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Abstract. Regular and moderate physical activity practice provides many physiological benefits. It reduces the risk of disease
outcomes and is the basis for proper rehabilitation after a severe disease. Aerobic activity and strength exercises are strongly
recommended in order to maintain autonomy with ageing. Balanced activity of both types is important, especially to the elderly
population. Several methods have been proposed to monitor aerobic activities. However, no appropriate method is available for
controlling more complex parameters of strength exercises. Within this context, the present article introduces a personalized,
home-based strength exercise trainer designed for the elderly. The system guides a user at home through a personalized exercise
program. Using a network of wearable sensors the user’s motions are captured. These are evaluated by comparing them to
prescribed exercises, taking both exercise load and technique into account. Moreover, the evaluation results are immediately
translated into appropriate feedback to the user in order to assist the correct exercise execution. Besides the direct feedback,
a major novelty of the system is its generic personalization by means of a supervised teach-in phase, where the program is
performed once under supervision of a physical activity specialist. This teach-in phase allows the system to record and learn the
correct execution of exercises for the individual user and to provide personalized monitoring. The user-driven design process, the
system development and its underlying activity monitoring methodology are described. Moreover, technical evaluation results as
well as results concerning the usability of the system for ageing people are presented. The latter has been assessed in a clinical
study with thirty participants of 60 years or older, some of them showing usual diseases or functional limitations observed in
elderly population.

Keywords: physical activity monitoring, elderly, home-based rehabilitation, HCI, wearable sensors, health promotion, strength
exercises, personalization, ambient assisted living

1. Introduction

Regular and moderate physical activity practice pro-
vides many physiological benefits, reduces the risk
of disease outcomes, and generates important psycho-
logical gains [32]. Aerobic activity, promoting car-
diovascular fitness, and strength exercises, promoting
musculoskeletal fitness, are strongly recommended.
Particularly in frail populations, balanced activity of

*Corresponding author. E-mail: gabriele.bleser @dfki.de

both types is important to keep functional indepen-
dence [14,32]. It is hence essential to promote the prac-
tice of physical activity, especially at home, since it
has been proven that adherence to exercise is greater
when performed at home than when performed in cen-
ters [1]'. However, this physical activity has to be
supervised in order to improve physical fitness whilst
minimizing the risk of injuries due to overuse or in-

I'This has been shown in people older than 50 years showing car-
diovascular and respiratory diseases or risk factors
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adequate physical activity practices [5,10]. For that
purpose the supervision of physical activity has to be
achieved whilst providing feedback and motivational
elements to the users regarding their activity. Such
supervision aims to preserve or increase motivation
and program adherence.

Within this context, the present article introduces the
PAMAP? platform that supervises, motivates and helps
the practice of physical activity. This system has been
developed within the European Ambient Assisted Liv-
ing project PAMAP? and has been designed for promot-
ing home-based physical activity adapted to the elderly
population. The PAMAP system provides a holistic way
of physical activity monitoring by supporting guid-
ance and follow-up of both typical aerobic activities,
to promote cardiovascular health, and more complex
strength exercises, to improve or maintain strength and
balance. While the overall system is briefly introduced,
this article focuses on the major novel part of the sys-
tem dedicated to the supervision of strength exercises,
the personalized exercise trainer.

The article is organized the following way: Sec-
tion 2 provides a short overview of the related work.
Then, Section 3 starts with presenting the end-user per-
spectives of the overall PAMAP system. It describes
the effects of aging on mental and physical health
and fitness [2] and how these effects should be taken
into account when designing the user interface for
the elderly. Furthermore, the requirements from health
care professional point of view are highlighted. Then,
Section 4 briefly outlines the technical realization of
the complete PAMAP system, before introducing the
strength exercise monitoring use case, which this ar-
ticle focuses on. The next section, Section 5, presents
the user interface in relation to the requirements stated
in Section 3. The underlying activity monitoring so-
lution is then described in the two following sections:
Section 6, detailing the full-body motion capturing
based on wearable inertial sensors, and Section 7, de-
scribing the novel methodology for personalized ex-
ercise evaluation and the parameters of exercise load
and technique to be controlled. The results of the sys-
tem and user evaluation are presented in Section 8, and
conclusions are drawn in Section 9.

2. Related work

The supervision of physical activity at home has un-
til now mainly been related to rehabilitation follow-up.
Information and Communication Technologies (ICT)
have been used for this purpose by providing rehabil-
itation services at home over telecommunication net-
works and Internet. This constitutes the recent field
of telerehabilitation [25]. However, only a few of
these projects have tried to provide a more complete
approach of services including monitoring of physi-
cal activity, a wellness diary, mentoring sessions, and
a web-portal to facilitate personal goal setting and
to assess the progress of each patient in the pro-
gram [31]. Additionally, most often these telerehabil-
itation projects focus on a specific aspect of physical
activity related to a special disease or pathology and
do not consider physical activity as a whole [19].

In the field of physical activity monitoring, recently
developed methods based on wearable (mostly iner-
tial) sensors have been proposed to monitor aerobic
activities [4,13,18,27]. With such methods it is possi-
ble to control, whether the F.I.T.T. (Frequency, Inten-
sity, Type, Time) principles of training [5] are well re-
spected by the user. A similar approach has also been
integrated into the PAMAP system [22,24]. Some sys-
tems and methodologies have also been presented to
monitor and supervise home-based motor retraining
and coordination exercises especially for stroke pa-
tients’ rehabilitation, but none addressed more com-
plex strength exercises (see [18] for a thorough review
of wearable sensors and systems with application in re-
habilitation). Examples include the Philips Stroke Re-
habilitation Exerciser [11] and Hocoma’s ValedoMo-
tion*, which both focus on the monitoring of specific
body parts (back, knee, elbow) with few wearable in-
ertial sensors. Current video games include feedback
based on wearable motion or external vision sensors
in order for users to follow some fitness exercises.
While such gaming systems are motivating and can
have a positive effect on strength, balance and over-
all fitness, only few and undocumented parameters are
taken into account leading to a lack of proper moni-
toring and helpful feedback. Moreover, the available
systems are not personalizable for users with specific
needs and individual limitations and their use in frail
populations has led to injuries as reported in a recent
survey [28]. Finally, external vision sensors, such as

