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Abstract

Studies of the nonlinear optical (NLO) properties of Group 8 metal alkynyl complexes are 

summarized, with particular focus on results since 2003; structure-NLO property relationships are 

developed, optical nonlinearities of multipolar alkynyl complexes are described, and switching of the 5 

NLO response of molecules and molecular materials derived from Group 8 metal alkynyl complexes is 

discussed. 

Keywords: Acetylide complexes, alkynyl complexes, nonlinear optics, hyperpolarizabilities, quadratic 10 

nonlinearities, cubic nonlinearities. 
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1. Introduction 

When light interacts with materials possessing nonlinear optical (NLO) properties, the incident light 

can be modified (e.g. the phase, frequency, amplitude, polarization, path, etc..., of the incident light can 

all be changed); as a consequence, NLO materials have many possible applications (e.g. optical signal 5 

processing, switching, frequency generation, optical data storage, optical communication, and image 

processing). Due to these possible applications, there has been strong interest in the NLO properties of 

organometallic and/or coordination complexes over the past decade [1-9], amongst which metallocenyl 

and metal alkynyl complexes have commanded significant attention. We previously comprehensively 

surveyed the NLO properties of metal alkynyl complexes through 2002 [1], at which time studies of 10 

the quadratic and cubic nonlinearities of complexes had been undertaken at specific wavelengths to 

tentatively establish structure-NLO property relationships. Since then, several advances have been 

reported: access to tuneable laser systems has enabled complete spectral dependence studies of 

nonlinearities, permitting the maximal values of the quadratic and cubic NLO coefficients to be 

obtained and structure-property relationships to be improved; the possibility of complexes functioning 15 

as NLO switches has been assessed; and the dipolar composition of complexes in the earlier studies 

has been expanded to embrace a variety of multipolar charge distributions, especially those that are 

quadrupolar or octupolar in nature. Previous reviews have contained comprehensive discussions of the 

theory behind nonlinear optics and experimental procedures to measure NLO effects - this material 

will not be reproduced in detail here (although a brief summary of the theory has been provided to 20 

clarify the subsequent discussion) – rather, the present account focuses on the NLO properties of 

Group 8 metal alkynyl complexes, with an emphasis on results reported since 2003, and with a focus 

on illustrating the new trends such as switching of the NLO properties, as well as the challenges 

associated with shifting from molecule-based switching (most often performed in solution) to 
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switchable (bulk) materials or interfaces. A more comprehensive discussion of NLO-switching using 

metal alkynyl complexes in solution can be found in a review recently published by some of us [9]. 

2. NLO theory and experimental techniques 

5 

2.1. NLO phenomena 

Nonlinear optical phenomena arise from the interaction of matter with strong electromagnetic fields. 

For organic and organometallic molecules it is convenient to consider such interactions at a molecular 

level. When a light beam, via its associated electric field E, interacts with the polarizable electrons of a 10 

molecule, it generates a distortion in the electron density distribution ρ(r), resulting in an induced 

dipole moment �. The dipole moment (or polarization on a macroscopic scale) varies in a linear 

relationship to the magnitude of a relatively weak field. However, if the electric field E is strong (such 

as with lasers) and is comparable in strength to the internal electric fields within the molecule, the 

linear relationship is no longer valid. The induced dipole moment is no longer linearly proportional to 15 

the intensity of the electric field, but instead involves quadratic, cubic, etc, terms that are dependent on 

E. This dependence of the dipole moment on the electric field can be represented as a power series 

(equation 1): 

� = �0 + � E + � E E + � E E E + …   (1)

where �0 is the static dipole moment, � is the linear polarizability, � is the molecular first 20 

hyperpolarizability and � is the molecular second hyperpolarizability. As � and E are vectors, the 

polarizabilities are tensors of the appropriate ranks: �� is a second-rank tensor, � is a third-rank tensor, 

and � is a fourth-rank tensor. The quadratic coefficient � is associated with second-order NLO 
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phenomena, whereas third-order phenomena are related to terms in which the cubic coefficient �

appears. One can readily see the implications of this - the electric field of a light wave can be 

expressed as: 

 E(t) = E0cos(ωt) (2)

and after substituting equation 2 into equation 1, truncating at the cubic term, and expanding using 5 

trigonometric relations, one obtains: 

� = �0 + �E0cos(�t) + 
�

�
�E �

�
 + 

�

�
�E �

�
cos(2�t) + 

�

�
�E �

�
cos(�t) + 

�

�
�E �

�
cos(3�t)        (3) 

Thus, the nonlinear terms in the dipole moment expansion introduce contributions at frequencies 2�

and 3�, corresponding to frequency doubling and tripling. The values of the tensors � and � are usually 10 

expressed in electrostatic units (esu), and are strongly dependent on the frequency of the incident laser 

beam. The coefficients � and � are complex, with real and imaginary parts: for second-order NLO 

effects, only the real part is important, but for third-order NLO performance, both real and imaginary 

parts have to be taken into account.  

15 

The three major technological applications of second-order NLO effects thus far involve the 

modulation of the phase, frequency and path of light beams. The Pockels or linear electro-optic effect 

(� = �0 + 1/2�E �
�

in equation 3) is the modification of the refractive index of an optical medium when 

exposed to a static (or varying) electric field. The birefringence produced in the medium is directly 

proportional to the electric field. The applications of the effect are the modulation of the amplitude, 20 

phase and path of a light beam, usually to enable it to carry binary information. Sum frequency 

generation (SFG) is a process in which two signals at frequencies �1 and �2 are summed to give a 

signal at frequency �3 (�1 + �2 → �3). The opposite effect also exists, called difference frequency 
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generation (DFG): the output signal at frequency �3 is the difference of the frequencies of the two 

input signals (�1 – �2 → �3, assuming �1 > �2). A special case of SFG, and also the most common, is 

second-harmonic generation (SHG): two input signals of the same frequency (�1 = �2 = �) result in an 

output signal of double the frequency (� + � → 2�). SHG is easier to obtain than SFG, as for SFG the 

two input beams have to be phase matched, which is more difficult to realize experimentally. SHG has 5 

been mostly used for the conversion of infrared radiation into visible light or visible into ultraviolet 

light. The efficiency of this process is highly dependent on � (equation 3), and for a given material, on 

the frequency of the laser �. Parametric generation, in which a signal at frequency �1 is split into two 

signals at frequencies �2 and �3 (�1 → �2 + �3), can be considered as the reverse phenomenon of 

SFG. This process is widely used for the generation of infrared laser beams from visible or near-10 

infrared beams. 

