led to a similar yield as the control treatment for the first maize 

planting, its beneficial influence decreased during the experiment until its effect was 

similar to that of the compost treatment. 

 The influence of earthworms on soil microbial properties was investigated by 

adding two adults of the endogeic Metaphire posthuma per pot (n = 3 replicates) before 

each cultivation (before the 2 maize and tomato plantings), then reaching a density 

close to the one observed in the field. This species was found in the garden of the SFRI 

institute. Metaphire posthuma is a medium size endogeic geophagous earthworm ~10 

cm in length and 5 mm in diameter on average at the adult stage which produces 

approximately five to 10 fold its own weight in casts per day [11, 34, 35, 36]. At the 

end of the experiment, the number of earthworms reached 0, 1.2 (±0.2) and 3.5 (±0.8), 

in the mineral, vermicompost and control treatments respectively [18]. Earthworms 

only had an impact on plant growth and yield in the compost treatment. The effect of 

earthworms was initially null (i.e. for the first maize crop), positive (i.e. for tomato 

planting) and finally negative (i.e. for the second maize planting). 
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 In total, 18 pots were set up (3 fertilization treatments x 2 earthworm treatments 

x 3 replicates). Soil samples were collected at the end of the experiment.  

 

2.3. Soil bacterial diversity 

Total DNA samples were extracted from 1 g of dry soil from three randomly selected 

soil cores for each plot. The DNA extracts were purified using a Spin Column S-400 

HR (Amersham) and quantified with a spectrophotometer at 260 and 280 nm 

(NanoDrop® ND-1000 UV-Vis Spectrophotometer).  

Amplifications were attempted using universal primers 338F/518R [38, 48] with 

a GC-clamp [55] attached to the 5’ extremity to the forward primer for DGGE 

optimization [48]. Taq polymerase Ready-To-Go (Amersham Pharmacia, USA) was 

added to 0.25 µM of each primer and 50 ng of template DNA. Amplifications were 

performed in 25 µl reaction mixtures with a thermo cycler (Eppendorf). PCR cycles 

were: initial denaturation 95°C for 5 min, and 30 cycles of denaturation 94°C for 1 min, 

annealing 65°C for 1 min and elongation 72°C for 3 min, and a final extension step at 

72°C for 10 min. After amplification, PCR products were applied to 8% (w/v) 

polyacrylamide gels, except that denaturing gradient was made from 40 to 70% (100% 

denaturant contains 7M urea and 40% formamide). The electrophoresis was run for 16 

h at 60°C and 75 V in a DcodeTM Universal Mutation Detection System (Biorad, 

USA) containing 1 x TAE buffer. The gels were after stained with ethidium bromide 

for 15 min, washed with MilliQ water and visualized by UV transillumination with the 

GelDoc 2000 system (BioRad, Richmond, California, USA). Scanned images of the 

DGGE gels were analyzed with TotalLab Quant software (Nonlinear Dynamics Ltd., 
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Newcastle upon Tyne, UK) and the density and mobility of the bands (OTU: Operation 

Taxonomy Units) were calculated.  

 

2.4. Sole carbon source utilization profile 

Bacterial cells were extracted from soil for inoculation in EcoplatesTM (AES Laboratory 

France). The EcoplatesTM contain 3 replicates of 31 different environmentally relevant 

carbon sources and one control well per replicate [15]. A volume of 150 µl supernatant 

was inoculated in each well, and the plates were incubated in darkness on a shaker (150 

rpm) at 25°C for 7 days. The color development was measured as absorbance at 595 nm 

using a Microplate spectrophotometer (EL800-PC, Biotek Instruments, Winooski, 

USA) every 24h for one week. All kinetic curves suggested that after 72h incubation 

time, the wells with the most active microbial communities reached the asymptote of 

color development. Therefore, this point was considered as the optimal incubation time 

for further statistical analyses. Data were collected using Microlog 4.01 software. They 

were normalized by average well color development (AWCD), as described by Garland 

and Mills [25]: AWCD = ∑ (C-R)/n, where C is color production within each well, R is 

the value of the no-substrate control well of each plate, and n is the number of 

substrates (n = 31). The sole carbon source utilization profiles were determined on three 

replicate samples of each soil. 