2Physical Activity Monitoring for Aging People
3Project AAL-2008-1-162, http://www.pamap.org

4http://www.hocoma.com/products/valedo/
valedomotion/
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Microsoft’s Kinect, suffer from the line-of-sight prob-
lem and therefore restrict the training panel that can be
monitored to exercises, which allow full frontal visi-
bility of the person and which are performed indoors.
Until now, no appropriate method for capturing and
monitoring and personalized controlling of the com-
plex parameters related to the load and technique of
full-body strength exercises in a home-based environ-
ment is available. Therefore, the present article pro-
poses a novel methodology and presents its realization
and integration in the aforementioned PAMAP system.

3. End-user requirements

The end-user perspective of the PAMAP system can
be divided into two parts: the perspective of the el-
derly population and the perspective of the health
care professionals. The clinical partner involved in the
PAMAP project, specialized in cardiovascular diseases
and physical activity rehabilitation for patients and el-
derly, has defined the system requirements based on
the characteristics of the elderly population and their
own expectations from a clinician point of view, thus
providing the framework for system design.

For the first part, three main aspects and effects of
aging on mental and physical health and fitness [2]
have been considered: the cognitive changes with age-
ing (decreased ability to perceive a high amount of in-
formation at the same time, decrease of memory), the
physiological changes (decrease of sensory abilities,
e.g. vision and hearing, decrease of movement accu-
racy and coordination) and the ability to deal with re-
cent technology. The cognitive and the physiological
changes should be taken into account during the de-
sign of the user interface (c¢f Section 5) and the de-
sign of the wearable sensors (cf. Section 6). For the
user interface, the quantity of information presented to
the user should be reduced to the most useful and sim-
plest form and should be presented by different sen-
sory means (visual, auditive). The information should
also be repeated at each use in order to avoid problems
due to a decrease of memory. The interaction with the
system as well as the manipulation and the fixation of
the wearable sensors should not require any fine motor
skills. Finally, the user interface should be integrated
into a system familiar to the user in order to limit the
required learning of unknown technology. During the
system design phase, a few participants were also in-
formally asked to test different solutions and provide
feedback for iterative improvements.

The requirements from the health care profession-
als’ point of view concerned the information provided
to the user during the physical activity monitoring, the
parameters to control in order to ensure a good phys-
ical activity practice and to detect risks, and, finally,
the parameters to be accessible by health care profes-
sionals. The clinical partner specified the protocol for a
physical activity session the user has to follow (warm-
up phase, exercise, cool-down phase), including the
duration of each phase and the period of rest to respect
between each exercise set. Moreover, he defined the
parameters of the aerobic exercises (duration and in-
tensity) and of the strength exercises (number of sets
and repetitions, movements in terms of speed, ampli-
tude, smoothness and plane of motion). He also de-
fined the parameters to be controlled in order to avoid
risks (acceptable heart rate intervals, feeling scales,
postures during strength training) and the tutorials the
user should have access to in order to learn about phys-
ical activity practice, recommendations, and adverse
symptoms. Finally, the clinical partner specified the
data to enter into the system (training program, medi-
cal data), and the data to receive about the user (medi-
cal data, physical activity program realization).

A detailed documentation of the user requirements
is given in [29]. These requirements provided the basis
for the PAMAP system design and technical realization
as detailed in the following sections.

4. PAMAP system overview

The PAMAP system has been developed according
to the user requirements stated in Section 3. The com-
plete platform covers a large spectrum of different
home based health activities, from logging the user’s
daily activity profile (as detailed in e.g. [22]) to coach-
ing specific strength activities. Section 4.1 provides a
technical perspective of the overall system. The arti-
cle then focuses on the strength exercise monitoring
use case, which represents a major contribution to the
state-of-the-art of physical activity monitoring.

4.1. Technical system overview

The overall PAMAP system is modular and flexi-
ble: As illustrated in Figure 1, it is composed of four
self-contained principal components that communi-
cate over a network. The end user interacts with the
data presentation and data management components.
The underlying physical activity monitoring function-
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Fig. 1. PAMAP system overview. The upper components represent the part of the system that the user interacts with, the lower components
encapsulate the underlying technology for physical activity monitoring and the electronic health record (EHR) database.

ality is encapsulated in the data collection and process-
ing components.

The data presentation component provides visual-
ization, guidance and feedback while exercising. Indi-
vidual user interfaces have been developed for the dif-
ferent categories of physical activity. Particular effort
has been spent in developing the personalized strength
exercise trainer. Based on an interactive TV (i-TV), the
user is guided through a personal training session con-
sisting of a warm-up phase, a work phase with differ-
ent strength exercises, and a cool-down phase as spec-
ified in Section 3. During training, instant audio and
visual feedback is provided on the way the exercises
are executed. This feedback is based on the compari-
son of the performed motion as captured by the data
processing component with a previously recorded per-
sonal gold standard motion. After each exercise, the
user receives feedback on the overall quality of exe-
cution. This enables self-monitoring and can motivate
users to increase their performance during the next ses-
sion.

The data management component comprises an
electronic health record and a care management ap-
plication with web and i-TV interfaces. These appli-
cations enable management, sharing and reviewing of
collected activity data, and facilitate health care pro-
fessionals to maintain comprehensive medical records
of their patients, and in the establishment and follow
up of personalized rehabilitation and physical activ-
ity plans for them. A more detailed description of this
component can be found in [26]. It is not in the focus
of the present article.