Third-order NLO effects are numerous and, as is the case with their second-order counterparts, they 

depend on the frequency of the incident light beam. At a given wavelength, third-order NLO properties 

are related to the cubic coefficient �. As indicated above, � is a complex number and can be divided 15 

into its real and imaginary parts (equation 4): 

�� � �������	 
 ����
	 � (4)�

The real part is responsible for the modifications of the refractive properties of the molecule while the 

modifications of the absorptive properties are related to the imaginary part of �. The refractive part 

includes instantaneous electronic effects such as the quadratic electro-optic effect (Kerr effect) or 20 

frequency tripling, and the imaginary part is responsible for absorptive phenomena (multi-photon 

absorption, saturable absorption). As these phenomena have different response times, time-resolved 

measurements have to be undertaken to determine which mechanisms are involved in the third-order 
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NLO response of a given molecule or material. Many third-order NLO processes exist, some 

constituting valuable tools for nonlinear spectroscopy, while others have a greater technological 

importance. The presence of � in any substance means that all materials are susceptible to third-

harmonic generation. The frequency tripling of a light beam by the direct process of third-harmonic 

generation is, however, not practically exploited, a cascade of two consecutive second-order mixing 5 

processes being preferred for the generation of short wavelength laser beams (� + � → 2� and 2� + �

→ 3�); one reason for this is that phase matching is virtually impossible to achieve for third-harmonic 

generation. Of greater technological importance are all-optical processes, such as the Kerr effect and

two-photon absorption. The Kerr effect is based on the same principle as the Pockels effect and is its 

third-order equivalent. In the Kerr effect (or quadratic electro-optic effect), the modification of the 10 

refractive index of the medium varies as a function of the square of the applied electric field, instead of 

varying linearly with the electric field as in the Pockels effect. The main interest with the Kerr effect, 

as with the Pockels effect, is to instantaneously modify the path of the light beam through a material 

(e.g. to encode information onto a light beam). Two-photon absorption (2PA) corresponds to the 

simultaneous absorption of two photons by a compound. In the degenerate case, the two photons 15 

absorbed are of the same energy, whereas in the non-degenerate case their energies are different. A 

sufficient density of photons is needed for such simultaneous absorption, necessitating the use of 

lasers. In the absence of any one-photon absorption, the transmission T of a light beam through a two-

photon absorbing material is given by equation 5: 

� ����
�	

	
��


�	�

�

��+
� (5) 20 

�

When the intensity I0 of the light beam increases, the transmitted intensity I tends to saturate at (�2L)
-1

(with L the length of the sample), corresponding to the optical limiting power. �2 is proportional to the 

2PA cross-section �2 and the concentration of active compound in the sample. The 2PA cross-section 
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is conveniently expressed in Goeppert-Mayer units (1 GM = 10
-50

 cm
4
 s photon

-1
 molecule

-1
). In 

principle, the direct process of two-photon absorption is suitable for optical limiting (attenuation of 

high power beams occurs because their high photon density permits 2PA). In practice, the power 

limiting properties of existing materials, even those with the largest two-photon absorption 

coefficients, are still insufficient for the efficient protection of sensors from laser pulses of nanosecond 5 

duration. Saturable absorption (SA) and reverse saturable absorption (RSA) are, similar to 2PA, 

absorptive phenomena related to the imaginary part of � in which two photons are absorbed. The 

difference with 2PA is temporal; the two photons are absorbed one after another in SA and RSA, in 

contrast to 2PA in which the process is simultaneous. Due to this stepwise nature, a real excited state 

of the molecule is involved from which the second photon is then absorbed in a process called excited-10 

state absorption (ESA). If a substantial proportion of molecules are in this excited state, the 

transmission properties of the medium are no longer the same: the excited state has different absorptive 

properties from the ground state. For RSA, a “photodarkening” effect is observed: the transmission of 

the medium is decreased as the compound in this excited state has greater absorptivity than in the 

ground state at a given wavelength. In contrast, if the excited state has a lower absorptivity than the 15 

ground state, the transmission of the sample will be increased as ground-state molecules are depleted: 

an absorption bleaching will be observed (saturable absorption). In other words, if the absorption 

cross-section of the medium in the excited state is lower than in the ground state, the transmission of 

the system increases once the medium is excited. It should be noted that when �imag > 0, the compound 

acts as a two-photon absorber, whereas when �imag < 0, the compound has saturable absorber 20 

properties. 

�

2.2. Experimental techniques 
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A large number of techniques have been used to measure the second- and third-order NLO responses 

of molecules, those used to examine Group 8 metal alkynyl complexes including the Kurtz powder 

technique, electric field-induced second-harmonic generation (EFISH), hyper-Rayleigh scattering 

(HRS), degenerate four-wave mixing (DFWM), and Z-scan; detailed descriptions of these can be 

found elsewhere, together with a discussion of the difficulties in comparing data obtained with 5 

different techniques in different laboratories [4]. In the past 10 years, the focus of studies of the NLO 

properties of Group 8 metal alkynyl complexes has increasingly shifted to HRS (usually using ns 

pulses) and Z-scan (mainly using fs pulses), due to their widespread applicability and comparative 

simplicity. Optical nonlinearities are wavelength dependent, but over the past decade, tuneable light 

sources have become available, which has permitted maximal values of cubic nonlinearities to be 10 

obtained and structure-cubic NLO property relationships to be developed for metal alkynyl complexes. 

The following sections summarize quadratic and cubic NLO results for Group 8 metal alkynyl 

complexes since 2003.  

�

3. Quadratic NLO studies 15 

3.1. General comments 

Both dipolar and octupolar molecules can possess significant quadratic NLO properties. Very early in 

the search for NLO materials, it was recognized that molecules consisting of donor and acceptor 20 

groups linked with an unsaturated bridge possessing polarizable �-electrons were particularly NLO-

efficient. A two-level model involving the ground state and the first excited state of a compound was 

used to explain these observations [10], and to afford design rules for efficient second-order NLO 
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molecules; such molecules must (i) be non-centrosymmetric (� = 0 for centrosymmetric compounds), 

(ii) have a low energy for the ground state to first excited-state transition, and (iii) have a strong 

intramolecular charge transfer for this lowest energy transition. For a given unsaturated linker, an 

optimum combination of donor and acceptor groups exists to maximize the � coefficient [11,12].  

5 

In the early 1990s, it was noted that octupolar molecules, when possessing a specific symmetry (D3, 

D3h, Td, D2d…), can have large nonlinearities despite their lack of a net dipole moment [13]. As is the 

case with dipolar compounds, the strength of the donor and the acceptor groups, as well as the nature 

of the unsaturated bridging unit, play an important role in the magnitude of the quadratic NLO 

coefficient. The global � value can therefore be deconvoluted into two components, corresponding to 10 

dipolar and octupolar contributions. In octupolar compounds, the dipolar contribution is zero and only 

the octupolar contribution is active, whereas in dipolar compounds, the octupolar contribution is 

usually weak and can be neglected. Since 2003, dipolar metal alkynyl complexes have continued to 

command interest as quadratic NLO materials, but octupolar complexes have also attracted interest. As 

discussed below, the major contributions to these developments with dipolar Group 8 metal alkynyl 15 

complexes in this period have been in optimizing the π-bridge (by chain lengthening and 

compositional modification) and in the modulation of the ligated metal donor strength (by reversible 

oxidation), whereas the focus with octupolar Group 8 metal alkynyl complexes has been zero- and 

first-generation dendrimers. 

20 

3.2. Modulation of the ligated metal donor strength

One possibility for tuning the quadratic NLO properties of organometallics that was explored in the 
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1990s was the modification of the donor strength of the metal [1], usually via ligand replacement at the 

metal center, and this is an approach to varying � that continues to attract interest. Replacement of 

electron-withdrawing carbonyl ligands with phosphine ligands or cyclopentadienyl ligands by 

pentaphenylcyclopentadienyl ligands (Figure 1) increases the donor strength of the ligated ruthenium 

in 4-nitrophenylalkynyl complexes, with a concomitant increase in � value  (Table 1) [14]. Varying the 5 

metal center has also been investigated. While complexes of group 8 metals are highly active [1,4], 

comparison of identically ligated iron and ruthenium complexes revealed different trends, depending 

on the specific complexes (cf. refs [14-16] with [17,18]). In contrast, results thus far suggest that, for a 

given ligand sphere, osmium outperforms iron and ruthenium [1]. 