 

2.5. Enzyme activity 

Enzyme activities were used as a broad-spectrum indicator of soil biological activity 

[46]. Enzyme activity measurements were made on samples with 75% of their water 
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holding capacity and incubated at 25°C for 48 h to reactivate the microflora. These 

assays were carried out in triplicate to measure activities. All enzyme activities were 

determined at optimum conditions of pH, temperature and substrate concentration in 

order to get an assessment of their maximum potential activity in soil. N-acetyl-

glucosamidase, β-Glucosidase, amylase and xylanase activities were determined 

according to Mora et al. [46]. Urease activity was determined according to Tabatabai 

[58] and alkaline and acid phosphatase activities were measured following Kandeler et 

al. [37]. These enzymes were chosen based on their importance in the nutrient cycles of 

C (β-glucosidase, amylase and xylanase), N (urease and N-acetyl-glucosamidase) and P 

(alkaline and acid phosphatase).  

 

2.6. Statistical analyses 

Data from DGGE analysis and catabolic potential using Biolog EcoPlate™ were used 

to evaluate the structural and functional diversity of bacterial community as suggested 

by Eicherner et al. [22] and Zak et al. [66], respectively for the DGGE and Biolog 

analyses. The Shannon indices (H) were obtained as follows: H = - ∑ Pi ln (Pi), where 

Pi = ni / N, and ni corresponded to the height of a DGGE band peak, or OTU (Operation 

Taxonomy Unit), and N the sum of all the peak heights. For the Biolog analysis, Pi 

corresponded to the ratio of the consumption of a particular substrate to the sums of 

consumption of all substrates after 72 h of incubation. Richness indices (S) were either 

the number of OTUs detected from each lane or the number of wells with a corrected 

absorbance greater than 0.25 in Biolog EcoPlateTM.  
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Results were analysed by analysis of variance (two-way ANOVA) with 

treatments (i.e., type of fertilizer and presence or absence of earthworms) as 

independent variables. Comparisons between means were tested with LSD test. A 

Principal Component Analysis (PCA) was carried out to describe enzyme activity 

analyses. All statistical calculations were carried out using R [51]. Differences among 

treatments were declared significant at the <0.05 probability level. 

 

3. Results 

3.1. Genetic structure of bacterial community 

A dendrogram of similarity showed a similarity of 64% between the initial soil 

substrate and those sampled after 15 months of cultivation (Figure 1). The percentage 

of similarity was also very high between organically and chemically fertilized soils 

(77% of similarity) on one hand and composted and vermicomposted soils on the other 

hand (85% of similarity). Earthworms had no effect on the structure of bacterial 

communities in soils amended with mineral fertilization (95% of similarity) and their 

effects were low in soils amended with vermicompost and compost (90% and 85% of 

similarity, respectively). 

The influence of the different treatments on the genetic diversity of bacterial 

populations is shown in Table 1a. Composted soils were characterized by highest H and 

S values and mineral soils by lowest values. The utilization of vermicompost led to 

intermediate results. Earthworms had no influence on the bacterial community 

structure, except for the vermicompost treatment where they increased H and S indices 

in soil.  
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3.2. Functional diversity by Biolog analysis and enzyme activity 

Microbial metabolic activity was assessed through the measurement of AWCD in 

Biolog EcoPlateTM (Figure 2), and through substrate H and S indices (Table1b). The 

amendment of compost and vermicompost led to increase AWCD, H and S with higher 

values for composted soils when compared to vermicomposted and mineral fertilized 

soils with and without earthworms. The inoculation of earthworms did not influence 

these indices for the mineral treatment. Conversely, an interaction between organic 

fertilization and earthworm presence was observed for the compost and vermicompost 

treatments. Earthworms increased AWCD, H and S indices for vermicompost treatment 

but the opposite effect was observed for the compost treatment. 