The data collection component is based on a net-
work of (wireless) wearable sensors and a mobile pro-
cessing unit for capturing the user’s motions and vital
signs. The complete set-up combines up to ten minia-

ture inertial sensors and complementary sensors, such
as a heart rate monitor. However, the system is de-
signed in a modular way, so that the available sensors
determine the physical activity parameters that can be
monitored [23]. Preprocessing includes correction, fil-
tering and synchronization of the raw sensor data, as
well as, the derivation of higher-level information, for
instance, the body posture in terms of joint angles.
Wearable inertial sensors have been chosen for captur-
ing the user’s motions, since these don’t suffer from the
line-of-sight-problem and therefore allow for a greater
action radius and set of exercises to be monitored.

The data processing component analyzes and char-
acterizes the physical activity of the user based on
the captured data. Several individual algorithms have
been developed to enable sophisticated analysis. As
indicated in the introduction, these range from the
derivation of general FLT.T. parameters to personal-
ized evaluation of strength exercises, the latter being
the focus of this publication.

4.2. Use case: personalized strength exercise trainer

Fig. 2 illustrates the PAMAP system when being
used as a personalized strength exercise trainer. The
aim is to guide a user through an individualized
training session, to accurately evaluate the performed
movements with respect to the parameters specified
in Section 3 and, based on this, to provide valuable
feedback in real-time (c¢f. Section 5). In short, the aim
is to help the user to perform the training correctly
and safely. However, what is correct depends on the
user’s mobility, possible limitations and physical ac-
tivity goals. Hence, personalized exercise monitoring,
respecting these aspects, is required.
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Online User Interface
(Data Presentation)

Joint angles Repetitions

Alerts

Personalized Exercise
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Fig. 2. The different system components and how they interact in
the personalized exercise use case. Note that this figure represents
an instantiation of the general system illustrated in Figure 1.

The basic idea for achieving this in a generic way is
depicted in Figure 3. The proposed solution is to create
a personalized reference for evaluation within a first
supervised training session. During this session, the
proposed system is used in a teach-in mode. While the
user is shown how to perform the exercises according
to his or her special needs, motion sequences are cap-
tured based on the wearable sensor network (cf. Sec-
tion 6). These are then further processed to derive a
personalized model for each exercise (cf. Section 7.1).
At home, the system is used in the trainer mode dur-
ing exercising. In this mode, the performed movements
are evaluated by comparing them to the stored refer-
ence models (cf. Section 7.2). The evaluation results
are then translated into helpful audio and visual feed-
back for the user (c¢f. Section 5).

5. Data presentation

This section explains the data presentation compo-
nent, the part of the system that the user interacts with
and that presents the information provided by the other
system components. The focus is on introducing a user
interface for older adults based on the requirements as

specified in Section 3. After outlining the overall func-
tionality, the general design concept is introduced and
then illustrated with different use cases.

5.1. Functionality

The aim of the personalized exercise trainer is to
help the user to follow his/her individually tailored
training program when exercising alone at home. In
particular, this means to guide the user through the
different phases of the program including preparation,
warm-up, exercise, and cool-down phase; to control
the exercise load by suggesting the weights, number of
sets and repetitions, and breaks according to the train-
ing plan; to function as a virtual memory by count-
ing the number of sets and repetitions; and to control
the exercise execution by providing valuable feedback
on the way the exercises are performed. The latter are
based on the information provided by the data process-
ing component.

5.2. User interface design principles

One of the most difficult problems for elderly users
to adopt technology is the usage of interfaces that are
often not well-suited for them. Especially, the aspect
of technology acceptance needs to be addressed. The
elderly users should be unaware of the complexity of
the underlying software and hardware. The technol-
ogy should aim at being less noticeable than traditional
hardware and better integrated with the lifestyle of the
elderly [15]. Moreover, the interface should be devel-
oped for elderly people with little or no computer ex-
perience. The core philosophy is therefore a minimal-
ist design and simplicity of the user interface.

Currently, the set-up for the elderly makes use of a
television. The users are able to enter information in-
teractively via a remote control. Using a television the

N e

Teach-in Mode —_

OO0
\— Personalized Model

®

) 4

=)

——— Trainer Mode

Fig. 3. Overview of the personalized exercise trainer use case. During the guided Teach-in Mode a reference motion is recorded. Based on the
captured motion data a Personalized Model is generated. In the Trainer Mode at home the model is used as personal evaluation reference. An

individual model is trained for each exercise.
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Fig. 4. Overview of the user interface during a strength exercise.
Different design elements (progress bar, tutorial images, etc.) help
guiding the user through an individual session.

need to learn a new interface is negligible, as the user
will utilize an already familiar interface [7]. Further-
more, the user is unaware of any underlying software
or hardware details within the system, as the monitor
visually and behaviorally represents a television with
the remote control still being the primary input device.

Besides the wearable sensor network, the graphical
user interface is the main component with which the
user gets into contact. Modern interface design is very
demanding when it comes to memory and sight, while
these abilities decrease with age [35]. This process in-
cludes a decline over time in the cognitive and phys-
ical functions at different rates relative to each other.
Visual changes among aging adults include problems
with reading speed, seeing in dim light, reading small
print, and locating objects.

In the current system the symbols were designed to
be simple and large. A large and clear font is also used
in the application and only essential information is dis-
played on the screen (c¢f. Fig. 4). To support the pre-
sented text information a speech output has been intro-
duced for limited vision users. At any point in time the
PAMAP system explains what the user has to do next.

5.3. User interface design elements

An overview of the user interface design elements is
shown in Fig. 4. These are the main elements to help
guiding the user through various types of strength ex-
ercises. The user’s movements are visualized by means
of a virtual avatar. A body-shape representation has
been chosen based on a study by Cui et al [3], which
shows that both female and male users preferred a
body-shape avatar over a stick-figure or mirror-image

calibrati

\

Fig. 5. By means of visual (text and images) and audio instructions
the personalized trainer guides the elderly user through the two-step
calibration process.

avatar when seeing and sharing their exercise move-
ments. In terms of personalization the user can select
a male or female avatar during startup of the PAMAP
application.