10 

Figure 1. Selected 4-nitrophenylalkynyl complexes (see Table 1 for specific composition). 

�
�� � � ��� � ���� �
�

Complex
�

(10
-30

 esu)
�0 

(10
-30

 esu)

�max [�] 
(nm, [10

4 
M

-1 
cm

-1
]) 

(�
5
-C5H5)(CO)2Ru 1a 58 27 364 [1.6] 

(�
5
-C5H5)(CO)2Fe 1b 49 22 370 [1.3] 

(�
5
-C5H5)(PPh3)2Ru 2a 468 96 460 [1.1] 

(�
5
-C5H5)(PPh3)2Os 2b 1051 174 474 [2.2] 

(�
5
-C5H5)(PMe3)2Ru 2c 248 38 477 [4.0] 

(�
5
-C5H5)(�

2
-dppe)Ru 3a 664 161 447 [1.8] 

(�
5
-C5H5)(�

2
-dppf)Ru 3b 770 165 469 [1.7] 

Cl(�
2
-dppe)2Ru 4a 562 ± 9 88 ± 1 477 [2.0] 

Cl(�
2
-dppm)2Ru 4b 767 129 473 [1.8] 

Table 1. Second-order NLO responses determined by HRS at 1064 nm for the 4-nitrophenylalkynyl 

complexes represented in Figure 1 [1,9,14,19-21]. β values are ± 10% unless otherwise specified and 
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are corrected for resonance enhancement at 532 nm using the two-level model with β0 = β[1 – 

(2λmax/1064)
2
][1 – (λmax/1064)

2
]. 

Group 8 metal alkynyl complexes often possess a reversible redox process (M
II
/M

III
), permitting the 

interconversion of the complexes between the two oxidation states. If the two redox states have 5 

different nonlinear optical properties, this affords a “redox switching” of the NLO response. While the 

“M
II
/M

III
” notation is rather formal, because the electronic vacancy can be more or less delocalized 

over the alkynyl bridge depending on the nature of the metal center (Ru > Fe) [22], it is broadly correct 

for arylalkynyl complexes in the sense that the largest positive charge per atom is located at the metal 

center, regardless of the metal in the Fe/Ru/Os series. A decrease in the NLO response is thus 10 

intuitively expected on proceeding to the oxidized complexes due to the decrease of the electron-

releasing character of the metal center in the corresponding cation, and this is usually observed [9,17]. 

However, in principle, depending on the magnitude of the “umpolung” taking place, the change in 

NLO response between the two redox states can involve quenching of the NLO activity, or even 

increasing the absolute magnitude of the response. 15 

The replacement of dppe by a redox-active ligand such as 1,1--bis(diphenylphosphino)ferrocene (dppf) 

is another potential approach to tune the NLO activity using oxidized states. This compositional 

modification has been recently investigated in 4-nitrophenylalkynyl ruthenium complexes 3 (Figure 1). 

Although little measurable difference in � value results when progressing from 3a to 3b (Figure 1), 20 

introduction of such a redox-active diphosphine does impart potentially useful additional functionality 

[21]. 

3.3. π-Bridge optimization 
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Another possibility for increasing the magnitude of the NLO response of alkynyl complexes is to 

lengthen the �-conjugated alkynyl ligand, e.g. by increasing the number of “-C≡C-4-C6H4-” units in 

acceptor-functionalized oligo(phenyleneethynylene) (OPE)-type ligands. Earlier studies with alkynyl 

complexes had revealed that increasing the �-bridge length of the alkynyl ligand results in an 5 

enhancement in both the � and � values [1,18,23-27]. For example, when proceeding from 4-

C�CC6H4NO2 complexes to 4-C�CC6H4C�C-4-C6H4NO2 complexes, by formal insertion of a 

phenyleneethynylene unit, the � value of the resultant complexes is on average double that of the 

shorter homologue, while �imag is increased significantly (up to ca. thirty-fold) [28].  

10 

It was observed in earlier studies with organic molecules that nonlinearities saturate as the �-bridge 

length is increased, and this saturation length has now been assessed for ruthenium alkynyl complexes.

For two series of complexes 4-11 (Figure 2, Table 2), differing in their bidentate diphosphine ligand 

[bis(diphenylphosphino)methane (dppm) vs. 1,2-bis(diphenylphosphino)ethane (dppe)], the effect of �-

bridge lengthening between the metal center and the terminal 4-nitrophenyl group is clearly evident: 15 

increasing the length of the alkynyl ligand by formal sequential insertion of two phenyleneethynylene 

units results in an increase in both � and �0 values [19,28]. Ethoxy groups were introduced at the 2- 

and 5-positions of one or more of the OPE ring(s) to ensure sufficient solubility of the complexes to 

measure NLO activity (Figure 2). The introduction of the ethoxy groups on the ligand results in a 

reduction of 30 % of the magnitude of the second-order NLO response, but with four ethoxy groups (n-20 

	 2), no further change was noted (within the error margins). From the results (Table 2), a saturation 

effect is evident: the � value increases on proceeding from the simple 4-nitrophenylalkynyl complex

4b to 7 (after factoring in a 30 % decrease of the value of the former for the presence of two ethoxy 

groups), but decreases on π-lengthening the tri(phenyleneethynylene) complex (from 8 to 9 and 10). 
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The same saturation behaviour was observed with organoiron Fe(κ2
-dppe)(�

5
-C5Me5) analogues; in 

this case, however, saturation was reached with the complex possessing two phenyleneethynylene 

units in the �-bridge [29]. The origin of the saturation effect upon lengthening of the alkynyl ligand 

remains unexplained, but can possibly be linked to the breakdown of the donor-acceptor interaction 

once a critical length of the alkynyl ligand is reached.�5 

Figure 2. Complexes 4 - 11. 

�

Complex n n��
�  

(10
-30

 esu) 
�0  

(10
-30

 esu) 

  dppe complexes  

4a 0 0 562 ± 9 88 ± 1 

5a 1 0 1240 ± 110 225 ± 20 

6a 2 0 1327 ± 110 388 ± 32 

  dppm complexes  

4b 0 0 767 129 

5b 1 0 833 161 

6b 2 0 1379 365 

7 0 1 570 ± 90 40 ± 6 

8 1 1 916 ± 153 400 ± 70 

9 1 2 678 ± 139 208 ± 42 

10 2 1 632 ± 103 217 ± 35 

11 2 2 580 ± 20 185 ± 10 

Table 2. Second-order NLO responses determined by HRS at 1064 nm for 4a-6a and 4b-6b, 7 - 11, 

illustrating saturation of quadratic nonlinearity on �-bridge lengthening [19,28]. β values are ± 10% 10 

unless otherwise specified and are corrected for resonance enhancement at 532 nm using the two-level 

model with β0 = β[1 – (2λmax/1064)
2
][1 – (λmax/1064)

2
].



�,�

�

�

Figure 3. Complexes 12a-c, 13-15. 

Further bridge modification has been examined in the past decade. Earlier studies with azo-linked 5 

analogues [24] of alkynyl complexes such as 12a-c (Figure 3) [20,30] have been extended to examples 

with longer �-bridges [31], with both azo for E-ene replacement and bridge lengthening significantly 

increasing quadratic nonlinearity. �-Bridge lengthening at the coordination site trans to the nitro-

functionalized alkynyl ligand in trans-[Ru{C≡C-4-C6H4-(E)-CH=CH-4-C6H4NO2}X(κ2
-dppe)2] 

complexes, proceeding from X = Cl (13) to C≡CPh (14) and then C≡C-4-C6H4C≡CPh (15) resulted in 10 

further increases in � and �0 and afforded organometallic complexes with amongst the largest quadratic 

nonlinearities thus far [32]. 