A principal component analysis was carried out from the enzyme metabolic 

properties of soils (Figure 3, details are shown in Table 2). Treatments were mainly 

separated along the first axis which explained 68.3% of the total variability. Chemical 

fertilization led to lowest enzymatic activities, with no influence of earthworms. The 

amendment of vermicompost led to higher xylanase, amylase and β-Glucosidase 

activities and lower N-acetyl-glucosamidase and alkaline phosphatase activities than for 

the compost treatment. The presence of earthworms entailed a reduction in xylanase, β-

glucosidase and alkaline phosphatase for the vermicompost treatment. Conversely, the 

presence of earthworms had negative effect on N-acetyl-glucosamidase, alkaline and 

acid phosphatase, and urease activities for the compost treatment. 
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4. Discussion 

4.1. Effect of organic amendments on soil microbial properties 

Maintenance of SOM is important for the long-term productivity of agroecosystems. 

The amendment of organic substrates, such as crop residues and compost, aims to 

counteract the progressive loss of OM in agricultural soils [44, 59]. As a consequence, 

soil microbiological properties are usually improved after the amendment of OM [8, 24, 

67, 57]. Our study confirmed this general trend and showed the positive influence of 

buffalo manure amendment, either in form of compost or vermicompost, on soil 

microbial properties. Indeed, our study showed that soils amended with compost and 

vermicompost were characterized by higher bacterial and catabolic diversity (H and S) 

indices and higher enzymatic activities than control soils which only received mineral 

fertilizers.  

Organic amendments are sources of available energy for soil microorganisms 

[27]. However, the quality of the organic amendments is of major importance in the 

regulation of microbiological properties. Several studies related the quality and stability 

of composted and vermicomposted organic substrates to their effects on 

microbiological properties [1, 7, 56, 64]. These studies indicate that the bacterial 

community structure in vermicompost considerably differs from that in analogous 

composts. Vermicomposts are usually more stable than composts, with higher 

availability of nutrients and improved microbiological properties [5, 51, 61, 63]. In our 

study, vermicompost was characterized by lower C and higher N content in comparison 

with the compost substrate (see Material and Method). This suggests that 

vermicomposting led to higher microbial activity and higher rate of OM decomposition 
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than composting. After 15 months of experiment, soils amended with vermicompost 

were characterized lower metabolic activity (Figure 3) and lower genetic and functional 

diversity and richness (Table 1). Therefore, these results do not confirm the general 

assumption that vermicompost enhances microbial and enzymatic activities in soils [51, 

63]. They are however in line with those of Aira and Dominguez [3] who found higher 

microbial biomass but lower microbial activity in vermicompost in comparison with 

compost. As suggested by Ngo et al. [49], the epigeic E. andrei accelerates the 

decomposition of the buffalo manure during vermicomposting probably through an 

enhancement of the microbial activity. The end-product is a more decomposed and 

stabilized organic substrate with lower forms of C and more N available to 

microorganisms. As a consequence, microbial populations were more active and 

diversified in the soil amended with compost, as shown by higher AWCD, and H and S 

indices which reflects the oxidative capacity of soil microorganisms, but also H and S 

indices analyzed by DGGE which represent the number and diversity of bacterial 

community.  

 

4.2. Earthworms modulate the effect of organic fertilizers on soil microbial properties 

Despite the high diversity of tropical earthworms, only a small number of species have 

been intensively studied in relation to soil processes and ecosystem functioning. The 

fast turnover of OM in tropical environments and the low amount of litter and fresh OM 

debris in tropical agro-ecosystems lead to a predominance of endogeic earthworm 

species [40]. As endogeic earthworms are known to affect soil physical, chemical and 

microbial properties [40], we hypothesized that endogeic earthworm activity can 
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modulate the effect of organic fertilizers on soil microbial properties. Whether the 

positive influence of compost on soil microbial properties is maintained in the presence 

of endogeic earthworms remains however unexplored. As shown with the dendrogram 

of similarity, the bacterial community structure was mainly determined by the 

fertilization treatment (mineral, compost vs. vermicompost amendment), since its effect 

exceeded the effect of earthworms. From the same experiment, Doan et al. [18] showed 

that M. posthuma development was the highest in presence of compost, low in presence 

of vermicompost while earthworms did not survive in the mineral treatment. These 

results can easily be explained by the higher availability of C and N in compost than in 

vermicompost, and by the absence of easily available C resources in the mineral 

treatment [50]. These results also confirm the study of the Bisht et al. [10] who showed 

that M. posthuma develops very well in presence of cow dung and they suggest that this 

species is belonging to the polyhumic endogeic functional group [18]. Consequently, 

