Cyclometalated Platinum(II) with Ethynyl-linked Azobenzene Ligands : an original Switching mode

Paul Savel,^a Camille Latouche,^a Thierry Roisnel,^a Huriye Akdas-Kilig,^a Abdou Boucekkine,^{a*} Jean-Luc Fillaut.^{a*}

Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-Université de Rennes 1, 35042, Rennes Cedex France

* To whom correspondence should be addressed. E-mail: jean-luc.fillaut@univ-rennes1.fr; abdou.boucekkine@univ-rennes1.fr

1.	Table S1. Unit Cell, Data Collection, and Refinement Parameters for Complex 2b	2
2.	Optimized parameter of the different complexes (symmetry, energy, coordinates)	3
3.	Computed (TD-DFT) excitations	9
4.	Orbital Composition	1

1. Table S1. Unit Cell, Data Collection, and Refinement Parameters for Complex 2b

Empirical formula	C41 H37 Cl6 N5 Pt
Formula weight	1007.55
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, $P 2_{1/c}$
Unit cell dimensions	$a = 11.8455(3)$ Å, $\alpha = 90^{\circ}$
	$b = 23.7605(6) \text{ Å}, \beta = 107.0200(10)^{\circ}$
	$c = 15.3741(4)$ Å, $\gamma = 90^{\circ}$
Volume	4137.60(18) Å ³
Z, Calculated density	$4, 1.617 (g.cm^{-3})$
Absorption coefficient	3.815 mm ⁻¹
F(000)	1992
Crystal size	0.55 x 0.19 x 0.15 mm
Crystal color	red
Theta range for data collection	3.43 to 27.48 °
h_min, h_max	-14, 15
k_min, k_max	-30, 30
l_min, l_max	-19, 19
Reflections collected / unique	34749 / 9441
	$[R(int)^a = 0.0363]$
Reflections [I>2 σ]	6939
Completeness to theta_max	0.994
Absorption correction type	multi-scan
Max. and min. transmission	0.564, 0.377
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	9441 / 0 / 484
Goodness-of-fit	1.05
Final <i>R</i> indices $[I>2\sigma]$	$R1^c = 0.0497, wR2^d = 0.1327$
R indices (all data)	$R1^c = 0.0739, wR2^d = 0.1496$
Largest diff. peak and hole	3.887 and -1.287 e ⁻ .Å ⁻³
${}^{a}R_{int} = \sum F_{o}^{2} - \langle F_{o}^{2} \rangle / \sum [F_{o}^{2}]$	
${}^{b}S = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n - p)\}^{1/2}$	
${}^{c}R1 = \sum \mid F_o - F_c \mid / \sum F_o $	
${}^{d}wR2 = \{\sum \left[w(F_{o}^{2} - F_{c}^{2})^{2}\right] / \sum \left[w(F_{o}^{2} - F_{c}^{2})^{2}\right$	$[p^2)^2]\}^{1/2}$
$w = 1 / [\sigma(F_0^2) + aP^2 + bP]$ where P	$F = [2F_{\rm c}^2 + {\rm MAX}(F_{\rm o}^2, 0)]/3$

2. Optimized parameter of the different complexes (symmetry, energy, coordinates) Complex $\underline{2a}(C_1)$ Energy = -2177.9554309 (B3LYP/LANL2DZ+pol.)