Figure 4. Complexes 16 - 19. 15 
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The effect of replacing one or two ethynyl linkages by alkenyl groups in tri(phenyleneethynylene)-

linked complexes (Figure 4) has been assessed [33], the results being summarized in Table 3. The 

replacement of the yne adjacent to the metal-bound phenylethynyl unit (the “A” linkage) by an E-ene 

linkage leads to a significant increase in the � value at both wavelengths studied. In contrast, 

replacement of the yne unit by an E-ene linking unit at the “B” linkage, more remote from the metal 5 

center, results in a much less significant increase in the second-order NLO response. For complexes 

with two E-alkenyl linkages, the � values fall between the values of complexes incorporating only one 

E-alkenyl linkage (i.e. at one of the two possible sites). 

�

            HRS, 1064 nm HRS, 1300 nm 

 A B 
�

(10
-30

 esu) 
�0 

(10
-30

 esu) 
�

(10
-30

 esu) 
�0 

(10
-30

 esu) 

16 -yne -yne 1327 ± 110 388 ± 32 42 ± 2 21 ± 1 

17 -ene -yne 2800 ± 280 580 90 40 

18 -yne -ene 1800 ± 180 430 80 38 

19 -ene -ene 2525 ± 175 460 ± 32 80 ± 4 34 ± 2 

Table 3. Second-order NLO responses of complexes 16 – 19 by HRS at 1064 or 1300 nm [33]. β10 

values are ± 10% unless otherwise specified and are corrected for resonance enhancement at 532 nm 

using the two-level model with β0 = β[1 – (2λmax/1064)
2
][1 – (λmax/1064)

2
]. 

3.4. Octupolar complexes 15 

�

As was mentioned above, the search for new molecular materials with enhanced NLO coefficients has 

resulted in a progression from the extensively-studied donor-bridge-acceptor dipolar composition to 
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alternative molecular geometries. There has been considerable interest in the cubic NLO properties of 

metal alkynyl complexes with higher multi-polar charge distributions in the past decade (quadrupolar, 

octupolar: see sections 4.3. and 4.4.), but there have been significantly fewer reports of the quadratic 

nonlinearities of octupolar Group 8 metal alkynyl complexes, a rare example being the molecular first 

hyperpolarizabilities of the formally octupolar zero- and first-generation dendrimers in Figure 5, 5 

assessed by HRS at 1064 nm (Table 4) [34]. The NLO properties of metal alkynyl dendrimers have 

recently been reviewed [35]. 

Figure 5. Complexes 20 - 34. 
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complex R �����
(10

-30
 esu)

������
(10

-30
 esu)

20 Br 6 4 

21 I 9 5 

22 C≡CH 8 5 

23 Cl 101 34 

24 C≡CPh 105 37 

25 C≡C-4-C6H4NO2 900 182 

26 C≡CPh 104 37 

27 C≡C-4-C6H4NO2 1120 220 

28 SiMe3 8 4 

29 [Ru]Cl 94 32 

30 [Ru](C≡CPh) 93 31 

31 [Ru](C≡C-4-C6H4NO2) 1220 254 

32 C≡CPh 160 59 

33 C≡C-4-C6H4NO2 1880 350 

34 / 34 14 

Table 4. Second-order NLO responses by HRS at 1064 nm ([Ru] = trans-[Ru(κ2
-

dppe)2]). The rotational averages ���� correspond to all non-zero tensor components. 

For dipolar molecules, only the diagonal tensor component along the molecular 3-axis, 5 

β333, is significant, and β = √(6/35)β333. For octupolar molecules with D3h, Td or D2d

symmetry, the only non-zero hyperpolarizability tensor component is β123. The 

octupolar complexes in Figure 5 formally have D3h symmetry, and β = √(8/21)β123

[34]. 

10 
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The presence of the metal is crucial to the quadratic NLO merit (there is an appreciable increase in 

βHRS proceeding from the organic acetylenes 22 and 28 to the corresponding organometallic 

complexes 23 and 29). However, extending the delocalized π-system through the metal (progressing 

from 23 to 24 and 29 to 30) does not increase β, which is consistent with the trans-phenylalkynyl 

ligand acting largely as a π-donor ligand to the ruthenium, rather than the ruthenium acting as a 5 

conduit to extend the π-delocalization. Complex 34 is a linear fragment of the octupolar complex 30, 

and, not surprisingly, progressing from 34 to 30 results in a three-fold increase in oscillator strength of 

the UV-vis band assigned to the MLCT transition. The � value of the two-dimensional complex 30 is 

much improved compared to that of the one-dimensional complex 34, with little loss of optical 

transparency accompanying the large increase in β.  10 

Dendrimer 32 results from the coupling of 26 and 29 and, although its �quadratic NLO coefficient �is 

larger than that of either of its constituents, it is not dramatically so, despite the fact it is a nine-metal-

center complex compared to the precursors which contain three or two metal atoms. This suggests that 

a “dendrimer approach” may not be the best way to maximize quadratic NLO merit. Improvements in 15 

nonlinearity in dipolar systems are usually accompanied by a decrease in optical transparency, but this 

is not necessarily the case for multi-polar systems; no loss in transparency is seen on progressing from 

30 to 32, so while the gain in nonlinearity on dendrimer generation increase is modest, there is 

compensation in maintenance of transparency. The βHRS values for 30 and 32 are very large for multi-

polar compounds optically transparent at the second-harmonic, and therefore with diminished 20 

resonance enhancement. 

The β values of the nitro-containing complexes are an order of magnitude greater that those of their 

non-nitro analogues, but are resonance enhanced due to the proximity of the absorption band 
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associated with the MLCT transition to the second-harmonic wavelength of 532 nm. A 50 % gain in β

value is found on progressing from the three-metal-center zero-generation dendrimer 31 to the nine-

metal-center first-generation dendrimer 33, the β value at 1064 nm for the latter (1880 × 10-30 esu) 

being particularly large for a formally octupolar molecule. For the complexes containing nitro groups, 

no significant changes in the trends found in the experimental data are seen in the calculated static β5 

values. The β0 value for 33 is amongst the largest obtained for an organometallic complex, or indeed 

any molecule with formally octupolar symmetry. 

  

β is a tensor and, in fact, can afford information about the symmetry of the molecules being measured. 

This is achieved by depolarization measurements, which involve measuring the intensity of the 10 

scattered second-harmonic light which is parallel, I zz
2ω , and that which is perpendicular, I zx

2ω , to the 

plane of the incident polarized laser beam. The ratio of these two quantities depends on the molecular 

symmetry and for purely dipolar molecules with C2v symmetry: 

ρ =
Izz
2ω

Izx
2ω = 5

while for purely octupolar molecules with D3h, Td or D2d symmetry:15 

ρ =
Izz
2ω

Izx
2ω = 1.5. 

Depolarization measurements were carried out on 29 and 30. While the depolarization ratio of 1.4 ± 

0.2 for complex 29 is consistent with purely octupolar symmetry, that of complex 30 (2.1 ± 0.1) 

suggests deviation from octupolar symmetry, most likely a lack of coplanarity of the peripheral 

phenylethynyl groups with the central π-system (a decrease in molecular symmetry would result in an 20 

increase in ρ because dipolar contributions to the first hyperpolarizability are introduced). Thus, this 
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NLO technique suggests that discussion of molecules larger than 29 (for example, the first-generation 

dendrimers 32 and 33) solely in octupolar terms is inappropriate. 