M. posthuma did not influence soil microbiological properties in the mineral treatment 

but it led to significant changes in compost and vermicompost treatments. Interestingly, 

its effects in compost treatment were very different, if not the opposite, from those 

observed for the vermicompost treatment. Indeed, although the diversity of bacteria was 

not influenced by M. posthuma in the compost treatments, significant increases in CFU 

and H and S diversity indices were observed for vermicompost treatment. Earthworms 

also differently influenced catabolic activities with higher AWCD and H and S 

diversity indices for vermicompost and lower AWCD and H diversity index in the 

compost treatment. Although increased enzyme activities are usually observed in 

presence of earthworms [56], our study showed decreasing soil enzyme activities for 



Doan Thu et al. published in European Journal of Soil Biology 

 17 

both compost and vermicompost treatments. However, all the enzyme activities were 

not similarly affected, therefore reflecting an interaction between the nature of the 

organic amendment and M. posthuma. Despite a high degree of DGGE band similarity 

(OTU) between treatments, changes in the activity of enzymes of C, N and P cycles 

reflect the activity of specific microbial populations [56] and support the hypothesis 

that M. posthuma led to divergent dynamics of bacterial communities in soils amended 

with compost and vermicompost. These findings could partially be explained by the 

nature of the organic substrates. The negative effect of earthworms on soil microbial 

properties in composted soil could result from a competition between bacteria and 

earthworms for organic resources and/or from the consumption of microbes by 

earthworms [60]. Conversely, the higher metabolic activity of microbes in 

vermicomposted soil suggests that earthworm activity led to a stimulation of microbes 

in the presence of vermicompost. Litter and OM decomposition rates are often 

stimulated in experiments comparing soils with and without earthworms [12]. It is 

therefore likely that earthworms stimulate microbial activity through the fragmentation 

and alteration of vermicompost in their gut and/or through the production of more 

easily degradable organic substances (i.e., the mucus) leading to priming effect 

processes [9]. These results can be seen in line with the niche construction, or feedback 

loop hypothesis applied to soil engineers [32]. The stimulation of bacterial activity in 

vermicomposted soil led to increased palatability of the OM from highly polymerised 

organic substances to more simple molecules and/or microbial biomass which can 

afterwards be consumed by earthworms [16]. This hypothesis is supported by the fact 

that earthworm development was difficult at the beginning of the experiment in 
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vermicomposted soil, probably because of the low palatability of vermicompost for 

earthworms, but increased over time [18]. 

 The presence of endogeic earthworms in soil is more a generality than an 

exception. This study therefore highlights the importance of the quality of organic 

resources applied as amendments and the importance of endogeic earthworms in 

evaluating the relevance of compost and vermicompost in the field.  
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Table 1.  Shannon (H) and Richness (S) diversity indices calculated from (a) OTUs* of 

DGGE gel and (b) individual substrate consumption in Biolog EcoPlateTM in 

the initial soil (T0) and in soil after 15 months of cultivation from a 

greenhouse experiment. Treatments are mineral, compost and vermicompost 

amendments incubated with (EW+) and without (EW-) earthworms. Standard 

errors are given in parenthesis. Values with the same letter are not different at 

P = 0.05 (LSD test, n=3). 

