Corner Asymptotics of the Magnetic Potential in the Eddy-Current Model

*IRMAR (Rennes), [♥]ACE (Liège), [♦]Ampère (Lyon), [♠]EPI Magique3D & LMAP, UPPA (Pau),
†LAPLACE (Toulouse), [♣]EPI MC2 (Bordeaux)

JSA 2013,

Conférence en l'honneur de Martin Costabel pour ses 65 ans, Rennes, August 26-30.

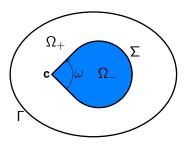
The Configuration

 Ω_- : a conducting body ($\sigma>$ 0)

 Ω_+ : a dielectric medium

c: a corner

 $\omega \in (\mathtt{0},\mathtt{2}\pi)$: the angle of the corner



We describe the Magnetic potential in the vicinity of the corner ${\boldsymbol c}$.

The Magnetic Potential

The eddy-current problem

The magnetic vector potential ${\cal A}$ satisfies

$$\begin{cases} -\Delta \mathcal{A}^- + 4\mathrm{i}\zeta^2 \mathcal{A}^- = 0 \text{ in } \Omega_-, \\ -\Delta \mathcal{A}^+ = \mu_0 J \text{ in } \Omega_+, \\ \mathcal{A}^+ = 0 \text{ on } \Gamma, \end{cases} [\mathcal{A}]_{\Sigma} = 0, \text{ on } \Sigma,$$
 (1)

Here
$$\zeta^2 = \kappa \mu_0 \sigma/4 > 0$$
,

J: a smooth data, vanishing near the corner \mathbf{c} .

The Magnetic Potential

The eddy-current problem

The magnetic vector potential ${\cal A}$ satisfies

$$\begin{cases} -\Delta \mathcal{A}^- + 4\mathrm{i}\zeta^2 \mathcal{A}^- = 0 \text{ in } \Omega_-, \\ -\Delta \mathcal{A}^+ = \mu_0 J \text{ in } \Omega_+, \\ \mathcal{A}^+ = 0 \text{ on } \Gamma, \end{cases} [\mathcal{A}]_{\Sigma} = 0, \text{ on } \Sigma,$$
 (1)

Here
$$\zeta^2 = \kappa \mu_0 \sigma/4 > 0$$
,

J: a smooth data, vanishing near the corner \mathbf{c} .

The Magnetic Potential

The eddy-current problem

The magnetic vector potential ${\cal A}$ satisfies

$$\begin{cases} -\Delta \mathcal{A}^- + 4\mathrm{i}\zeta^2 \mathcal{A}^- = 0 \text{ in } \Omega_-, \\ -\Delta \mathcal{A}^+ = \mu_0 J \text{ in } \Omega_+, \\ \mathcal{A}^+ = 0 \text{ on } \Gamma, \end{cases} [\mathcal{A}]_{\Sigma} = 0, \text{ on } \Sigma,$$
 (1)

Here $\zeta^2 = \kappa \mu_0 \sigma/4 > 0$,

J: a smooth data, vanishing near the corner \mathbf{c} .

Proposition

There exists a unique solution \mathcal{A} in $H^1_0(\Omega)$ to problem (1). Moreover, \mathcal{A} belongs to $H^{\frac{5}{2}-\varepsilon}(\Omega)$ for any $\varepsilon > 0$. In particular, \mathcal{A} belongs to $\mathcal{C}^1(\overline{\Omega})$.

 ${\cal A}$ possesses a corner asymptotic expansion near ${\bf c}$.

Corner Asymptotics

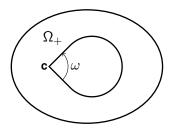
- To generalize the Taylor Expansion
- Corner Asymptotics involve
 - The singular functions (primal and dual): belong to the kernel of the considered operator in \mathbb{R}^2 .
 - The singular coefficients:
 its calculation requires the knowledge of dual singular functions.

 $\operatorname{\mathsf{Aim}}$: To explicit the Corner Asymptotics of $\mathcal A$ near the corner $\mathbf c$.