Figure 6. Complexes 35 - 39 ([Fe] = Fe(κ2
-dppe)(η5

-C5Me5);  [Ru] = trans-[Ru(κ2
-dppe)2])). 

5 

More recently, the hyperpolarizabilities of the octupolar complexes 35-38 in Figure 6 have also been 

assessed by HRS at 1907 nm (Table 5) [36]. While these values appear larger than those of 29-31,

compounds of similar size, comparison is problematic because the data were determined on different 

experimental setups at different wavelengths and relative to different references. However, the data are 

larger in magnitude than those reported for the related complexes 39a-c (β1064 =  457 × 10
-30

 esu, 505 ×10 

10
-30

 esu, 558 × 10
-30

 esu, respectively) [37], attesting to a high activity for these iron-containing 

octupoles, the data being significantly larger than that of the organic precursors. Extension of the 

peripheral arms, when proceeding from 35 to 37, results in only a modest increase in β and β0, in line 
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with a bridge length-dependent saturation of the hyperpolarizability, while there is only a modest 

dependance on the nature of the peripheral organometallic group (comparing 35 and 36). Finally, 

comparison of 35 and 38 reveals that the replacement of the phenyl for isocyanurate central core has 

only a modest effect on hyperpolarizabilities, but affords slightly increased tranparency in the visible 

range. 5 

complex λmax 

(nm)
�����

  
(10

-30
 esu)

������
  

(10
-30

 esu)

35 400 322 254 

36 342 288 243

37 446 374 276 

38 422 312 232 

Table 5. Second-order NLO responses (± 15 %) by HRS at 1907 nm. β0 values 

are derived from UV data assuming a degenerate three-level model [13]. 

4. Cubic NLO studies10 

4.1. General comments 

There have been a significant number of studies of the cubic NLO properties of Group 8 metal alkynyl 

complexes in the past decade, the major foci being multi-polar charge distributions and an emphasis on 15 

switching cubic NLO properties. This section summarizes progress with complexes in their resting 

states, while section 5.3. highlights (primarily electrochemical) switching studies. 
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Less is known about designing efficient cubic NLO materials than their quadratic NLO counterparts. 

Nevertheless, structure-activity relationships have been established for third-order NLO effects. 

Several classes of active structures have been extracted from these studies that possess the same 

characteristics: they have polarizable �-electrons and low-energy intramolecular charge transfer, but 

they differ in the nature of their multi-polar charge distributions. The first compound type has the 5 

dipolar composition exhibited by many efficient second-order NLO-active compounds: a donor and an 

acceptor group linked together by an unsaturated bridge possessing polarizable �-electrons (Figure 7). 

The second type of structure consists of two acceptor or donor groups linked by an unsaturated �-

delocalized bridge; variations exist with the intercalation of a donor group between the two terminal 

acceptor groups (and vice versa) (Figure 8). The third type of cubic NLO-active compounds are those 10 

possessing octupolar geometries (Oh, Td, Dnh; n = 3, 4), some of which are shown in Figure 9 [13,38].  

�	 ππππ

Figure 7. Dipolar composition of cubic NLO-active compounds.15 

�

�� ππππ 		 ππππ

	� ππππ �ππππ �	 ππππ 	ππππ
�

Figure 8. Quadrupolar compositions of cubic NLO-active compounds.�

20 

Figure 9. Octupolar compositions of cubic NLO-active compounds [13,38].  

�

�

4.2. Dipolar complexes  
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The cubic NLO properties of small dipolar Group 8 metal alkynyl complexes had been assayed in the 

1990s, values at a fixed wavelength of 800 nm typically being very low. More recent Z-scan studies at 

single wavelengths in the region 650-800 nm of alkynyl and alkenyl complexes 40 - 45 (Figure 10) 

[14,32,39-41], as well as degenerate four-wave mixing studies at 532 nm of the (poly)thiophene-5 

bridged complexes 46 and 47 (Figure 11) [42,43] have confirmed this general observation. The well-

established dependence of the NLO response as a function of the π-bridge length was verified in these 

series of D-π-A complexes, with the metal center playing the role of the donor group, while 

barbiturate-terminated complexes were found to be less active than aldehyde–terminated analogues. 
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10 

Figure 10. Alkynyl and alkenyl complexes 40 – 45 measured by Z-scan at specific wavelengths in the 

range 680 – 800 nm. 
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Figure 11.. Thiophene-containing complexes 46 - 47 measured at single wavelengths by DFWM and 

Z-scan. 5 

Because cubic nonlinearities are wavelength dependent, such single wavelength studies almost 

certainly do not ascertain the maximal values. Z-scan studies on complexes 4b - 6b, 7 - 9 (Figure 2) 
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across the spectral range 530-1500 nm revealed that 2PA maxima are in the range 840-940 nm, with 

the largest value exhibited by the tri(phenyleneethynylene) complex 6b for which quadratic 

nonlinearity is also maximized [28]. 

5 

4.3. Quadrupolar complexes 

Z-scan studies at 750 nm of the centrosymmetric complexes trans-[(η5
-C5H5)(κ2

-dppf)Ru(C≡C-4-

C5H4N)PtCl2(NC5H4-4-C≡C)Ru(κ2
-dppf)(η5

-C5H5)] (48) and trans,trans,trans-[(κ2
-dppm)2ClRu-

(C≡CC5H4N-4)PdCl2(NC5H4-4-C≡C)RuCl(κ2
-dppm)2] (49), together with their monoruthenium 10 

complex “ligands” Ru(κ2
-dppf)(η5

-C5H5)(C≡C-4-C5H4N) (50a) and trans-[RuCl(κ2
-dppm)2(C≡C-4-

C5H4N)] (50b) (Figure 12), revealed fifty-fold increases in γimag and 2PA cross-sections on proceeding 

from the building blocks to the heterotrimetallic complexes at this wavelength (Table 6), although the 

trimetallic complexes exhibit optical absorption maxima close to the second-harmonic wavelength of 

the incident laser. With 18-electron Ru centers at the peripheries and 16-electron Group 10 metal 15 

atoms at the centers, the complexes can be considered to have a D-π-A-π-D composition (Figure 12) 

[44].  
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Figure 12. Quadrupolar alkynyl complexes 48, 49, 50a-b. 

complex 
λmax 

(nm)

γzzzz 
(10

-36
 esu)

48 393 600 ± 200 

49 385 800 ± 100 

50a 339 10 ± 4 

50b 336 13 ± 10 

Table 6. Cubic optical NLO data (Z-scan) for complexes 48, 49, 50a-b at 750 nm [44] 

5 

Porphyrins have been of longstanding interest in nonlinear optics due to their large delocalizable π-

systems, robust nature, and biocompatibility. Recently, porphyrins have been hybridized with Group 8 

metal alkynyl units and the cubic NLO properties of the resultant assemblies have been examined 

(Figure 13) [45,46]. The 2PA cross-sections of the peripherically metallated Zn(5,10,15,20-

tetraarylporphyrin) complexes 51 - 53 were assayed across a broad spectral range, displaying maximal 10 

values in the regions 710-770 nm and 1000-1300 nm (Table 7). In the lower wavelength region, the 

complex 51 is most efficient (10 200 GM at 740 nm), whereas in the long wavelength region, the 

complexes 52b-d exhibit the greatest efficiency (ca. 1400 GM).  