The progress bar indicates the current phase of the
training session including warm-up, cool-down and
exercise. When pressing the play button on the remote
control during an exercise the user can switch to a tu-
torial video showing how to perform the exercise cor-
rectly and which tools or weights should be used. The
remaining elements are dedicated to the current exer-
cise: tutorial images, the weights to use, the duration of
a break, and the number of repetitions and sets to per-
form and already completed support the user while ex-
ercising. When wearing a heart rate monitor, the user’s
heart rate can also be visualized.

The following sections describe two different use
cases with respect to the user interface: the calibration
procedure and the strength exercise.

5.3.1. Use case: calibration

The motion estimation based on inertial sensors re-
quires a simple calibration procedure (cf- Section 6.2)
in order to ensure repeatable and accurate motion data.
Therefore, special work has been undertaken to ensure
a valid calibration process.

Fig. 5 illustrates, how the system leads the user
through the two-step procedure. With text, images, and
audio instructions, the user is asked to bend over and
then to stand upright with arms and legs straight down.
When the calibration is completed, the system is ready
to visualize the user’s movements through his virtual
alter ego.
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Fig. 6. Interfaces during an exercise: Besides the number of repeti-
tions (a), the system provides feedback in case of wrong execution
(b) and protects against overexertion (c).

5.3.2. Use case: strength exercise

Fig. 6 shows the user interfaces during a strength
exercise such as biceps curls. Here, the user only car-
ried out three of five repetitions (cf. Fig. 6a). During
the execution the system serves as virtual memory. It
has the knowledge of the type of exercise, the number
of repetitions and sets to perform, and the successfully
carried out repetitions and sets. Hence, the elderly user
can concentrate on correctly executing the exercises.

Furthermore, the system intervenes when an exer-
cise is performed incorrectly. If the user does not re-
spect the exercise load or technique as assessed by the
data processing component, a dedicated feedback is
provided as textual warning message (cf. Fig. 6b), ex-
planatory image and complementary audio message.
The feedback is based on the evaluation parameters
that have not been respected (see Section 7.2.2): move-
ment speed, movement amplitude, movement smooth-
ness, joint rotation axes, and posture.

Finally, the system is capable of protecting against
overexertion. Regular breaks between the exercise sets
are part of the training session (cf. Fig. 6¢). Thus, the
risk of an overuse injury, which is of specific interest
for users with cardiac disease or functional limitation,
is minimized. In addition, with the respective equip-
ment, an alarm on the cardiac frequency can be pro-
vided.

6. Data collection and motion estimation

In order to accurately evaluate the exercises whilst
being performed, precise body motion estimation is re-

quired in real-time. This section describes how this in-
formation is deduced from the data of wireless inertial
measurement units (IMUs) attached to the user’s body.

6.1. Inertial measurement units (IMUs)

The PAMAP system can make use of up to ten IMUs
carefully positioned on the user’s body to track his or
her movements. In principle, the system works with
any IMUs providing synchronized measurements of
sufficient quality and that have a form factor that al-
lows the user to comfortably wear the sensors. In this
case, sensors have been developed in close coopera-
tion with the company Trivisio®. The resulting IMUs
are wireless (56 x 42 x 17mm, 41 g) and contain a 3-
axis MEMS accelerometer and gyroscope, and a 3-axis
magnetometer, all sampled at 100 Hz.

6.2. Inertial body posture estimation

A drawing of the IMUs in relation to the upper body
model is depicted in Figure 7. The pose and motion

Sy

Shoulder as D

ball and socket joint »
G ‘

IMU pose with
respect to the body

Elbow as
universal joint

Fig. 7. Functional upper body model with indicated IMU placement
(red cubes). The model for the lower body is structured analogously.

of the body are derived from the measured accelera-
tions, angular velocities, and magnetic fields from the
IMUs. These measurements are compared to predic-
tions based on a biomechanical body model. The pose
kinematics are then determined using model based
sensor fusion.

The biomechanical model determines the degrees of
freedom (DOF), and based on this, the set of move-
ments that can be captured. In the context of the pro-

Shttp://www.trivisio.com
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Fig. 8. Schematic of the fixation used on the lower arm and a sensor
closeup.

posed system, the model is a compromise between
simplicity and accuracy: It is detailed enough to pro-
vide accurate data for the exercise evaluation and
movement visualization through the avatar. At the
same time the model is mathematically tractable and
thus enables an efficient real-time estimation. The
complete model is a functional model consisting of ten
rigid bodies (torso, pelvis, upper arms, forearms, upper
legs, and lower legs) connected by anatomically moti-
vated restricted joints. The model is parameterized by
the segment lengths, so that it can be personalized for
the individual subject.

At least one IMU is required at each segment that
should be monitored in order to obtain its complete ori-
entation. To accurately capture the whole body pose,
ten sensors are needed. The sensors are placed as in-
dicated in Figure 7. The positions are chosen with re-
spect to several constraints: it should be unobtrusive
and limit the skin and muscle motion artifacts. There-
fore, IMUs are placed on bones, ligaments, and be-
tween muscles. In order to guarantee convenient usage
and precise data, an easy, fast and repeatable position-
ing of the IMUs on the body is required. Moreover, the
fixation method should neither allow for too many de-
grees of freedom nor be too size-dependent. The pro-
posed solution is based on a modified sports suit. At
the IMU locations, velcro is fastened in order to enable
fixing the sensors to the suit at pre-defined locations,
but with some flexibility in positioning. Elastic silicon
placed onto the other side of the suit under the IMUs
has been added to limit the IMUs’ motions. Moreover,
separate velcro straps made of elastic fabric and ad-
justable in size have been developed to cover the IMUs
and provide additional stability. Fig. 8 shows a close-
up of the final sensor casing and fixation.