Motivation: The eddy-current phenomenon

• The limit problem in large frequency/high conductivity:

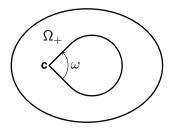
$$\begin{cases} -\Delta \mathcal{A}_0^+ = \mu_0 J \text{ in } \Omega_+, \\ \mathcal{A}_0^+ = 0 \text{ on } \partial \Omega_+. \end{cases}$$
 (2)



Motivation: The eddy-current phenomenon

• The limit problem in large frequency/high conductivity:

$$\begin{cases} -\Delta \mathcal{A}_0^+ = \mu_0 J \text{ in } \Omega_+, \\ \mathcal{A}_0^+ = 0 \text{ on } \partial \Omega_+. \end{cases}$$
 (2)

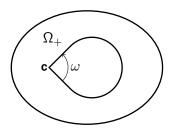


• If Ω_- has a convex corner, i.e. $\omega \in (0, \pi)$, Problem (2) has non \mathcal{C}^1 singularities

Motivation: The eddy-current phenomenon

• The limit problem in large frequency/high conductivity:

$$\begin{cases} -\Delta \mathcal{A}_0^+ = \mu_0 J \text{ in } \Omega_+, \\ \mathcal{A}_0^+ = 0 \text{ on } \partial \Omega_+. \end{cases}$$
 (2)



- If Ω_- has a convex corner, i.e. $\omega \in (0, \pi)$, Problem (2) has non \mathcal{C}^1 singularities
- Problem (1) has C^1 singularities

BURET *et al* (IEEE Trans. on Mag. '12) Eddy currents and corner singularities

- BURET et al (IEEE Trans. on Mag. 12) Eddy currents and corner singularities
 - ullet When $\delta = \sqrt{rac{2}{\kappa \mu_0 \sigma}} \ll$ 1 , there holds

$${\cal A}_\delta pprox {\cal A}_0 + a\, \delta^lpha {}_{m V} (rac{\cdot}{\delta}) + {\it R}_\delta \; .$$

Here V is a *profile* defined in \mathbb{R}^2 such that

$$-\Delta V + 2iV \mathbb{1}_{\Omega_-} = 0$$
 near **c**,

and
$$\alpha = \frac{\pi}{2\pi - \omega}$$
.

- BURET et al (IEEE Trans. on Mag. 12) Eddy currents and corner singularities
 - ullet When $\delta = \sqrt{rac{2}{\kappa \mu_0 \sigma}} \ll$ 1 , there holds

$${\cal A}_\delta pprox {\cal A}_0 + a\, \delta^lpha {}_{m V} (rac{\cdot}{\delta}) + {\it R}_\delta \; .$$

Here V is a *profile* defined in \mathbb{R}^2 such that

$$-\Delta V + 2iV \mathbb{1}_{\Omega_-} = 0$$
 near **c**,

and
$$\alpha = \frac{\pi}{2\pi - \omega}$$
.

- BURET et al (IEEE Trans. on Mag. 12)

 Eddy currents and corner singularities
 - ullet When $\delta = \sqrt{rac{2}{\kappa \mu_0 \sigma}} \ll$ 1 , there holds

Here V is a *profile* defined in \mathbb{R}^2 such that

$$-\Delta V + 2iV \mathbb{1}_{\Omega_-} = 0$$
 near **c**,

and
$$\alpha = \frac{\pi}{2\pi - \omega}$$
.

 \implies The knowledge of the *singularities* of $-\Delta + 4i\zeta^2 \, 1\!\!\! 1_{\Omega_-}$ is "crucial".

Main difficulty

The considered operator is

$$-\Delta+i\kappa\mu_0\sigma\,\mathbbm{1}_{\Omega_-}= \begin{cases} -\Delta+i\kappa\mu_0\sigma & \text{in }\Omega_-,\\ -\Delta & \text{in }\Omega_+. \end{cases}$$

The *singularities* are generated by the term $i\kappa\mu_0\sigma\,\mathbb{1}_{\Omega_-}$.