 

Soil amendment 

  

(a) Structural diversity Shannon diversity 
(H) 

Richness 
(S) 

Initial soil T0 2.49 (0.03) 17.0 (0.0) 
Mineral  

EW- 2.78 (0.65)
c 22.3 (0.6)

d 

EW+ 2.78 (0.05)
c 22.0  (0.0)

d 
Compost  

EW- 2.93 (0.07)
a 25.7 (0.58)

a 

EW+ 2.92 (0.06)
a 25.3 (0.58)

ab 
Vermicompost  

EW- 2.80 (0.04) 
b 23.0 (0.0)

c 

EW+ 2.93 (0.03)
a 24.7 (0.6)

b 
   

(b) Functional diversity  

  

Initial soil T0 1.40 (0.2) 16.7 (0.6) 
Mineral  

EW- 2.17 (0.3)
e 21.0 (2.6)

c 

EW+ 2.18 (0.2)
e 21.0 (1.7)

c 
Compost  
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EW- 4.60 (0.6)
a 30.3 (1.1)

a 

EW+ 3.43 (0.2)
c 30.0 (0.0)a 

Vermicompost  
EW- 2.68 (0.0)

d 24.3 (1.5)
b 

EW+ 3.85 (0.3)
b 28.0 (1.0)

a 
 

*Bands, which were best predicted by the variation in clusters, are identified as OTUs 

(Operation Taxonomy Units).  
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Table 2.  Enzyme activities in soil (U g-1) before the experiment (initial soil T0) and after 15 months of cultivation with (EW+) or 

without (EW-) earthworms. Standard errors are given in parenthesis. For each variable, values with the same letter are 

not different at P = 0.05 (LSD test, n=3). nd: not detected. 

 

Soil amendment 

N-acetyl 
-glucosamidase β-Glucosidase alkaline phosphatase acid phosphatase Urease Amylase Xylanase 

Initial soil To 0.73 (0.04) 0.68 (0.04) 13.81 (0.56) 4.42 (0.15) 0.19 (0.04) nd nd 

Mineral        

EW- 0.12 (0.03)
c
 0.83 (0.06)

d
 17.95 (0.82)

e
 6.95 (0.24)

c
 1.00 (0.19)

c
 nd nd 

EW+ 0.11 (0.02)
c
 1.04 (0.21)

d
 17.45 (0.62)

e
 7.87 (0.5)

c
 0.80 (0.07)

c
 nd nd 

Compost        

EW- 2.13 (0.16)
a
 2.46 (0.08)

c
 42.41 (2.72)

a
 14.68 (1.44)

a
 2.11 (0.14)

a
 2.51 (0.18)

b
 nd 

EW+ 1.83 (0.16)
b
 2.43 (0.08)

c
 33.07 (2.72)

c
 10.39 (1.44)

b
 1.74 (0.14)

b
 2.4 (0.18)

b
 nd 

Vermicompost         

EW- 1.86 (0.07)
b
 3.16 (0.77)

a
 34.61 (1.89)

b
 13.55 (0.71)

a
 2.12 (0.08)

a
 5.32 (0.70)

a
 0.50 (0.10)

a
 

EW+ 1.82 (0.05)
b
 2.82 (0.67)

b
 30.06 (0.42)

d
 13.49 (1.03)

a
 2.19 (0.02)

a
 4.87 (0.61)

a
 0.33 (0.00)

b
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Figure 1.  Dendrogram of similarity derived from DGGE analyses of 16S rRNA 

gene fragment amplified from initial soil (soil T0) and soils after 15 

months of experiment (n = 3). Treatments are Mineral, Compost or 

Vermicompost with (EW+) and without (EW-) earthworms 

 

Figure 2. Average well color development (AWCD) calculated from Biolog 

EcoPlateTM absorbance data after 72 h of incubation (n = 3) in the soil 

samples at the end of the experiment and amendment of chemical 

nutrients (mineral), compost or vermicompost, and in presence (EW+, in 

grey) or absence (EW-, in white) of earthworms. For each variable, 
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values with same letter are not significantly different (bars are SE, P < 

0.05, LSD test). 

 

Figure 3.   Principal components analysis (PCA) from soil enzyme activities at the 

end of the experiment. Treatments are mineral (M), compost (C) or 

vermicompost (V) treatments with (EW+) or without (EW-) earthworms.  

(a) Correlation circle on F1-F2 plane. Variables are: Beta-glucosidase, 

N-acetyl- glucosamine, amylase, xylanase, cellulase, urease, alkaline 

phosphatase, acid phosphatase; (b) Eigenvalue diagram and (c) 

Ordination in the plane defined by factors 1 and 2. 
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