15 
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Figure 13. Tetraphenylporphyrin-based assemblies 51, 52a-c and 53 ([Fe] = Fe(κ2
-dppe)(η5

-C5Me5);  

[Ru] = trans-[Ru(κ2
-dppe)2]). 
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1
st

 max 2
nd

 max 3
rd

 max 1
st

 min 

complex λmax �2,eff λmax �2,eff λmax �2,eff λmax �2eff

(nm) [GM] (nm) [GM]  (nm) [GM]  (nm) [GM]  

51 570 6600 ± 1000 740 10200 ± 1000 1000 600 ± 200 650 -6100 ± 1000 

52b 530 6000 ± 500 770 6000 ± 3000 1000 1500 ± 500 620 -4500 ± 200 

52c / / 710 4800 ± 500 1300 1400 ± 500 595 -2800 ± 600 

52d < 530 3400 ± 500 710 4200 ± 500 1000 1300 ± 100 620 -1400 ± 400 

53 550 8900 ± 1500 740 8000 ± 500 /
 a
 /

a
 620 -1500 ± 1000 

a
 Not determined due to sample photodegradation. 

Table 7. Extremal values of the effective two-photon absorption cross-sections (�2,eff) by Z-scan in CH2Cl2 [45,46]. 
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π-Bridge lengthening was found to have a negligible effect on the location of the 2PA 

maxima of systematically varied centrosymmetric oligo(p-phenyleneethynylene)-linked 

ruthenium alkynyl complexes 54-59 (Figure 14) [47]. These complexes have a D-π-D 

composition (Figure 8) and their synthesis necessitated incorporation of hexyloxy solubilizing 

groups which are not electronically innocent; the linear absorption maxima red-shift on their 

introduction, although the location of the aforementioned 2PA maxima are invariant (Table 

8). The σ2,max values increase slightly with increasing chain length, and also on embedding the 

Ru atoms within the OPE unit of a fixed chain length, the most efficient complex (56; 1050 

GM) possessing a nona(phenyleneethynylene) (9PE) chain similar to 55c (630 GM), but with 

a 2PE-[Ru]-5PE-[Ru]-2PE composition for the former rather than the [Ru]-9PE-[Ru] 

formulation of the latter (for ligated ruthenium [Ru]). 
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Figure 14. Quadrupolar alkynyl complexes 54-59. 

complex νmax  

(cm
-1

)

σ2,max 
(GM)

54 28400 600  

55a 22200 530 

55b 22800 580 

55c 23500 630 

56 23300 1050 

57 23400 300 

58 24100 290 

59 24300 730 
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Table 8. Two-photon absorption data (open-aperture Z-scan) for complexes 54 – 59 [47]. 

4.4. Octupolar complexes 

There are several octupolar geometries depicted in Figure 9, but 1,3,5-substitution of a 

benzene ring has been by far the most extensively explored octupolar geometry in nonlinear 

optics. As with the other geometries highlighted above, lack of ready access to tuneable laser 

systems resulted in earlier studies reporting data at single wavelengths only, and this 

continued into the past decade. For example, Z-scan studies at 800 nm of a selection of 

phenyleneethynylene-based dendrimers peripherally functionalized by ligated ruthenium 

centers revealed the most cubic NLO-efficient at that wavelength (and the only saturable 

absorber) to be 1,3,5-(3,5-{trans-[(κ2
-dppe)2(O2NC6H4-4-C≡C)Ru(C≡C]}2C6H3-1-C≡CC6H4-

4-C≡C)3C6H3 (60; Figure 15) [48], an observation that prompted the first complete cubic NLO 

spectral dependence study of an inorganic complex on this compound [48,49], revealing the 

maximal positive value of the 2PA cross-section to be at ca. 1000 nm (4000 GM). 

Femtosecond Z-scan studies at 800 nm of first-generation phenyleneethynylene-based 

dendrimers revealed a ca. fourfold increase in cubic nonlinearity in proceeding from 

peripheral Ru6 metallation (61) (|γ| = 1600 ± 2400 × 10
-36

 esu) to peripheral Ru6/internal Pt3

(62) metallation (|γ| = 7200 ± 2900 × 10
-36

 esu) [50].  
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Figure 15. Dendritic complexes 60 - 62. 

The second NLO spectral dependence study of an inorganic complex by Z-scan was carried 

out on the first-generation peripherally nitro-functionalized dendrimer 33 (Figure 5) [51]. In 

addition to possessing a 2PA maximum centered at ca. 750 nm (σ2 = 3500 GM), 33 exhibits 

three-photon absorption (3PA) with a maximum centered at ca. 1200 nm (σ3 = 1.5 × 10
-77

 cm
6

s
2
). The 2PA and the 3PA maxima are slightly blue-shifted from twice (2PA) and three times 

(3PA) the wavelength of the one-photon absorption maximum corresponding to charge-

transfer within the large delocalizable phenyleneethynylene-based π-manifold in the interior 

of the dendrimer [51]. Subsequent spectral dependence studies of 29-32 revealed significant 

3PA at telecommunications wavelengths for 29-31, in addition to that previously observed for 

33; 3PA cross-sections increase on introduction of nitro substituent (proceeding from 30 to 31

and 32 to 33) and dendrimer generation increase (proceeding from 31 to 33) [52].  

N-cored analogues were also examined, the rationale being that the planarity at the sp
2
-

hybridized nitrogen may improve π-delocation and optical nonlinearity [53]. Similar to 33, 
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spectral dependence studies of the cubic nonlinearity revealed 2PA behavior at wavelengths 

below 1000 nm, the maximal values being consistent with an NLO dendritic effect (a 

nonlinear increase in nonlinearity upon increasing dendrimer generation), while at 

wavelengths above 1000 nm, the data are consistent with 3PA-induced photochemistry. The 

2PA cross-sections of these organometallic dendrimers are much larger than those of 

comparable N-cored organic dendrimers, and this increased performance is maintained when 

the outcomes are scaled by “effective number of (delocalizable) electrons”, molecular weight, 

molecular volume, or even the cost of production [54,55].  

A similar dendritic effect was observed in proceeding from the stilbene-based zero-generation 

dendrimer 63 to the first-generation example 64 (Figure 16) [56-58]; the cubic nonlinearity 

increases seven-fold when measured at 800 nm (from 2000 × 10
-36 

esu to 14000 × 10
-36 

esu) 

and four-fold at 600 nm (from 2800 × 10
-36 

esu to 12000 × 10
-36

 esu), although there is only a 

threefold increase in the number of ruthenium centers. Similar to the dendrimers above, 

complex 64 also shows a significant nonlinear absorption coefficient at a telecommunications-

relevant wavelength (1300 nm). 

�
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Figure 16. Zero- and first-generation dendrimers 63 and 64. 