Main difficulty

The considered operator is

$$-\Delta + i\kappa\mu_0\sigma\,\mathbbm{1}_{\Omega_-} = \begin{cases} -\Delta + i\kappa\mu_0\sigma & \text{in }\Omega_-, \\ -\Delta & \text{in }\Omega_+. \end{cases}$$

The singularities are generated by the term $i\kappa\mu_0\sigma\, 1\hspace{-4.5pt}1_{\Omega_-}$.

 \implies the derivation of the Corner Asymptotics is not obvious.

M. Dauge *et al* (To appear in MMAS - INRIA RR 8204)

Corner asymptotics of the magnetic potential in the eddy-current model

M. DAUGE *et al* (To appear in MMAS - INRIA RR 8204)

Corner asymptotics of the magnetic potential in the eddy-current model

ullet ${\cal A}$ possesses a corner asymptotic expansion

$$\mathcal{A}(r,\theta) \underset{r \to 0}{\sim} \Lambda^{0,0} \mathfrak{S}^{0,0}(r,\theta) + \sum_{k \geqslant 1} \sum_{p \in \{0,1\}} \Lambda^{k,p} \mathfrak{S}^{k,p}(r,\theta),$$

 (r, θ) : polar coordinates centered at ${f c}$

 $\mathfrak{S}^{k,p}$: primal singular functions

 $\Lambda^{k,p}$: singular coefficients

M. DAUGE *et al* (To appear in MMAS - INRIA RR 8204)

Corner asymptotics of the magnetic potential in the eddy-current model

ullet ${\cal A}$ possesses a corner asymptotic expansion

$$\mathcal{A}(r,\theta) \underset{r \to 0}{\sim} \Lambda^{0,0} \mathfrak{S}^{0,0}(r,\theta) + \sum_{k \geqslant 1} \sum_{\rho \in \{0,1\}} \Lambda^{k,\rho} \mathfrak{S}^{k,\rho}(r,\theta),$$

 (r, θ) : polar coordinates centered at **c** $\mathfrak{S}^{k,p}$: primal singular functions

 $\Lambda^{k,p}$: singular coefficients

 We provide a constructive procedure to determine the primal and dual singularities

M. DAUGE *et al* (To appear in MMAS - INRIA RR 8204)

Corner asymptotics of the magnetic potential in the eddy-current model

ullet ${\cal A}$ possesses a corner asymptotic expansion

$$\mathcal{A}(r,\theta) \underset{r \to 0}{\sim} \Lambda^{0,0} \mathfrak{S}^{0,0}(r,\theta) + \sum_{k \geqslant 1} \sum_{\rho \in \{0,1\}} \Lambda^{k,\rho} \mathfrak{S}^{k,\rho}(r,\theta),$$

 (r, θ) : polar coordinates centered at **c** $\mathfrak{S}^{k,p}$: primal singular functions

 $\Lambda^{k,p}$: singular coefficients

- We provide a constructive procedure to determine the primal and dual singularities
- We generalize the method of moments and we introduce the method of quasi-dual functions to determine \(\Lambda^{k,p} \)

Outline

- The case $\zeta=0$: We introduce the method of moments and the method of dual functions.
- ② The case $\zeta \neq 0$:
 We provide a constructive procedure to determine the singularities.
 We introduce the method of quasi-dual singular functions.
- Numerical simulations

Laplace Operator ($\zeta = 0$)

• We consider the solution \mathcal{A} to

$$\begin{cases} -\Delta \mathcal{A} = \mu_0 J \text{ in } \Omega \\ \mathcal{A} = 0 \text{ on } \Gamma \end{cases}$$

• \mathcal{A} admits the Taylor expansion at \mathbf{c} :

$$\mathcal{A}(r,\theta) \underset{r \to 0}{\sim} \Lambda^{0,0} + \sum_{k \geqslant 1} \sum_{p \in \{0,1\}} \Lambda^{k,p} \underbrace{r^k \cos(k\theta - p\pi/2)}_{=\mathfrak{s}^{k,p}(r,\theta)}$$

 $\mathfrak{s}^{k,p}$: harmonic polynomials

Methods to extract the coefficients $\Lambda^{k,p}$

We use dual harmonic functions:

$$\mathfrak{k}^{k,p}(r,\theta) = \begin{cases} -\frac{1}{2\pi} \log r, & \text{if } k = 0, \ p = 0, \\ \frac{1}{2k\pi} r^{-k} \cos(k\theta - p\pi/2), & \text{if } k \geqslant 1, \ p = 0, 1. \end{cases}$$

- The method of moments
- The dual function method

The Method of Moments

For R>0, we introduce the form \mathcal{M}_R :

$$\mathcal{M}_{R}(K,A) = rac{1}{R} \int_{r=R} K \, A \, R \mathrm{d} heta.$$

Assume *J* has a support outside the ball $\mathcal{B}(\mathbf{c}, R)$.