Energy	r = -2177.9554309) (B3LYP/LAN	L2DZ+pol.)	
Atom	Χ	Y	Z	(Angstrom)
С	-7.984088	-0.269642	-1.117003	8
С	-7.273709	0.489488	-0.148542	
C	-8.020733	1.351240	0.690047	
C	-9.404723	1.459573	0.582945	
C	-10 131518	0 708794	-0 394420	
C	-9 363888	-0.168030	-1 234174	
N	-5 890733	0.460531	0 062986	
N	-5 225449	-0 335926	-0.687717	
C	-3 830871	-0 346418	-0 461499	
C	-3 084343	-1 229834	-1 275069	
C	-1 695919	-1 325777	-1 146241	
C	-0 997805	-0 53/1/3	_0 197175	
C	-1 758284	0.350847	0.19/1/0	
C	-3 1//216	0.115226	0.019420	
C	0 127160	-0 617202	-0 072326	
C	1 663686	-0.698646	-0.072320	
D+	2 617120	-0.754601	0.011090	
FL N	1 162002	-0.754001	-0 129406	
	4.102992 5.512506	1 552000	-0.122400	
C	5.JIJJ90	1.JJZ090 2.025147	-0.123103	
C	5 224464	2.033147	-0.271772	
C	3.234404 2.011511	3.901077	-0.434407	
C	3.844311	3./19404	-0.433420	
C	5.557720	2.420030	-0.280012	
C NI	0.349042 5 621720	0.329914	0.042541	
	5.051750	-0.012032	0.130043	
C	0.213599	-2.023924	0.301704	
C	7.013993	-2.114255	0.354997	
C	0.40/04/	-0.956917	0.231027	
C	7.744030	U.2833U/ 2 1100E4	0.090091	
C	5.223149	-3.118854	0.394304	
C	5.509400	-4.409709	0.552100	
C	4.002047	-5.462795	0.637012	
C	3.245255	-3.090751	0.564972	
C	2.8/3440	-3.747874	0.406310	
U	3.839/6L	-2.726250	0.313130	
п	1.013040	-3.469507	0.555455	
н	2.4/0453	-5.866523	U.032002 0.750515	
п	4.000044	-0.510944	0.759515	
п	0.044093	-4.755100	0.609700	
п	0.0/4/95	-3.093455	0.4/90/1	
	9.944040	-0.992166	0.310003	
п	0.JL000J 7 1///55	1.200929 2 0/2150	U.UU3913 -0 262051	
п	/.144233 5 770010	Z.943138 5 305700	-U.203U31 -0 611276	
	J. / / &ULX 2 124425	J.J0J/99 4 521105	-U.0113/0	
п	3.124433	4.031100 0.014600	-0.000007	
н	2.204024	Z.ZI468U 1 120274	-U.2/9493	
п	-3./U/100 -1 226200	1.1323/4	1,134340 1,257407	
п	-I.23039U	0.303/03	1 70200E	
н	-1.133390	-2.013108	-1./03025	

Н	-3.616741	-1.841374	-2.012432
Н	-7.486925	1.939131	1.445617
Н	-9.927256	2.128815	1.264538
N	-11 493263	0 829769	-0 537562
ц Ц	-9 862/17	-0 774658	_1 988777
11 TT	7 426770	0.017000	1 770625
п	= / . 436 / / 0	-0.94/203	-1.//0625
С	10.492892	-2.425/92	0.4/3212
С	10.518417	-0.391948	-1.000607
С	10.419512	-0.143838	1.521130
Н	11.591490	-2.391649	0.508551
Н	10.144727	-2.895120	1.405535
н	10.206634	-3.072564	-0.369765
н	11 618155	-0 404505	-0 963380
11 U	10 1001/0	-0 077745	-1 075457
п	10.190142	-0.977745	-1.0/545/
Н	10.1986//	0.648891	-1.151543
Η	11.518787	-0.151956	1.571816
Н	10.093825	0.903189	1.441925
Н	10.029579	-0.552104	2.465764
С	7.320310	5.434821	-0.576299
С	5.294913	5.937159	-1.979821
C	5.225678	6.280166	0.530711
ч	5 596910	7 308651	0 407441
11 U	1 127026	6 215101	0.507740
п	4.12/020	6.313191	0.527749
Н	5.553815	5.912320	1.514582
Η	5.665360	6.964252	-2.117282
Н	5.674347	5.321526	-2.809310
Н	4.197953	5.961327	-2.045898
Н	7.652963	6.475243	-0.703074
Н	7.721088	5.071930	0.382326
н	7.768225	4 841540	-1.387834
C	-12 235985	0 009060	-1 505410
C	10 070600	1 712026	0 220050
	-12.2/3623	1.713926	0.339936
Н	-13.192549	0.522335	-1./01/48
Н	-11.691191	-0.011722	-2.466807
С	-12.528194	-1.433538	-1.040773
С	-13.284124	-2.238423	-2.112935
Н	-11.582498	-1.944430	-0.795575
Н	-13.122359	-1.402694	-0.112730
С	-13,596959	-3.678867	-1.670044
н	-14 224065	-1 720422	-2 364334
и П	-12 68710/	-2 262585	-3 030208
п тт	-12.007194	-2.202303	-3.039200
H	-14.135508	-4.229696	-2.454813
Н	-12.6/366/	-4.232584	-1.444238
Η	-14.221021	-3.688666	-0.764161
Η	-13.207481	1.962422	-0.192607
С	-12.627165	1.113661	1.717450
Н	-11.730442	2.666208	0.477697
С	-13.427416	2,102473	2.583909
н	-13 213171	0 191271	1 572930
н Ц	_11 703//7	0 824284	2 2/5070
п С	-12 011C71	U.OZ4Z04 1 F00401	2.240270
C	-13.8116/1	1.520421	3.955964
Н	-12.837001	3.021807	2.729107
Η	-14.340954	2.403568	2.045566
Η	-14.380582	2.247779	4.553107
Н	-14.432256	0.619096	3.843617
Н	-12.917220	1.239411	4.531305

Complex $\underline{2b}(C_l)$ Energy = -1900.32222633 a.u. (B3LYP/LANL2DZ+pol.)