Structurally related zero-, first-, and second-generation ruthenium alkynyl dendrimers were 

recently assessed, one reason being to examine whether the NLO dendrimer effect seen for 

several pairs of complexes in proceeding from zero- to first-generation persists on proceeding 

to second-generation dendrimers [59].  The maximal 2PA values for the zero-generation 30

(370 GM at 810 nm), first-generation  65 (11500 GM at 750 GM), and second-generation 

dendrimers 66 (29000 GM at 800 nm) with 3, 9, and 21 ruthenium centers (Figure 17), 

respectively, do increase nonlinearly, whether scaled by number of metal centers, molecular 

weight, or effective number of delocalizable electrons. The dramatic increase seen from zero- 

to first-generation dendrimer is, however, attenuated on proceeding to second-generation 

dendrimer. 
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Figure 17. Successive generations of dendritic complexes 30, 65 and 66. The wavy lines 

denote the two other identical branches of the dendrimers. [Ru] = [Ru(κ2
-dppe)2].�

5. Switching NLO properties 

5.1. General comments  

The incentive to switch from (conventional) electrical treatment towards all optical treatment 

of information is partly driven by the gain in speed, because propagation of light is quasi-
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instantaneous. NLO-active materials can play a central rôle in the ultrafast light encoding 

process. The magnitude of the relevant effects (mostly the electro-optic effect when based on 

quadratic NLO properties, but many effects for cubic NLO properties) is dependent on the 

NLO activity at a given wavelength (i.e. on the χ(2)
 or χ(3)

 coefficients of the material, which 

are themselves related to the molecular coefficients β and γ in equation 3) [1]. The switching 

of the NLO properties at a given wavelength (i.e. modification of the  χ(2)
 or χ(3)

 coefficients) 

opens a new dimension in the encoding process. Per se, this switching process does not need 

to be rapid, although such a feature might be desirable if the NLO switching is performed 

using molecules, because the kinetic stability of the different “states” involved in the 

switching process is a crucial factor; indeed, the lifetime of the less stable state will influence 

the reversibility of the switching process, and therefore its “fatigue resistance”. Thus, the 

faster the switching that can performed by a given stimulus, the better it might be for possible 

applications involving molecules. 

Molecule-based switching of NLO properties has been discussed previously by Coe and 

others [60-62],  and more specifically in the case of alkynyl NLO-phores by some of us quite 

recently [9]. Several stimuli have been employed thus far to switch the NLO properties of 

alkynyl complexes: (i) redox chemistry (to reversibly oxidize/reduce a metal alkynyl site), (ii) 

protonation (to form the corresponding vinylidene complex(es)), and most recently (iii) light 

(to trigger a conformational change in a photo-isomerizable unit appended to the alkynyl 

ligand). It is not the purpose of this section to discuss thoroughly these processes; rather, we 

will focus on the most important outcomes (largely related to redox switching) and on new 

developments.  
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5.2. Switching of quadratic NLO properties 

Redox switching of the quadratic NLO properties of iron alkynyl complexes has been 

reported ex situ (Table 9) [17,63], facilitated by the fact that dipolar or octupolar iron alkynyl 

complexes such as 67a-e and 68-70 (Figure 18) may afford chemically isolable Fe(III) forms.  

In contrast, in situ switching has been little exploited, a significant difficulty being the 

integration of the electrochemical cell with the HRS experiment. This is a serious limitation 

for molecule-based redox switchable materials, as we shall see below. 

Figure 18. Mono- and trinuclear complexes 67a-e and 68-70. 

�

� (10
-30

 esu)

complex neutral 1
+
 2

+
 3

+

67c 52 80 / / 

68 180 400 200 / 

69 210 150 200 / 

70 175 190 170 53 

Table 9. Quadratic nonlinearities (HRS) for complexes 67c, 68-70 at 1064 nm in CH2Cl2

[63]. 

5.3. Switching of cubic NLO properties
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The possibility of controlling optical nonlinearity by reversible structural or electronic 

modifications at the molecular level (“molecular NLO switches”) has been of considerable 

interest over the past decade; this is particularly the case for cubic nonlinearity with Group 8 

metal alkynyl complexes. The perturbation theory-derived relationship between cubic 

hyperpolarizability and linear optical transitions affords an insight into materials design to 

achieve molecular NLO switches (equation 6): 

γ ∝ -µge
4
/Ege

3
 + µge

2µee’
2
/Ege

2
Ege’ + µge

2
(µee - µgg)

2
/Ege

3
(6) 

where µgg is the ground state dipole moment, µee is an excited state dipole moment, µee’ and 

µge are transition dipole moments, and Ege and Ege’ are optical absorption energies. This 

dependence of the molecular cubic NLO parameter on the energies of transitions and their 

transition dipole moments suggests that a reversible modification of a molecule that changes 

its optical absorption spectrum (wavelengths of maxima, extinction coefficients/oscillator 

strengths of charge-transfer bands) may also strongly modify its cubic NLO properties.  

Group 8 metal alkynyl complexes often exhibit reversible redox processes, so redox-

facilitated NLO switching has been a focus since the first report of this being accomplished in 

situ with 29 and trans-[Ru(C≡CR)(Cl)(L2)2] (71: R = Ph, L2 = dppm, 72: R = C6H4-4-C≡CPh, 

L2 = dppe; Figure 19) using a modified optically transparent thin-layer electrochemical 

(OTTLE) cell [34,64-66].  
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Figure 19. Redox interconversions performed in situ in an OTTLE cell with 71 and 72. 

Across this series of complexes, the optical behaviour is similar (Table 10): UV-vis spectra of 

the neutral Ru
II
 complexes possess absorption bands between 300 and 450 nm (assigned to 

MLCT transitions), and are optically transparent above 500 nm. In their Ru
III

 states, the 

oxidized complexes have a strong NIR absorption at ca. 800 nm. The complexes were 

examined by Z-scan measurements at 800 nm in both oxidation states. The nonlinearity of

trans-[Ru(C≡CPh)Cl(κ2
-dppm)2] (71) proved too low to be measured at 800 nm, but trans-

[Ru(C≡CC6H4-4-C≡CPh)(Cl)(κ2
-dppe)2] (72) and 29 are strong two-photon absorbers in their 

neutral state. Once oxidized, the NIR one-photon absorption of the complexes is “switched 

on” at around 800 nm and a saturable absorption effect for trans-[Ru(C≡CPh)Cl(κ2
-dppm)2]

�

(71
+
), trans-[Ru(C≡CC6H4-4-C≡CPh)Cl(κ2

-dppe)2]
�
 (72

+
) and 28

3+ 
is possible, as reflected in 

their negative �imag values. 
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Complex 
�max

(nm) 

�
(10

4 
M

-1 
cm

-1
) 

�real 

(10
-36 

esu) 

�imag 

(10
-36 

esu) 

���
(10

-36 
esu) 

�2

(GM) 

trans-[Ru(C≡CPh)Cl(κ2
-dppm)2] (71)� 318 1.0 < 300 < 200 = 0 = 0 

trans-[Ru(C≡CPh)Cl(κ2
-dppm)2]

�
 (71

+
)� 833 2.3 1300 ± 500 -2200 ± 1000 2600 ± 1000 -540 ± 200 

trans-[Ru(C≡CC6H4-4-C≡CPh)Cl(κ2
-dppe)2] (72)� 387 2.0 -100 ± 100 450 ± 200 460 ± 200 110 ± 50 

trans-[Ru(C≡CC6H4-4-C≡CPh)Cl(κ2
-dppe)2]

�
 (72

+
)� 893 3.6 2900 ± 1000 -1200 ± 600 3100 ± 1000 -300 ± 70 

29 413 7.8 -330 ± 100 2200 ± 500 2200 ± 1000 530 ± 120

29
3+

893 20.1 13500 ± 3000 -4700 ± 500 14000 ± 3000 -1200 ± 100

Table 10. Cubic NLO data for trans-[Ru(C≡CPh)Cl(κ2
-dppm)2] (71), trans-[Ru(C≡CC6H4-4-C≡CPh)Cl(κ2

-dppe)2] (72), 29, and their oxidation products from Z-

scan studies at 800 nm [34,64-66]. 