Proposition

Let $\mathcal A$ be the solution to the Laplace equation. Then

$$\mathcal{M}_R(1,\mathcal{A})=2\pi\Lambda^{0,0}$$
 and $\mathcal{M}_R(\mathfrak{k}^{k,p},\mathcal{A})=\frac{1}{2k}\Lambda^{k,p},\ k\geqslant 1,\ p=0,1.$

The Dual Function Method

V.G. MAZ'YA, B.A. PLAMENEVSKII (Amer. Math. Soc. Trans. (2) ⁷84) On the coefficients in the asymptotic of solutions of the elliptic boundary problem in domains with conical points

• For R > 0, let us introduce the bilinear form

$$\mathcal{J}_{R}(K, A) = \int_{r=R} (K \partial_{r} A - \partial_{r} K A) R d\theta.$$

Proposition

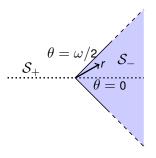
Let ${\mathcal A}$ be the solution to the Laplace equation. Then

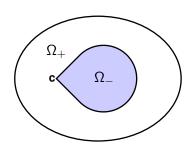
$$\mathcal{J}_R(\mathfrak{k}^{0,0},\mathcal{A}) = \Lambda^{0,0}$$
 and $\mathcal{J}_R(\mathfrak{k}^{k,p},\mathcal{A}) = \Lambda^{k,p}, \ k \geqslant 1, \ p = 0,1.$

The singularities

The singularities $\mathfrak U$ of $-\Delta + 4\mathrm{i}\zeta^2\,\mathbb 1_{\mathcal S_-}$:

$$\begin{cases} -\Delta\mathfrak{U} + 4\mathrm{i}\zeta^2\mathfrak{U} = 0 & \text{ in } \mathcal{S}_-, \\ -\Delta\mathfrak{U} = 0 & \text{ in } \mathcal{S}_+. \end{cases}$$





Description of the Singularities

V.A. KONDRATEV (Trudy Moskov. Mat. Obšč. '67)

Boundary value problems for elliptic equations in domains with conical or angular points

Description of the Singularities

V.A. KONDRATEV (Trudy Moskov. Mat. Obšč. '67)

Boundary value problems for elliptic equations in domains with conical or angular points

a

$$\mathfrak{U} = \underbrace{\mathfrak{u}_0}_{\text{leading part}} + \sum_{j \geqslant 1} (\mathrm{i}\zeta^2)^j \underbrace{\mathfrak{u}_j}_{\text{shadow}},$$

Description of the Singularities

V.A. KONDRATEV (Trudy Moskov. Mat. Obšč. [']67)

Boundary value problems for elliptic equations in domains with conical or angular points

a

$$\mathfrak{U} = \underbrace{\mathfrak{u}_0}_{\text{leading part}} + \sum_{j\geqslant 1} (\mathrm{i}\zeta^2)^j \underbrace{\mathfrak{u}_j}_{\text{shadow}},$$

We solve

$$\Delta\mathfrak{u}_0=0, \quad \Delta\mathfrak{u}_1=4\mathfrak{u}_0\,\mathbb{1}_{\mathcal{S}_-}, \quad \dots, \quad \Delta\mathfrak{u}_j=4\mathfrak{u}_{j-1}\,\mathbb{1}_{\mathcal{S}_-},$$

$$\mathfrak{u}_j \in \mathsf{S}^\lambda = \mathsf{Span}\left\{r^\lambda \log^q r\, \Phi(\theta), \quad q \in \mathbb{N}, \ \Phi \in \mathcal{C}^1(\mathbb{T}), \ \Phi^\pm \in \mathcal{C}^\infty(\overline{\mathbb{T}}_\pm)\right\}$$
 Here $\lambda \in \mathbb{Z}$.