Atom.	X	Y	Z
С	-10.210515	-0.203534	1.424233
С	-9.394375	0.067806	0.303933
С	-9.988453	0.435332	-0.928944
С	-11.375868	0.528990	-1.031112
С	-12.188088	0.256941	0.097431
С	-11.602017	-0.110507	1.328455
Ν	-7.999747	-0.064594	0.526783
Ν	-7.276455	0.203602	-0.488411
С	-5.890105	0.073074	-0.302775
С	-5.095545	0.365185	-1.436899
С	-3.705431	0.261087	-1.378540
С	-3.060091	-0.143357	-0.178584
С	-3.871214	-0.428571	0.961431
С	-5.257106	-0.324314	0.905304
С	-1.640356	-0.273333	-0.115459
С	-0.407453	-0.425257	-0.071066
Pt	1.530318	-0.635596	-0.029942
Ν	2.250429	1.424650	-0.001480
С	3.613150	1.512524	0.024979
С	4.264188	2.754162	0.052970
С	3.531611	3.954972	0.054609
C	2.126792	3.829341	0.024455
C	1.535096	2.565431	-0.002109
С	4.344023	0.213496	0.023586
N	3.534/94	-0.8/02//	-0.002656
C	4.012888	-2.136955	-0.006913
C	5.403458	-2.346807	0.014842
C	6.288666 E 72041E	-1.254/48	0.043179
C	0.750410	0.040330 2 147100	0.04/01/
C	2.934370	-3.14/122	-0.033064
C	1.300042	-2.033302	-0.043702
C	0.340032	-1 961387	-0.070150
C	2 120505	-4.901307	-0.079139
C	3 186938	-4 532824	-0 044559
C	7 816437	-1 425229	0.075462
C	8.436836	-0.703617	-1.151034
C	4,187418	5.342458	0.087441
C	3.762509	6.127518	-1.182654
C	-13.618055	0.355194	-0.012561
C	3.696918	6.098724	1.351278
С	5.728031	5.262777	0.126709
С	8.365761	-0.790340	1.381528
С	8.241563	-2.908376	0.036093
Н	-0.494007	-3.227810	-0.078877
Н	-0.037205	-5.666932	-0.097231
Н	2.317042	-6.519117	-0.076402
Н	4.214423	-4.906851	-0.035161
Н	5.778592	-3.368482	0.010400
Н	6.376888	0.923504	0.071746
Н	5.352523	2.771999	0.074229
Н	1.475263	4.705306	0.022631

(Angstrom)

Η	0.448922	2.449978	-0.023604
Н	-5.864235	-0.550322	1.786727
Н	-3.383407	-0.738228	1.889149
Н	-3.099800	0.484051	-2.260069
Н	-5.594256	0.671605	-2.363575
Н	-9.735114	-0.488154	2.369494
Н	-12.234916	-0.319712	2.194428
Н	-11.843272	0.810725	-1.978242
Н	-9.357011	0.642503	-1.797192
Η	9.339250	-2.971384	0.057347
Н	7.859692	-3.468705	0.902654
Η	7.896543	-3.409663	-0.880734
Н	9.531146	-0.818700	-1.133557
Н	8.062083	-1.132709	-2.092548
Н	8.212402	0.372455	-1.152954
Н	9.460495	-0.898078	1.414190
Н	8.130043	0.281390	1.447105
Н	7.945411	-1.287700	2.268619
Н	4.148175	7.101904	1.379974
Н	2.604486	6.219690	1.357900
Н	3.987832	5.565235	2.268796
Н	4.214738	7.130540	-1.165877
Н	4.099765	5.614221	-2.095803
Н	2.671751	6.249853	-1.242122
Н	6.144024	6.280318	0.153905
Н	6.088206	4.732476	1.021253
Н	6.135660	4.760689	-0.763737
Ν	-14.784079	0.436410	-0.103973

Complex $\underline{2a-H^+}(C1)$

Energy = -2178.42199774 a.u. (B3LYP/LANL2DZ+pol.)