To be able to use the IMU measurements to estimate
the body posture, the poses of the sensors, more specif-
ically, their orientations relative to the body segments
must be calibrated. For this, an easy to perform cali-

bration procedure based on IMU measurements taken
under known static poses has been developed (cf. Sec-
tion 5.3.1). The devised procedure requires the user to
bend over and then to stand upright with their arms
and legs straight down and the thumbs and feet for-
ward. The relative orientations are then deduced from
the measured accelerations and magnetic fields.

The estimation of the body posture in terms of joint
angles, angular rates and accelerations is carried out
by a set of nested extended Kalman filters (EKFs) [9].
The configuration of the limbs (arms, legs) and the
trunk segments are each estimated in an individual
EKF. The EKFs are then loosely coupled. The mea-
surement equations are based on forward kinematics
and the functional model presented above. Given the
joint angles from the filter and the model, the body
pose is fully determined. The algorithm is described in
more detail in [21].

7. Data processing

As previously mentioned and depicted in Fig. 3,
exercise evaluation comprises a teach-in mode and a
trainer mode.

The aim of the teach-in mode is a personalized gold
standard that can serve as a reference for one motion
cycle. The idea is to learn this model from correctly
performed example executions. For this, motion data
(according to the user’s abilities) is collected during
the teach-in mode, where the user is supervised by a
physical activity specialist.

In order to provide the functionality of the trainer
mode, the aim is to automatically detect the exercise
repetitions and to accurately evaluate each repetition
based on the respective reference motion.

7.1. Teach-in mode

This section presents a fully automated method to
construct a reference model from a very short train-
ing sequence. Fig. 9 illustrates an example sequence
of forty seconds of a biceps curl exercise. The train-
ing data in terms of recorded joint angles is assumed
to contain a predefined number of exercise repetitions
correctly performed by the user. A Hidden Markov
model (HMM) is used to represent the reference
model. This representation has been chosen for two
reasons: Firstly, it naturally takes variations in mo-
tion into account by allowing for time-warping and
has thus been successfully applied in domains such
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Fig. 9. Training signal for a biceps curl exercise: The five graphs
show the measured joint angles in terms of Euler angles of the right
arm during a guided training session. The best motif candidate (red)
and its occurrences (green) are marked.

as speech [20], gesture [12], or handwriting recogni-
tion [8]. Secondly, standard algorithms, such as the
Viterbi algorithm [20], can be used for segmentation.
The proposed method for model generation consists
of two steps: The first step automatically detects can-
didates for the recurring motion cycles in the training
sequence. The second step uses the detected motion
cycles to construct the model.

7.1.1. Candidate detection

The problem of locating patterns in real-valued,
multivariate time series is a known problem and sev-
eral approaches have been proposed [16,17]. However,
all of these methods are based on a predefined window
size. Here, the windows size is equivalent to the time
needed to execute one exercise repetition. Since the ex-
ecution time is unknown, the first step is to estimate a
suitable window size. Based on the assumption that the
exercise repetitions during the teach-in mode are per-
formed consecutively with roughly the same speed, a
dominant frequency will be present in the signal. This
can be extracted using the combined power spectral
density (PSD) [34]. The window size is then initialized
as the period of the dominant frequency. Based on this
preprocessing step, an extended version of [16] is then
parameterized with the window size to detect the ref-
erence motion candidates. The best candidate is eval-
uated and chosen as final result. Fig. 9 illustrates an
example of a candidate reference motion cycle and its
segmented occurrences in the training signal.

signal (rad)

50 109 150 250 300, 350 400

200
timie (fns)

Fig. 10. Personalized Model: HMM for one channel of the signal.

7.1.2. Model generation

The observation probabilities of the HMM are mod-
eled as Gaussian mixtures. Here, the different channels
(joint angles) are handled separately, so that the sys-
tem is capable of identifying, in which angle a devia-
tion occurs. The reference motion cycles which have
been extracted during the candidate detection are used
as training samples for the model. Since traditional pa-
rameter estimation methods for HMMs, such as the
Baum-Welch algorithm, typically fail when being ap-
plied to too few training examples, a simple construc-
tion algorithm is used to capture the characteristics of
the reference motion. This algorithm builds a HMM
with a left-right topology, which is a wide-spread ap-
proach to model time-varying sequential data. Self-
transitions and skip-transitions are added to allow for
a faster and slower execution of the motion. The num-
ber of hidden states is chosen in relation to the esti-
mated window size. Accordingly, each subsequence is
divided into equal-length adjacent segments, whereas
each segment is assigned to a state. Fig. 10 illustrates
an example model with four states. For each state
a Gaussian mixture is trained using an expectation-
maximization algorithm on all elements of the respec-
tive training set. Thus, each segment is described by a
normal distribution.

7.2. Trainer mode

The trainer mode consists of two phases that build
upon each other. First, the reference model is used to
detect and segment the repetitions while being per-
formed. During this step, deviations from the reference
motion are already identified, but not further character-
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ized. Once, a repetition is completed, the second phase
consists in accurately evaluating the quality of the per-
formed motion cycle according to the evaluation crite-
ria as introduced in Section 3 and further detailed be-
low.

7.2.1. Motion cycle detection

As already stated, the HMMs obtained during the
teach-in mode enable the online detection of the repre-
sented reference motion within continuous motion data
by means of the Viterbi algorithm. In general, the stan-
dard Viterbi algorithm computes the most likely path
of states given a sequence of observations. Here, the
observations are given by the continuous joint angles
as streamed by the data collection component. Thus,
the algorithm can determine, to which state, respec-
tively frame, of the reference motion the current mo-
tion matches. If the probability of the Viterbi algorithm
is below a defined threshold, the current observation is
considered to be not the correct motion. The motion
cycle detection immediately allows for counting ex-
ercise repetitions and deducing their duration. When-
ever a complete motion cycle has been detected, the
detailed evaluation starts.

