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The Configuration

Q_ : a conducting body (o > 0)

Q. : adielectric medium

c: acorner

w € (0,27) : the angle of the corner

We describe the Magnetic potential in the vicinity of the corner ¢ .



The Magnetic Potential

The eddy-current problem

The magnetic vector potential A satisfies
—AA” +4iPA” =0inQ_,
—AA+ = /.LoJ in Q+,
At =oonT,

[A]): =0, on Z,
[0,A]y =0, on X.

Here (% = Koo /4 > 0,
J : a smooth data, vanishing near the corner c.
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The Magnetic Potential

The eddy-current problem

The magnetic vector potential A satisfies
—AA™ +4iPA =0inQ_,
—AA+ = /.LoJ in Q+,
At =oonT,

[A]Z =0, on 27
[0,A]y =0, on X.

Here (% = Koo /4 > 0,
J : a smooth data, vanishing near the corner c.

Proposition

There exists a unique solution A in H} () to problem (1). Moreover, A
5_. . 10

belongs to Hz () for any & > 0. In particular, A belongs to C'(2).

A possesses a corner asymptotic expansion near c.



Corner Asymptotics

@ To generalize the Taylor Expansion
@ Corner Asymptotics involve

@ The singular functions (primal and dual) :
belong to the kernel of the considered operator in IR?.
@ The singular coefficients :
its calculation requires the knowledge of dual singular functions.

Aim : To explicit the Corner Asymptotics of .4 near the corner c.
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@ The limit problem in large frequency/high conductivity :

—AA(—)’— = MoJ in Q+,
Af =00n0Q,.

Q4

e IfQ_ has a convex corner, i.e. w € (0, ), Problem (2) has non C’
singularities

@ Problem (1) has C' singularities
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@ Whend = 2_ < 1, there holds

\/ Koo
As ~ Ay + a(S“"v(é) +Rs .
Here V is a profile defined in R? such that
—AV+2ivlg =0 nearc,
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Motivation : Multi-scale analysis for eddy-currents

[3 BURET et al (IEEE Trans. on Mag. '12)
Eddy currents and corner singularities

@ Whend = 2_ < 1, there holds

\/ Koo
As ~ Ay + aa‘“"v(é) +Rs .
Here V is a profile defined in R? such that
—AV+2ivlg =0 nearc,

— ™
and o = ;—-.

= The knowledge of the singularities of — /A + 4iC* 1 _ is "crucial”.
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The considered operator is

—A+ koo inQ_,

—A—i-ilﬁ),ugO']].Q_z{ A -
_ .

The singularities are generated by the term i [0 1q .
— the derivation of the Corner Asymptotics is not obvious.
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Our Reference

@ M. DAUGE et al (To appear in MMAS - INRIA RR 8204)
Corner asymptotics of the magnetic potential in the eddy-current model

o A possesses a corner asymptotic expansion

A(r,8) ~ A0S 0)+ ) Y NPSH(r0),

k=1 pefo,1}

(r,0) : polar coordinates centered at ¢
GKP : primal singular functions
NKP : singular coefficients

@ We provide a constructive procedure to determine the primal and dual
singularities

@ We generalize the method of moments and we introduce the method of
quasi-dual functions to determine A*-*



Outline

Q@ Thecase( =0:
We introduce the method of moments and the method of dual functions.

© Thecase( #0:
We provide a constructive procedure to determine the singularities.
We introduce the method of quasi-dual singular functions.

© Numerical simulations



Laplace Operator (( = 0)

@ We consider the solution A to

A=0onT

@ A admits the Taylor expansion at ¢ :

A(r,8) ~, A + Z Z NP K cos(kf—pr /2)
r —_—

k=1 pefo,1} —a0(1,0)

5P : harmonic polynomials



We use dual harmonic functions :

1
——logr, if k=0, p=0,
Ek,p(r, 0) _ 1271’
Py r~*cos(kf—pm/2), if k=1, p=0,1.

@ The method of moments

@ The dual function method



For R > 0, we introduce the form Mg :

Mg(K,A) = l,:,/ K ARdS.

r=R

Assume J has a support outside the ball 5(c, R).