Atom	Χ	Y	Z
С	-7.917999	1.148843	0.876628
С	-7.248741	0.433954	-0.168683
С	-8.060576	-0.131249	-1.209636
С	-9.428450	0.021219	-1.203778
С	-10.107059	0.762504	-0.162594
С	-9.287046	1.306788	0.889894
Ν	-5.897078	0.369568	-0.044730
Ν	-5.168765	-0.230535	-0.927377
С	-3.770722	-0.310040	-0.806749
С	-3.054290	-0.958028	-1.836696
С	-1.664852	-1.067352	-1.757079
С	-0.951717	-0.533183	-0.650166
С	-1.698551	0.119432	0.373218
С	-3.084941	0.232049	0.303843
С	0.468646	-0.642825	-0.550294
С	1.700929	-0.726721	-0.411534
Pt	3.633285	-0.777664	-0.149987
Ν	4.193958	1.324373	-0.319635
С	5.529708	1.537023	-0.132798
С	6.079223	2.825177	-0.193924
С	5.269699	3.946432	-0.448927
С	3.894705	3.692837	-0.637412
С	3.405254	2.387599	-0.566710
С	6.345258	0.320334	0.139719
Ν	5.626572	-0.825462	0.160752
С	6.189680	-2.034159	0.397875
С	7.575462	-2.114219	0.626138
С	8.368094	-0.952469	0.613475
С	7.723371	0.283323	0.365229
С	5.198745	-3.131044	0.379183
С	3.834959	-2.747217	0.122121
С	2.869368	-3.772944	0.097754
С	3.222997	-5.118266	0.317591
С	4.560269	-5.475460	0.569149
С	5.546453	-4.477968	0.599095
С	9.885494	-0.976455	0.859806
С	10.609450	-0.383318	-0.378723
С	5.813894	5.379724	-0.519978
С	5.488621	5.972458	-1.917224
Ν	-11.448059	0.942098	-0.188307
С	-12.286968	0.370566	-1.262012
С	-12.663507	-1.109377	-1.046458
С	-13.523267	-1.646558	-2.204745
С	-13.934460	-3.116199	-2.006116
С	-12.146717	1.670414	0.891104
С	-12.416597	0.821665	2.150187
С	-13.143868	1.635075	3.235729
С	-13.437434	0.807552	4.499590
C	5.121106	6.230605	0.578375
C	7.340556	5.440081	-0.301426
C	10.207840	-0.114000	2.109993
C	10.418701	-2.404518	1.101244

(Angstrom)

Η	1.824166	-3.521053	-0.094841
Н	2.449429	-5.891802	0.292828
Н	4.831273	-6.520409	0.740143
Н	6.586046	-4.754921	0.794785
Н	8.020501	-3.089847	0.813728
Н	8.296219	1.210273	0.349161
Н	7.150266	2.942402	-0.037697
Н	3.189106	4.500702	-0.840485
н	2,343720	2.173092	-0.710119
н	-3.642025	0.730485	1,098216
н	-1 166196	0 534546	1 232426
н	-1 114484	-1 571502	-2 554862
и П	-3 591588	-1 375026	-2 69/309
и П	-7 307740	1 575440	1 680976
ц	-0.742069	1 055526	1 712270
п	-9.742000	1.033320	2 000007
п	-10.001930	-0.433203	-2.009697
п	-7.603733	-0.701529	-2.02/903
H	11.504835	-2.362290	1.268035
H	9.963777	-2.86/8/6	1.989593
H	10.239705	-3.060952	0.236412
Н	11.696638	-0.384882	-0.208477
Н	10.402657	-0.980166	-1.279860
Η	10.301737	0.653124	-0.577522
Η	11.293373	-0.115274	2.290622
Η	9.888669	0.930198	1.982767
Η	9.710504	-0.516766	3.005245
Η	5.494605	7.264834	0.535986
Η	4.030217	6.259033	0.446191
Η	5.334321	5.829768	1.580847
Η	5.861250	7.006211	-1.975973
Η	5.970370	5.388295	-2.715802
Н	4.407170	5.992108	-2.112659
Η	7.674766	6.485572	-0.366567
Н	7.628439	5.060134	0.690482
Н	7.887402	4.867689	-1.065946
Н	-13.206274	0.977565	-1.308249
Н	-11.774685	0.497363	-2.231338
Н	-11.748256	-1.717353	-0.951496
Н	-13.214885	-1.210711	-0.097735
Н	-14.426564	-1.024116	-2.308463
Н	-12.966716	-1.546144	-3.150658
Н	-14.542085	-3.475757	-2.848843
Н	-13.051719	-3.767638	-1.925812
н	-14 526293	-3 241189	-1 087513
н	-13 105783	2 018834	0 474056
и П	-11 567350	2.010034	1 154745
ц	_12 02/022	_0 054715	1 072702
п U	-11 16/077	-0.0J4/1J	1.0/3/93 9 559911
п u	-12 522000	U.430491 2 512102	2.002211
п	-12.JJJJ000	2.012192	3.3U03L0
п	-14.U00014	Z.UZÖIZÖ 1 410005	2.02/21/ E 050061
H	-13.954/43	1.412395	5.258061
H	-14.075184	-0.058227	4.268059
H	-12.508359	0.427498	4.949280
Η	-5.614852	-0.714357	-1.827152