7.2.2. Motion cycle evaluation

According to the requirements stated in Section 3
and the literature on strength training, it is fundamen-
tal to check that the load of the exercise as well as its
technique are respected in order to ensure effective-
ness and safety. The load of the exercise, the muscles
that work but also the posture taken during the exer-
cise have then to be evaluated. Translating these con-
straints into objective data that are implied in the mea-
surements resulted in the following criteria: For move-
ment load, the exercise intensity is quantified by the
number of repetitions, the movement speed, the move-
ment amplitude, and the movement smoothness. For
the muscles to work, it was chosen to characterize the
axes of rotation. Finally, for safety issues, it was also
chosen to characterize the posture by evaluating fixed
distances or angles that are recommended when per-
forming the movement. This could, for instance, be the
distance between the feet during squat exercises, or the
angle at the pelvis during push-ups.

The number of repetitions and their duration are
given by the motion cycle detection step described
above. For the other criteria, an algorithm has been de-
veloped, which evaluates each detected motion cycle
using the model constructed during the teach-in mode
as reference. The different steps of the algorithms are
the following. First, different fixed angles and dis-
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Fig. 11. Training Mode: The personalized model depicted in Fig. 10
is used to evaluate the signal of one joint angle (a). The detected mo-
tion cycles are evaluated separately. The cycles overlaid with a red
area show a significant deviation from the reference movement (il-
lustrated as dashed red lines), either in amplitude (b) or in the num-
ber of extrema (c). The green area indicates a correctly performed
cycle.

tances that must be respected during the movement
in order to avoid injuries are computed and compared
with those obtained during the movement of reference.
Afterwards, the principal rotation axis is computed for
the current cycle at each joint. The principal rotation
axes are then compared to the ones obtained during
the movement of reference. Using the same formalism,
the rotation amplitudes are also compared. Finally, the
number of extrema (i.e. local maxima or minima) in
the derivative of the joint trajectory (i.e., its velocity)
that has the greatest range of motion during the move-
ment is evaluated and compared in order to determine
movement smoothness. The procedure is illustrated in
Fig. 11. The movement duration manifested in the ve-
locity, the fixed angles and distances and the rotation
amplitudes of the movement to evaluate should not dif-
fer by more than a certain threshold from the reference
model. The principal rotation axes should not deviate
more than a certain threshold from those obtained from
the reference. For the smoothness, the same number of
extrema has to be found, since any other number of ex-
trema translates a deviation and in particular a parasite
movement or a break in the movement realization. If
any of these abovementioned criteria are not met, an
alert is generated and sent to the user interface, which
translates this into explanatory feedback. The motion
cycle evaluation concept is summarized in Fig. 12.
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Constraints Parameters
Safety Posture

Measures
Fixed angles and distances

Thresholds
+ x% of reference value

at/between joints

Load of exercise
tions
Movement velocity

Number of repeti- Number of cycles

Movement duration
Movement amplitude Range of motion from

Same as reference

+ x% of reference value
+ x% of reference value

quaternions at moving joints

Movement smooth- Number of extrema in veloc-

Same as reference

ness ity of most moving joint

Muscles to work Joint rotation axes

Quaternion axes at moving angle deviation, 6, from ref-
joints

erence axis

Fig. 12. Motion cycle evaluation concept: The fixed angles and distances are provided by the clinical staff. The other measures are directly
deduced from the movement of reference. The values x and 6 are parameters of the algorithm.

8. System evaluation

The main focus of this work was on introducing a
novel methodology for being able to monitor both the
load and technique of full-body strength exercises, and
to implement this methodology in a personal trainer
user interface, which should help older adults, healthy
or with disabilities, to exercise safely and correctly in
a home-based environment. Accordingly, this section
describes technical evaluation results concerning the
feasibility and performance of the proposed monitor-
ing methodology, as well as, quantitative and qualita-
tive results concerning the usability and acceptance of
the proposed system in ageing people, assessed within
a clinical assay.

8.1. Technical evaluation

The goal of this technical study is to assess the per-
formance of the integrated personalized exercise moni-
toring system, as described in Sections 6 and 7 with re-
spect to capturing, detecting and evaluating motion cy-
cles of previously learnt exercises. For a detailed eval-
uation of the inertial body motion tracking, the reader
is referred to [6].

8.1.1. Participants

Seven participants took part in this study: five males
and two females. They were mainly employees or stu-
dents at research institutes or universities, age 27.5 +
5.30 years and were more or less physically active.

8.1.2. Materials

The participants’ movements were captured using
the inertial motion capture system as described in Sec-
tion 6. Here, one sensor was placed on each segment
of the upper-extremities, namely, on each forearm, on

each upper arm, on the upper-torso, and on the pelvis
as indicated on Fig. 7.

8.1.3. Procedure

The participants performed eight strength training
exercises typical in cardiac patients’ rehabilitation.
Only upper-extremity exercises were considered, since
they generally exhibit a greater variation in the am-
plitude and joints to work and since they are gener-
ally less familiar to beginners. The number of series
and the posture to respect (e.g. the back should be
straight) were those described by the exercise program.
For each exercise, the participants performed a first se-
ries under the supervision of a physical activity teacher
involved in the study. This series was used to gener-
ate the reference model. During the other series, the
participants could freely choose to respect the number
of repetitions and the recommendations provided by
the rehabilitation program or to modify their posture,
the movement range of motion, the speed, the rhythm,
and/or the number of repetitions. The motion cycle de-
tection and evaluation algorithms were then applied to
each series of exercise. The tolerances for detecting in-
correct movements were initially set to 20 percent for
the movement speed, amplitude and posture. For the
rotation axes, an angle deviation of 20° was accepted.
A physical activity teacher annotated the movements
for the ground truth.