$$\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z}), \mathbb{T}_-=(-\omega/2,\,\omega/2)$$
 and $\mathbb{T}_+=\mathbb{T}\setminus\overline{\mathbb{T}_-}.$

Existence of the shadows

Lemma

Let $\lambda \in \mathbb{Z}$ and $\mathfrak{f} \in \mathsf{T}^{\lambda-2}$. Then, there exists $\mathfrak{u} \in \mathsf{S}^{\lambda}$ such that $\Delta \mathfrak{u} = \mathfrak{f}$. Moreover

- (i) If $\lambda \in \mathbb{Z} \setminus \{0\}$, $\deg \mathfrak{u} \leqslant \deg \mathfrak{f} + 1$,
- (ii) If $\lambda = 0$, $\deg \mathfrak{u} \leqslant \deg \mathfrak{f} + 2$.

Here,

$$\mathsf{T}^{\lambda} = \mathsf{Span} \left\{ r^{\lambda} \log^q r \, \Psi(\theta), \quad q \in \mathbb{N}, \; \; \underline{\Psi} \in \mathit{L}^2(\overline{\mathbb{T}}), \; \underline{\Psi}^{\pm} \in \mathcal{C}^{\infty}(\overline{\mathbb{T}}_{\pm}) \right\}.$$

The degree of \mathfrak{g} is its degree as polynomial of log r.

Proof of Lemma

M. Dauge Elliptic Boundary Value Problems in Corner Domains — Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, Vol. 1341. Berlin 1988

We introduce the *Mellin symbol* ${\mathscr M}$ associated with Δ

$$\mathcal{M}(\mu) = (\mu^2 + \partial_{\theta}^2), \ \theta \in \mathbb{T}.$$

Setting

$$\mathfrak{f} = \sum_{q=0}^{\deg \mathfrak{f}} r^{\lambda-2} \log^q \! r \, \Psi_q \in \mathbf{T}^{\lambda-2} \, ,$$

and

$$\mathfrak{u} = \mathop{\mathsf{Res}}_{\mu = \lambda} \left\{ r^{\mu} \mathscr{M}(\mu)^{-1} \sum_{q=0}^{\mathsf{deg}\,\mathfrak{f}} \frac{q!\,\Psi_q}{(\mu - \lambda)^{q+1}} \right\} \in \mathbf{S}^{\boldsymbol{\lambda}}\,,$$

we check that $\Delta \mathfrak{u} = \mathfrak{f}$.

Primal and Dual Singularities

- *Primal singular functions* \mathfrak{S} belong to H^1 in any bounded neighborhood \mathcal{B} of \mathbf{c} .
- Dual singular functions \Re do not belong to H^1 in such a neighborhood \mathcal{B} .

The functions \Re are needed for the determination of the coefficients Λ involved in the asymptotics.

1. A basis for Primal Singularities

For
$$(k,p)=(0,0)$$
 and for $(k,p)\in\mathbb{N}^*\times\{0,1\}$,
$$\mathfrak{S}^{k,p}=\underbrace{\mathfrak{s}^{k,p}}_{\textit{leading part}}+\sum_{j\geqslant 1}(\mathrm{i}\zeta^2)^j\underbrace{\mathfrak{s}^{k,p}_j}_{\textit{shadow}}.$$

Lemma

For any $j\geqslant 1$, there exists $\mathfrak{s}_{j}^{k,p}\in \mathbb{S}^{k+2j}$, with $\deg \mathfrak{s}_{j}^{k,p}\leqslant j$, satisfying

$$\Delta \mathfrak{s}_{j}^{k,p} = 4 \mathfrak{s}_{j-1}^{k,p} \, \mathbb{1}_{\mathcal{S}_{-}} \,.$$

Application:
$$\mathcal{A}(r,\theta) \underset{r \to 0}{\sim} \Lambda^{0,0} \mathfrak{S}^{0,0}(r,\theta) + \sum_{k \ge 1} \sum_{p \in J_0, 1} \Lambda^{k,p} \mathfrak{S}^{k,p}(r,\theta)$$