3. Computed (TD-DFT) excitations

<u>2a</u>

```
# (nm 1000 cm-1 eV) (f) (Assignment; H=HOMO,L=LUMO,L+1=LUMO+1,etc.)
1 550.4 18.2 2.25 0.6971 S H-0->L+0(+93%)
2 497.0 20.1 2.49 1.3952 S H-0->L+1(+95%)
3 458.4 21.8 2.70 0.0004 S H-4->L+1(+62%) H-4->L+0(36%)
4 453.6 22.0 2.73 0.0062 S H-2->L+0(+81%) H-2->L+1(+13%)
5 437.5 22.9 2.83 0.0125 S H-0->L+2(+80%) H-3->L+0(13%)
6 427.9 23.4 2.90 0.0027 S H-3->L+0(+71%) H-0->L+2(+13%)
               H-1->L+0(+7%)
7 420.1 23.8 2.95 0.0013 S H-1->L+0(+79%) H-0->L+0(+5%)
8 401.0 24.9 3.09 0.0037 S H-5->L+0(+77%) H-5->L+1(+17%)
9 395.8 25.3 3.13 0.0054 S H-3->L+1(+75%) H-1->L+1(+13%)
10 383.1 26.1 3.24 0.0097 S H-2->L+1(+64%) H-1->L+1(21%)
               H-2->L+0(8\%)
11 381.4 26.2 3.25 0.0004 S H-1->L+1(+54%) H-2->L+1(+19%)
               H-3->L+1(14%)
12 368.8 27.1 3.36 0.0421 S H-2->L+2(+71%) H-3->L+2(+10%)
               H-1->L+2(+9\%)
13 358.6 27.9 3.46 0.0192 S H-0->L+3(+55%) H-3->L+2(34%)
14 356.8 28.0 3.47 0.0711 S H-0->L+3(+37%) H-3->L+2(+36%)
               H-2->L+2(12%) H-1->L+2(+6%)
```

<u>2b</u>

```
# (nm 1000 cm-1 eV) (f) (Assignment; H=HOMO,L=LUMO,L+1=LUMO+1,etc.)
1 519.3 19.3 2.39 1.5886 S H-0->L+0(+95%)
2 504.1 19.8 2.46 0.0050 S H-5->L+0(+97%)
3 490.8 20.4 2.53 0.0424 S H-2->L+0(+88%) H-1->L+0(+8%)
4 479.5 20.9 2.59 0.0004 S H-1->L+0(+89%) H-2->L+0(8%)
5 460.8 21.7 2.69 0.0122 S H-0->L+1(+95%)
6 446.5 22.4 2.78 0.0041 S H-1->L+1(+93%)
7 414.2 24.1 2.99 0.0351 S H-3->L+0(+58%) H-2->L+1(37%)
8 412.1 24.3 3.01 0.0070 S H-2->L+1(+56%) H-3->L+0(+38%)
9 395.4 25.3 3.14 0.0039 S H-3->L+1(+95%)
10 381.3 26.2 3.25 0.0016 S H-0->L+2(+96%)
11 372.4 26.8 3.33 0.0033 S H-4->L+0(+98%)
12 365.3 27.4 3.39 0.0661 S H-1->L+2(+80%) H-2->L+2(+9%)
13 352.3 28.4 3.52 0.1355 S H-2->L+2(+82%) H-1->L+2(8%)
14 341.7 29.3 3.63 0.2196 S H-6->L+0(+75%) H-7->L+0(20%)
15 340.4 29.4 3.64 0.1274 S H-7->L+0(+75%) H-6->L+0(+18%)
16 337.1 29.7 3.68 0.2420 S H-4->L+1(+89%) H-2->L+2(+5%)
```