8.1.4. Results and discussion

Fig. 13 presents the confusion matrix of the exercise
evaluation obtained with the above mentioned toler-
ances. For the number of repetitions and the velocity of
each movement for each exercise the algorithm shows
good correspondence with the human annotations. For
the other parameters, satisfactory results could be ob-
tained when the tolerance between the movement of
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Fig. 13. Confusion matrix of the exercise evaluation in percentage
when tolerating a deviation of 20% and 20° from the movement of
reference. The ground truth annotations were provided by a physical
activity teacher involved in the study. The abbreviations are accord-
ing to the evaluation parameters in Section 7.2.2: number of repe-
titions (rep.), movement speed (vel.), movement amplitude (rom.),
movement smoothness (smo.), axes of rotation (rot.) and posture
(pos.). Here, each line adds up to 100%. The entries on the diagonal
show the % of correct classifications in each category, while the of-
f-diagonal entries show the % of misclassifications, given the above
mentioned parameter settings. As an example for the first row: 81%
of the executions annotated as correctly executed were also classified
as correctly executed by the algorithm, while 9% of the executions
annotated as correctly executed were misclassified by the algorithm
as either not adhering the velocity (1%), or not adhering the range
of motion (6%) and so on.

reference and that actually evaluated was increased.
The algorithm was indeed less tolerant to deviations
from the movement of reference than the physical ac-
tivity teacher. With a threshold of 30 percent for the
movement speed, amplitude and posture and a toler-
ance of 30° for the joint rotation axes, only the move-
ments that looked incorrect to the examiner were also
detected as being incorrect by the algorithm. While
these results prove the feasibility of the proposed algo-
rithms, they also indicate the necessity to further inves-
tigate the thresholds chosen for detecting and classify-
ing incorrect motions. The thresholds might be a func-
tion of the subjects and the movements to evaluate. A
too strict evaluation should be avoided, since it might
discourage or disturb the participant more than being
of help.

8.2. Clinical study

This section outlines the clinical assay of the final
PAMAP system in terms of design, conduction and re-
sults. Here, the focus was on the overall acceptance
and usability of the system for the target group of age-
ing people.

8.2.1. Participants

The trials population was chosen to be representa-
tive of the ageing general population (from the point
of view of usual diseases or functional limitations ob-
served in elderly population) for whom a regular phys-
ical activity practice was possible and highly recom-
mended for maintaining health and preventing disease
complications. Hence, a mixture of healthy partici-
pants and people showing current chronic diseases was
focused. Altogether, 30 French participants (recruited
in sports associations, fitness centers, a cardiovascu-
lar prevention department and a functional rehabili-
tation department) completed the study. Ages ranged
from 60 to 85 (mean 69.17 £+ 6.77 years). Among
these, ten participants, three women and seven men,
aged 67.2 £ 5.1 years were healthy, ten participants,
three women and seven men, aged 68.7 £ 6.5 years
suffered from cardiovascular disease, and ten partici-
pants, six women and four men, aged 71.6 £ 8.3 years
had functional limitations. All participants had normal
or corrected-to-normal vision and 19 participants have
already used a game console like Nintendo’s Wii or
Sony’s PS3 with motion tracking.

8.2.2. Materials

The participants’ movements were captured using
the inertial motion capture system as described in Sec-
tion 6. Here, ten IMUs were used, one on each segment
of the upper and lower extremities. Five sizes of sports
suits allowed choosing the best size for each individ-
ual, both for males and females (cf. Fig. 15, left).

8.2.3. Procedure

The study was organized in supervised sessions over
nine days. Each day three to four of the overall 30 par-
ticipants came to the medicine department for testing
the personal exercise trainer over approximately two
hours (from arrival to departure).

Each participant had to perform eight strength ex-
ercises. Among these eight exercises, three were per-
formed by all participants, whereas five were specific
to each group (healthy participants, cardiovascular dis-
ease group, functionally disabled group). In addition,
the group of functionally disabled participants was di-
vided into functionally disabled with respect to up-
per or lower body. These four individualized training
sessions had been prepared by the clinical partner in-
volved in the PAMAP project and could be selected via
the PAMAP user interface (cf. Fig. 14).

The protocol consisted of three phases: (1) a teach-
in phase, where all exercises were performed once
under human coach supervision; (2) a familiarization



Bleser et al. / A personalized exercise trainer for the elderly 13

Welcome to the Digital Fithess-Coach

pamap

« o @

Calibration Cardio Vascular Subjects

3D-View Upper Body Exercises

Healthy Subjects

Lower Body Exercises

Upper Body Functional Lower Body Functional

Right Arm Curl Left Arm Curl

Fig. 14. Part of the welcome screen of the strength exercise trainer system indicating the different functionalities and exercise programs. The

user interface is available in three languages: French, English and German.

procedure, where the participant could interact with
the PAMAP user interface through the remote control,
watch a tutorial video and try out the different func-
tionalities (cf. Fig. 15, middle); (3) the measurement
phase, where the participant was guided through the
calibration and then through his/her individual training
session (cf. Fig. 15, right).

This last phase was again divided into two sub-
phases: (3a) a semi-automatic mode, where five ex-
ercise were performed without any feedback related
to the quality of the movement; (3b) a full automatic
mode, where three exercises were fully guided by the
PAMAP system based on the exercise monitoring algo-
rithms presented in Section 7.