2. A basis for Dual Singularities

For
$$(k,p)=(0,0)$$
 and for $(k,p)\in\mathbb{N}^*\times\{0,1\}$,
$$\mathfrak{K}^{k,p}=\underbrace{\mathfrak{k}^{k,p}}_{\textit{leading part}}+\sum_{j\geqslant 1}(\mathrm{i}\zeta^2)^j\underbrace{\mathfrak{k}^{k,p}_j}_{\textit{shadow}}.$$

Lemma

For any $j\geqslant 1$, there exists $\mathfrak{k}_{j}^{k,p}\in \mathbf{S}^{-k+2j}$, with $\deg\mathfrak{k}_{j}^{k,p}\leqslant j+1$, satisfying

$$\Delta \mathfrak{t}_{j}^{k,p} = 4 \mathfrak{t}_{j-1}^{k,p} \, \mathbb{1}_{\mathcal{S}_{-}} .$$

3. The Quasi-Dual Function Method

M. COSTABEL et al (SIAM '04)
 A quasidual function method for extracting edge stress intensity functions

S. SHANNON et al (Preprint '12)

Extracting generalized edge flux intensity functions by the quasidual function method along circular 3-D edges

• We use quasi-dual functions $\mathfrak{K}_{m}^{k,p}$:

$$\mathfrak{K}_{m}^{k,p} = \mathfrak{k}^{k,p} + \sum_{j=1}^{m} (\mathrm{i}\zeta^{2})^{j} \underbrace{\mathfrak{k}_{j}^{k,p}}_{shadow}$$

The Quasi-Dual Function Method

Extraction of coefficients

Theorem

Let \mathcal{A} be the solution to problem (1). Let $k \in \mathbb{N}$ and $p \in \{0, 1\}$ (p = 0) if k = 0. Then for all m such that 2m + 2 > k,

$$\mathcal{J}_{R}(\mathfrak{K}_{m}^{k,p},\mathcal{A}) \underset{R \rightarrow 0}{=} \Lambda^{k,p} + \sum_{\ell=1}^{[k/2]} \mathcal{J}^{k,p\,;\,k-2\ell,p} \Lambda^{k-2\ell,p} + \mathcal{O}(\mathbf{R}^{-k} \mathbf{R}_{0}^{2m+2} \log \mathbf{R})\,,$$

where
$$R_0 = \zeta R \left(1 + \sqrt{|\log R|}\right)$$
.

The Quasi-Dual Function Method

Examples

• For k=0

$$\Lambda^{0,0} \underset{R \to 0}{=} \mathcal{J}_R(\mathfrak{K}_m^{0,0}, \mathcal{A}) + \mathcal{O}(R_0^{2+2m} \log R)$$

• For k=1

$$\textstyle \bigwedge^{1,0} \mathop{=}_{R \to 0} \, \mathcal{J}_R(\mathfrak{K}_m^{1,0},\mathcal{A}) + \mathcal{O}(R^{-1}R_0^{2m+2})$$

• For k = 2, we need $m \ge 1$

$$\Lambda^{2,0} \mathop{=}_{R \to 0} \mathcal{J}_R(\mathfrak{K}^{2,0}_1, \mathcal{A}) - \mathcal{J}^{2,0\,;\,0,0} \Lambda^{0,0} + \mathcal{O}(R^{-2} R_0^4 \log R)$$

The Quasi-Dual Function Method

Key for the Proof of Theorem

We use quasi-primal singularities $\mathfrak{S}_m^{k,p}$:

$$\mathfrak{S}_{m}^{k,p} = \mathfrak{s}^{k,p} + \sum_{j=1}^{m} (\mathrm{i}\zeta^{2})^{j} \underbrace{\mathfrak{s}_{j}^{k,p}}_{\text{shadow}}$$

For $\varepsilon \in (0, R)$, we evaluate

$$\mathcal{J}_{R}(\mathfrak{K}_{m}^{k},\mathfrak{S}_{m'}^{k'})-\mathcal{J}_{\varepsilon}(\mathfrak{K}_{m}^{k},\mathfrak{S}_{m'}^{k'})\underset{R\to 0}{=}\mathcal{O}(R^{-k+k'}R_{0}^{2m+2}\log R)$$

with any chosen k', and $m' \geqslant m$.