Let A be the solution to the Laplace equation. Then

’
Mg(1,A) = 27A\%° and Mgp(¥*, A) = ” NP k=1, p=0,1.




The Dual Function Method

@ V.G. MAZ’YA, B.A. PLAMENEVSKII (Amer. Math. Soc. Trans. (2) ’84)
On the coefficients in the asymptotic of solutions of the elliptic boundary
problem in domains with conical points

@ For R > 0, let us introduce the bilinear form

Jr(K, A) :/ (KO,A — O,K A) Rdf.

r=R

Proposition

Let A be the solution to the Laplace equation. Then

Ta(B°, A) = A°° and Jp(¥*, A) = AP, k=1, p=0,1.




The singularities

The singularities 4l of —A + 4i(2 1s_ :

—A+4iC?U =0 inS_,
—Ail =0 in 8+.
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Description of the Singularities

[ V.A. KONDRATEV (Trudy Moskov. Mat. Ob$¢. '67)

Boundary value problems for elliptic equations in domains with conical or

angular points
°
U= Up + 1<2 / u;
| ;( Y o
leading part  'Z shadow
@ We solve
AUO = O, AU1 = 4UO ]137, ceey Auj = 4uj71 ]]‘877

w € 8 =Span{ rtlog?r d(0), geN, ¢ e CY(T), d* € C*°(T2)
]

Here \ € Z, o
T=R/(2rZ), T- = (—w/2, w/2)and T; =T\ T_.



Existence of the shadows

Lemma
Let \ € 7Z and§ € T 2. Then, there exists u € S* such that Au = .
Moreover

(i) If\ € Z\ {0}, degu < degf + 1,

(i) If\ =0,degu < degf+ 2.

Here,
A = Span {r)‘ log?rW(0), g€N, Ve l*T), vE ¢ COO(Ti)} .

The degree of g is its degree as polynomial of log r.



Proof of Lemma

Q M. Dauge Elliptic Boundary Value Problems in Corner Domains —
Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics,
Vol. 1341, Berlin 1988

We introduce the Mellin symbol .# associated with A

M(p) = (u* +55), 0 € T.

Setting
deg f
f= Z P 2log?r W, € T2,
q=0
and
deg f PR
U = Res {r“//l -t '7(’} e s,
=X () ; (1 — Aot

we check that Au = f.



Primal and Dual Singularities

@ Primal singular functions & belong to H'in any bounded neighborhood
Bofe.

@ Dual singular functions & do not belong to H'insucha neighborhood 5.

The functions £ are needed for the determination of the coefficients /\ involved
in the asymptotics.



1. A basis for Primal Singularities
For (k, p) = (0,0) and for (k, p) € N* x {0, 1},

K,p K,p 2 7P
6P = s +Z ic?Y s

) i>1
leading part iz shadow

Lemma

Foranyj > 1, there exists 5,’-("J € S with deg 5]'-("’ < j, satisfying

AsP

J —45 ]lg

Application : A(r, 6) ~, AO’OGO’O(r,9)+Z Z NPS P(r, 0)

k=1 pe{o0,1}



For (k, p) = (0,0) and for (k, p) € N* x {0, 1},

ko __ K, 2 )
RP = ghe +Zlg)f e

, >
leading part /21 shadow

Forany j > 1, there exists ﬁj'-(’p € S with deg Ej'-(’p < j+ 1, satisfying

AP =2t 1s




3. The Quasi-Dual Function Method

o [ M. CoSTABEL et al (SIAM '04)
A quasidual function method for extracting edge stress intensity
functions

@ S. SHANNON et al (Preprint '12)
Extracting generalized edge flux intensity functions by the quasidual
function method along circular 3-D edges

. . K,
@ We use quasi-dual functions Rmp

kp_Ek,p_i_Z ICZ E]vp

shadow



The Quasi-Dual Function Method

Extraction of coefficients

Theorem

Let A be the solution to problem (1). Letk € N andp € {0,1} (p =0 if
k = 0). Then for all m such that2m + 2 > k,