<u>2a-H+</u>

(nm 1000 cm-1 eV) (f) (Assignment; H=HOMO,L=LUMO,L+1=LUMO+1,etc.)

```
1 626.3 16.0 1.98 1.7380 S H-0->L+0(+99%)
2 550.5 18.2 2.25 0.0088 S H-1->L+0(+74%) H-2->L+0(+24%)
3 546.4 18.3 2.27 0.0067 S H-2->L+0(+74%) H-1->L+0(25%)
4 474.0 21.1 2.62 0.0045 S H-0->L+1(+94%)
5 461.7 21.7 2.69 0.0161 S H-3->L+0(+77%) H-4->L+0(+22%)
6 447.7 22.3 2.77 0.0049 S H-1->L+1(+95%)
7 420.1 23.8 2.95 0.3733 S H-4->L+0(+70%) H-3->L+0(19%)
                  H-5->L+0(+6\%)
8 413.1 24.2 3.00 0.0342 S H-5->L+0(+93%)
9 411.8 24.3 3.01 0.0162 S H-2->L+1(+91%)
10 396.5 25.2 3.13 0.0037 S H-3->L+1(+70%) H-4->L+1(+29%)
11 390.4 25.6 3.18 0.0031 S H-0->L+2(+94%)
12 365.0 27.4 3.40 0.0945 S H-1->L+2(+83%) H-2->L+2(+6%)
13 353.7 28.3 3.51 0.0091 S H-7->L+0(+75%) H-8->L+0(+17%)
14 351.2 28.5 3.53 0.0698 S H-2->L+2(+82%) H-1->L+2(6%)
                H-5->L+1(6%)
15 340.6 29.4 3.64 0.0269 S H-4->L+1(+58%) H-3->L+1(23%)
                H-5->L+1(+5\%)
16 336.6 29.7 3.68 0.2235 S H-5->L+1(+82%)
17 334.1 29.9 3.71 0.0055 S H-3->L+2(+69%) H-4->L+2(+26%)
18 333.4 30.0 3.72 0.0045 S H-10->L+0(+46%) H-6->L+0(+39%)
                H-8->L+0(+9\%)
19 329.2 30.4 3.77 0.0165 S H-6->L+0(+52%) H-10->L+0(35%)
                H-7->L+0(+5%)
20 326.7 30.6 3.79 0.0054 S H-0->L+3(+95%)
21 321.9 31.1 3.85 0.0284 S H-8->L+0(+66%) H-7->L+0(16%)
                H-10->L+0(12%)
22 313.3 31.9 3.96 0.0007 S H-9->L+0(+97%)
23 304.3 32.9 4.07 0.1328 S H-1->L+3(+74%) H-0->L+4(13%)
24 303.3 33.0 4.09 0.0014 S H-16->L+0(+79%) H-11->L+0(11%)
25 302.0 33.1 4.11 0.2166 S H-0->L+4(+72%) H-1->L+3(+10%)
                H-2->L+3(+7\%)
```

4. Orbital Composition

Table S2. Orbital composition (%) of complexes 2a, 2b and 2a-H⁺ in term of metal and ligands in the ground state

Compoun d	Moiet y	HOMO- 4	номо- 3	HOMO- 2	HOMO- 1	HOM O	LUM O	LUMO+ 1
	Pt	28	27	0	11	3	5	2
2a	L	72	9	0	4	1	89	41
	L'	0	64	100	85	96	6	57
	Pt	5	0	32	27	12	1	5
2b	L	92	0	33	50	4	3	89
	L'	2	100	35	23	85	97	6
	Pt	32	26	34	29	12	1	5
2a-H ⁺	L	65	10	12	71	4	0	91
	L'	4	64	54	0	84	99	4

Wavelength	Moiety	НОМО-2	HOMO-1	номо	LUMO	LUMO+1
	М	27	30	13	2	5
$\lambda = 580 \text{ nm}$	L	66	15	4	5	87
	L'	7	55	82	93	9
	М	26	26	15	3	3
$\lambda = 620 \text{ nm}$	L	10	73	6	36	56
	L'	64	1	79	61	41

Table S3. Orbital composition (%) of complex **2b**, obtained for the two triplet geometries at 580 nm and 620 nm.

Figure S1. Frontier MO diagrams of complex **2b**, obtained for the two triplet geometries at 580 nm and 620 nm.

•