4. Calculation of singularities

M. Costabel, M. Dauge (Math. Nachr. '93)
 Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems.

We use appropriate complex variables z_{\pm} instead of the polar coordinates :

$$z_-=z$$
 (when $z\in\mathcal{S}_-$) and $z_+=-z$ (when $z\in\mathcal{S}_+$)

• We use an Ansatz involving only integer powers of

$$\textit{z}_{\pm}\;, \overline{\textit{z}}_{\pm}\;, \log \textit{z}_{\pm}\;, \text{and}\; \log \overline{\textit{z}}_{\pm}\;.$$

The first shadow of primal singularities

Example : expression of $\mathfrak{s}_1^{0,0}$

$$\begin{split} \mathfrak{s}_{1}^{0,0}(r,\theta) &= \frac{\sin\omega}{\pi} \; r^2 \bigg(\log r \, \cos 2\theta - \theta \sin 2\theta \bigg) + r^2 \bigg(1 - \frac{\cos\omega \, \cos 2\theta}{2} \bigg) \quad \text{in } \mathcal{S}_{-} \\ \mathfrak{s}_{1}^{0,0}(r,\theta) &= \frac{\sin\omega}{\pi} \; r^2 \bigg(\log r \, \cos 2\theta - \theta_{+} \sin 2\theta \bigg) + r^2 \, \frac{\cos\omega \, \cos 2\theta}{2} \quad \text{in } \mathcal{S}_{+} \\ \text{with } \theta_{+} &= \theta - \pi \, \text{sgn} \, \theta \end{split}$$

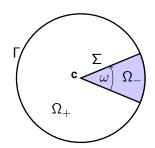
The first shadow of primal singularities

Example : Expression of $\mathfrak{s}_1^{1,0}$

$$\begin{split} \mathfrak{s}_{1}^{1,0}(r,\theta) &= \frac{2\sin\omega + \sin2\omega}{6\pi} \, r^{3} \bigg(\log r \, \cos3\theta - \theta \sin3\theta \bigg) \\ &+ r^{3} \bigg(\frac{\cos\theta}{2} - \frac{\cos\omega \, \cos3\theta}{3} \bigg), \quad \text{in} \quad \mathcal{S}_{-} \\ \mathfrak{s}_{1}^{1,0}(r,\theta) &= \frac{2\sin\omega + \sin2\omega}{6\pi} \, r^{3} \bigg(\log r \, \cos3\theta - \theta_{+} \sin3\theta \bigg) \\ &+ r^{3} \, \frac{\cos2\omega \, \cos3\theta}{6}, \quad \text{in} \quad \mathcal{S}_{+} \end{split}$$

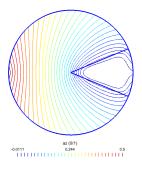
Framework

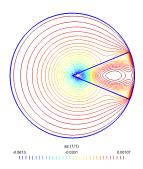
- \bullet Ω : disk of radius 50 mm
- Conducting sector : $\omega = \pi/4$
- $\ \, \zeta = 1/(5\sqrt{2})\,\mathrm{mm}^{-1}$
- ullet Source : $\mathcal{A}^+=rac{| heta|}{2\pi}$ on $\partial\Omega$



Finite Element Solution

We plot the real part and the imaginary part of the FE solution.



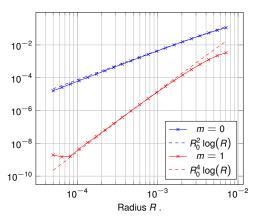


Accuracy for the computation of $\Lambda^{0,0}$ as a function of R

There holds

$$\Lambda^{0,0} = \mathcal{J}_{R}(\mathfrak{K}_{m}^{0,0}, \mathcal{A}) + \mathcal{O}(R_{0}^{2+2m} \log R).$$

• We plot $|\mathcal{J}_R(\mathfrak{K}_m^{0,0},\mathcal{A}) - \mathcal{A}|_{\mathbf{c}}|/|\mathcal{A}|_{\mathbf{c}}|$ as a function of R (m = 0, 1).