[k/2]
Ta(85P, A) = NP+ > gheikhepk2tie 4 O(RTFRI™ 2 10g R),
=1

where| Ry = CR(1+ /| log R|) |




The Quasi-Dual Function Method

Examples
e Fork =10
0,0 __ 0,0 212
[ o Jr(R,), A) + O(R; ™" log R)
e Fork =1

O = (832, 4) + O(A A1)
R—0
® Fork =2, weneed m > 1

/\2,0 — jﬁ(ﬁ%o,fl) - j2,0§0,0/\0,0 + O(R*ZHS log R)

R—0




The Quasi-Dual Function Method

Key for the Proof of Theorem

o . Lk
We use quasi-primal singularities & p;” :

m
Gl;nvp = 5k,p —+ Z(lé‘z)/ 5]/'(7[)
j=1 ~~~

shadow

Fore € (0, R), we evaluate

Ta(8E,65)) — T(8Y,65) = O(R™*¥ B2 10g R)

R—0

with any chosen k' and m > m.



4. Calculation of singularities

e [ M. CosTABEL, M. DAUGE (Math. Nachr. '93)
Construction of corner singularities for Agmon-Douglis-Nirenberg
elliptic systems.
We use appropriate complex variables z+ instead of the polar
coordinates :
z_=z(whenz € S_)andzy = —z (whenz € Sy)

@ We use an Ansatz involving only integer powers of

zZy ,Z+ ,logzy ,and log zy .



The first shadow of primal singularities

. 0,0
Example : expression of 5,

sinw cos w cos 20
s7°(r,0) = rz(logr cos 20 — fsin 29) + 7 (1 - f) inS_
T
0.0 sinw ) , Cosw cos26
sy (r,0) = r°( logr cos20 — 0y sin20) +r° ———— in Sy
T

withf, =0 — msgnf



The first shadow of primal singularities
Example : Expression of 5} &

2sinw —+ sin 2w
51700; ) = B — r3<|ogr cos 30 — 95in30)
T
cos  cosw cos 30
+f3< - ), in S_
2 3
2sinw + sin2w
51’0(ﬂ 0) = B — rs(logr cos 360 — 04 sin 30>
T

5 €os 2w cos 30
5y —

5 , in S+



o  : disk of radius 50 mm

@ Conducting sector : w = /4
o ( =1/(5y/2) mm™"

@ Source: AT = % on OQ

—



We plot the real part and the imaginary part of the FE solution.

az(01) az(11)

00111

: 05 X . 0.00107
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Accuracy for the computation of /\°" as a function of R

@ There holds
0,0 __ 0,0 2-+2m
A o Jr(R,", A)+ O(R; ™" log R) .

o We plot | Jr(£7°,.A) — Alc|/|Alc| as a function of R (m = 0, 1).

— T — T — T
1072 a
1074 a
1078 | .
—~— m=20
1078 --- RSlog(R) |
—x— m=1
10— 10| ”*Hé‘log('?) il
Lol | Lo il 1 L L iiiil
104 1073 1072

Radius R .



Accuracy for the computation of /\'" as a function of R

@ Recall that

NO = Ta(R0,A) + O( ).

o We plot | Tn(85°, A) — T (R, A)| /|7 (81°. A).

100 meame
10—1% | -
10_2% =
10*3% =
-
[ —~—m=0 [
10 AR
el ——m=1 [
B T T

Radius R



Comparison of the FE solution and of the local expansion

In the expansion, we collect the terms which behave as constant, r, r? and
r’logr.

A~ Ta (87 A) (1 +1¢%60°) + Ta (877, A)s"
+ (T (R7°, A) — T2 T, (R7°, A)) 57°

ax Xorner az(1/1) a_rmax_comer_r2 (1/1)
Qi1 ok 0 LN oo -0.0301 000107
i i

-00n 0244, 00613 00801 000
I \ un i
\



Comparison of the FE solution and of the local expansion
Then we add the terms which behave as r* and r® log r.
A~ Ta (85, A) (1 +iC60°) + T (A7, A) (8™ +iCs1°)+

(Tn (8%, A) = T2 T (R7°, A)) 8+
(T (850, A) — T2 Tp (R]°, A)) 50

a2(1/1) a_rmax_comer_rd (1/1)

00111 0204)
I \\ n



Thank you for your attention
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