Bla_ W

The semi-automatic phase was used to evaluate the
ease with which the participant interacted with the
PAMAP system and performed the exercise program.
The automatic phase was used to test the developed
movement evaluation algorithm (see [33] for detailed
results) and to evaluate the acceptance of such ex-
tended functionalities among the participants. The hu-
man coach and two system engineers were present all
along the session without intervening after the teach-in
mode. At the end of the training session, the participant
filled in a questionnaire related to the PAMAP system.
The questionnaire contained questions on the partici-
pants’ general impression of the interface, its usabil-
ity and its suitability to the task, provided on a 7-item
Likert scale. Here, a value of one represents a strong

Fig. 15. Clinical study. Left: sports suit with attached IMUs (indicated by red circles); middle: a participant watching the tutorial video on the TV
screen during the familiarization procedure; right: a participant performing her exercise program while being guided by the proposed strength

exercise trainer system.
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disagreement and a value of seven a strong agreement
with the given statement. Moreover, the participant
was invited to describe his or her thoughts about the
guided exercise session, with the advantages and limits
of the system. The preparation and conduction of the
clinical assay is described in more detail in [30].

8.2.4. Results and Discussion

The results of the user study including question-
naires, observations and interviews are summarized in
the following.

Before the experimental procedure started, many
participants showed some apprehension, fearing that
they would not manage the new technology. How-
ever, after a short demonstration and the familiariza-
tion phase including the video tutorial, all participants
were able to use the PAMAP system without help. They
found the system easy to interact with and the instruc-
tions they were given easy to understand. This fact also
reflects in the questionnaire regarding ease-of-learning
(mean 6.1 + 0.759), ease-of-use (mean 6.2 4+ 0.961)
and clarity of the user interface (mean 6.5 £ 0.731).

Concerning the PAMAP system idea in general, the
participants found it useful to train at home follow-
ing the prescription of a professional sports coach or
physician. Only one participant answered that it was
far from likely to use the PAMAP system in everyday
life. In general, the participants were in favor of us-
ing such technology on a regular basis (mean 5.1 +
1.78). They also appreciated the possibility for health
care professionals to be informed about their sessions
and the quality of their movements. This functionality
is provided by the data management component of the
PAMAP system (cf- Section 4.1).

Concerning the data presentation during exercise
execution, the evaluation of the questionnaires showed
that all information was presented clearly, legibly, and
comprehensibly regarding vision (mean 6.63 + 0.556)
and audio (mean 6.47 4+ 0.776). However, the size
of the tutorial pictures explaining the exercises should
be increased, since it was observed that some partic-
ipants approached the screen when looking at them.
The human coach also observed that, during some ex-
ercises, the participants tended to hold their breath
or did not breathe in agreement with the movement.
Hence, videos could also be used to explain the correct
breathing or additional sensors could be added to su-
pervise the breathing and provide real-time feedback.

In general, despite initial doubts, all participants en-
joyed the technology and were very interested in see-
ing their avatar move on the TV screen. They consid-

ered this as a nice aid for correcting their posture ac-
curately and in real-time in order to avoid injuries. In
particular, the automatic mode, with its counting of
the repetitions, switching automatically from one exer-
cise to the next and providing feedback, when a move-
ment was incorrectly performed, was fully appreciated
and helped the participants to correct their movements.
Moreover, all participants were pleasantly surprised by
the encouragements given by the system through mo-
tivating feedback after each exercise and at the end of
the session.

Some valuable suggestions for enhancing the PAMAP
system were also contributed by both the participants
and the involved health care professionals. The videos
and pictures explaining the exercises could show the
movements from different perspectives, e.g. a frontal
and lateral perspective, in order to improve the under-
standing.

Some participants wished further possibilities for
personalization, e.g. choosing or setting up their own
avatar (in addition to choosing between a male or fe-
male avatar) and configuring the visualization on the
TV screen (mirrored vs. non-mirrored perspective).

Different levels of instructions (e.g. beginner, ad-
vanced, expert) were also proposed in order to provide
an interface adapted to the physical activity practice
and familiarization of the user with the system.

9. Conclusion and future work

This article has presented the PAMAP system, a
powerful platform for promoting home-based physical
activity adapted to the elderly population. While pro-
viding a short overview of the overall system and its
functionalities, the article focuses on the special use
case of the system as a personalized strength exercise
trainer. This digital trainer helps the user at home to
follow his or her exercise program, to perform the ex-
ercises correctly, and to stay involved in the practice of
physical activity. The user interface has been specifi-
cally designed for older adults with little or no com-
puter experience. In order to provide instant feedback
during exercising, a novel methodology for capturing
and monitoring full-body strength exercises by means
of a wearable sensor network has been proposed. The
method evaluates the exercise load as well as the tech-
nique whilst taking into account the individual char-
acteristics and goals of the user. This is achieved by
means of a supervised teach-in mode, which enables
the system to learn personalized gold standard mo-
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tions. At the same time, this technique reduces the de-
pendency of the system on a fixed selection of exer-
cises, since arbitrary motion sequences can be defined
as exercises.

The feasibility and the usability of the system have
been evaluated in technical studies and a clinical as-
say showing promising results in both the potential of
the novel technology and the acceptance among the el-
derly population. Indeed, the clinical assay showed a
real interest and appreciation of the proposed technol-
ogy among the elderly.

Based on these positive results, the PAMAP system
is currently further developed, taking into account the
feedback and experiences from the evaluation phases,
as well as, the latest developments in terms of avail-
able miniaturized sensory devices. Another part of fu-
ture work consists in the enhancement of the motion
cycle segmentation and evaluation algorithms includ-
ing automatic data-driven parameter selection in or-
der to ease the usability for health care profession-
als and achieve good detection and classification re-
sults. A further interesting extension of the motion cy-
cle evaluation would be a continuous adaptation of the
reference models to the performance and progress of
the user, thus avoiding the need for a repeated teach-
in mode, which is currently necessary. However, for
safety issues, regular medical checkups and reference
model teach-in under supervision of a physician would
still be necessary in the case of patients. Finally, be-
sides the envisaged technical improvements of both
the monitoring methodology and the user interface, an
important aspect of future work will be to investigate
ways to maintain and increase long-term motivation of
the elderly to stay involved in physical activity prac-
tice. Here, we will focus on the design of digital games
for elderly to encourage usage of the developed plat-
form and by this improve their level of physical activ-

ity.
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