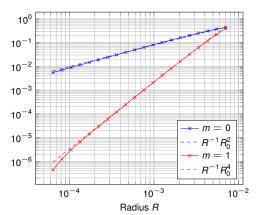


Accuracy for the computation of $\Lambda^{1,0}$ as a function of R

Recall that

$$\Lambda^{1,0} = \mathcal{J}_{R}(\mathfrak{K}_{m}^{1,0}, \mathcal{A}) + \mathcal{O}(R^{-1}R_{0}^{2m+2}).$$

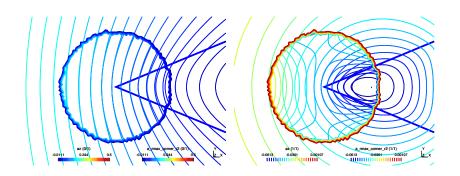
• We plot $|\mathcal{J}_R(\mathfrak{K}_m^{1,0},\mathcal{A}) - \mathcal{J}_{R_s}(\mathfrak{K}_1^{1,0},\mathcal{A})|/|\mathcal{J}_{R_s}(\mathfrak{K}_1^{1,0},\mathcal{A})|$.



Comparison of the FE solution and of the local expansion

In the expansion, we collect the terms which behave as constant, r, r^2 and $r^2 \log r$.

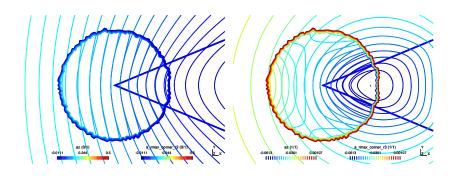
$$\begin{split} \mathcal{A} \underset{r \rightarrow 0}{\sim} & \mathcal{J}_{\textit{R}_{\text{S}}}(\mathfrak{K}^{0,0}_{1},\mathcal{A}) \big(1 + \mathrm{i} \zeta^{2} \mathfrak{s}^{0,0}_{1} \big) + \mathcal{J}_{\textit{R}_{\text{S}}} \big(\mathfrak{K}^{1,0}_{1},\mathcal{A} \big) \mathfrak{s}^{1,0} \\ & + \big(\mathcal{J}_{\textit{R}_{\text{S}}} \big(\mathfrak{K}^{2,0}_{1},\mathcal{A} \big) - \mathcal{J}^{2,0;0,0} \mathcal{J}_{\textit{R}_{\text{S}}} \big(\mathfrak{K}^{0,0}_{1},\mathcal{A} \big) \big) \, \mathfrak{s}^{2,0} \end{split}$$



Comparison of the FE solution and of the local expansion

Then we add the terms which behave as r^3 and $r^3 \log r$.

$$\begin{split} \mathcal{A} \underset{r \to 0}{\sim} & \mathcal{J}_{\textit{R}_{\rm S}}(\mathfrak{K}_{1}^{0,0},\mathcal{A}) \big(1 + \mathrm{i} \zeta^{2} \mathfrak{s}_{1}^{0,0} \big) + \mathcal{J}_{\textit{R}_{\rm S}}(\mathfrak{K}_{1}^{1,0},\mathcal{A}) \big(\mathfrak{s}^{1,0} + \mathrm{i} \zeta^{2} \mathfrak{s}_{1}^{1,0} \big) + \\ & \left(\mathcal{J}_{\textit{R}_{\rm S}}(\mathfrak{K}_{1}^{2,0},\mathcal{A}) - \mathcal{J}^{2,0;0,0} \mathcal{J}_{\textit{R}_{\rm S}}(\mathfrak{K}_{1}^{0,0},\mathcal{A}) \right) \mathfrak{s}^{2,0} + \\ & \left(\mathcal{J}_{\textit{R}_{\rm S}}(\mathfrak{K}_{1}^{3,0},\mathcal{A}) - \mathcal{J}^{3,0;1,0} \mathcal{J}_{\textit{R}_{\rm S}}(\mathfrak{K}_{1}^{1,0},\mathcal{A}) \right) \mathfrak{s}^{3,0} \end{split}$$



Thank you for your attention