�
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The third-order NLO behavior of the Fe(κ2
-dppe)(η5

-C5Me5) analogue (73; Figure 20) of the 

trans-[RuCl(κ2
-dppe)2] complex 29 was also investigated by Z-scan [67]. A 695 nm laser 

beam was used because the organoiron complex is optically transparent in its two redox 

forms at this wavelength. Similar to its organoruthenium counterpart, the neutral complex is 

a two-photon absorber and, once oxidized, it becomes a saturable absorber.  

Figure 20. Complexes 72-76. 

The above mentioned iron and ruthenium units are oxidized at very different potentials (Fe 


-0.20 V vs SCE; Ru 0.40 – 0.50 V vs SCE), so were combined to afford complexes 74-76

(Figure 20) with three accessible oxidation states (corresponding formally to Fe
II
Ru

II
, 

Fe
III

Ru
II
, and Fe

III
Ru

III
). Redox switching between these three states can be performed in situ

in the OTTLE cell. It was also established that because of the significant electronic coupling 

between the two redox sites, the mixed-valent monocation (MV-A
+
) of any of these redox 

families could not be (photochemically) switched to its redox isomer (MV-B
+
) by irradiation 



48

in the intervalence charge transfer (IVCT) band (Figure 21) [68]; such a possibility would 

have provided access to an additional state by a different (orthogonal) stimulus.  

Figure 21. Possible interconversions between four states for the complexes 74-76. 

The third-order NLO activities of 74 – 76 in their neutral and oxidized forms were 

determined by Z-scan (Table 11) [68]. Complex 74 has negligible activity at 790 nm (the 

absorption maximum of the di-oxidized complex 74
2+

, and a wavelength at which both 74

and 74
++

 are transparent). After oxidation of the organoiron moiety, the complex cation 74
+

is a two-photon absorber (positive �imag). Further oxidation of the organoruthenium unit 

“switches on” the linear absorption of the complex dication 74
2+

, which behaves as a 

saturable absorber (negative �imag). The third-order NLO behaviour of 75 and 76 was 

measured at two different wavelengths: 750 and 1250 nm. At 750 nm, 75 and 76  have no 

linear absorption in their neutral and first oxidized state but are absorptive in their di-

oxidized Fe
III

Ru
III

 form (75
2+

/76
2+

). Only the Fe
III

Ru
II
 and Fe

III
Ru

III 
complexes (75

+
/76

+ 
and

75
2+

/76
2+

) are absorptive at 1250 nm, with the di-oxidized forms more absorptive than the 

mono-oxidized ones.  

In contrast to 74, the neutral complexes 75/76 are two-photon absorbers at both 

wavelengths. The difference in the linear optical behaviour of the Fe
III

Ru
II
 complexes 
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75
+
/76

+
 between the two wavelengths translates into a difference in their nonlinear activity. 

At 750 nm they are two-photon absorbers with an increased intensity of the response 

compared to their neutral forms. Oxidation of the organoiron synthon gives rise to NIR one-

photon absorption bands and leads to saturable absorber behaviour at 1250 nm. However, in 

their Fe
III

Ru
III

 state, 75
2+

 and 76
2+

 are saturable absorbers at both wavelengths, due to the 

presence of visible and NIR absorption bands. An octupolar example of 75 (77; Figure 22) 

has been prepared and the NLO properties of this hexanuclear heterobimetallic assembly has 

been examined across the accessible oxidation states, with similar results.  

Figure 22. Octupolar complex 77 ([Fe] = Fe(κ2
-dppe)(η5

-C5Me5);  [Ru] = trans-[Ru(κ2
-

dppe)2]). 

  

Complex 
γγγγreal

(10
-36

 esu) 

γγγγimag

(10
-36

 esu) 

|�| 

(10
-36

 esu) 

�2

(GM) 
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790 nm   

74 < 100 < 100 0 0

74
+ - 450 ± 100 1600 ± 200 1600 ± 250 420 ± 50

74
2+

 < 300 - 970 ± 200 1000 ± 300 - 250 ± 50

750 nm   

75 - 3700 ± 800 1900 ± 400 4200 ± 1000 710 ± 150

75
+
 nd 3300 ± 700 1200 ± 250

75
2+

 nd - 700 ± 150 - 260 ± 50

76 - 600 ± 100 3900 ± 800 4000 ± 800 1400 ± 300

76
+
 nd 5900 ± 1000 2200 ± 400

76
2+ nd - 3600 ± 800 - 1300 ± 300

77 - 30000 ± 6000 26000 ± 5000 40000 ± 8000 9500 ± 2000

77
3+

- 17000 ± 3400 6200 ± 1200

77
6+

-  - 80000 ± 16000 - 29000 ± 40000

Table 11. Experimental cubic nonlinear optical response parameters of 74 - 77 across their 

accessible redox states at 790 or 750 nm in CH2Cl2 [68]. 

Two mutually independent (“orthogonal”) types of switching were employed with the 

cruciform complex 78 (protic and redox processes), affording three distinct states with 

different linear absorption properties (Figure 23). The UV-vis spectrum of 78 shows a 

significant absorption centered at 480 nm (MLCT band); the complex is transparent at 

longer wavelengths. This MLCT band disappears following protonation with HBF4, yielding 

the more transparent 78-H4
4+

, whereas oxidation of 78 to 78
4+

 results in the appearance of a 

strong LMCT band at ca. 900 nm. The third-order nonlinearities of 78, 78-H4
4+

and 78
4+

were measured by broad spectral range Z-scan, revealing that, at specific wavelengths, the 

behavior of the complex can be completely different between two forms; for example, 

oxidation of 78 to 78
4+

 results in a change from two-photon absorption to saturable 

absorption at 750 nm [69]. �
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Figure 23. Complexes 78-H4
4+

, 78, and 78
4+

. 

NLO switching was taken a step further with the six-states complex 79 (Figure 24), 

addressable with three orthogonal stimuli [70]. Ruthenium phenylalkynyl units, employed in 

78 to demonstrate NLO switching by redox and protic means, were assembled with a 

photochromic 5,5--dithienylperfluorocyclopentene bridge (a DTE moiety). 

Photoisomerization of the DTE results in the “ON” and “OFF” switching of linear 

absorption in the visible range for the complex in its vinylidene, resting state alkynyl and 

oxidized alkynyl forms. A strong one-photon absorption band is present at around 650 nm in 

the spectra of the closed forms, but absent in the spectra of the open forms. The same 

variations, as previously described for the cruciform complex 78, are associated with the 

interconversion between the vinylidene and alkynyl complex forms: an MLCT band is 

present in the linear spectra of the alkynyl forms but absent for the vinylidene forms, while 

oxidation of the ruthenium center gives rise to a strong LMCT band for both open and 
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closed forms of the complex. As expected, these variations in the linear spectra of the 

complex between its six states influence the nonlinear behavior (Figure 25). The nonlinear 

behavior of 79 can be switched over a larger wavelength range than the cruciform complex 

78. As a result, switching between saturable absorber, two-photon absorber, and inactive 

forms is more effective. Moreover, when similar behavior occurs with two switchable states 

at a specific wavelength, the amplitude of the responses is often significantly different, 

facilitating discrimination of the states. 

�

Figure 24. Complexes 79 (o = open, c = closed, a = alkynyl, v = vinylidene, (II/III): formal 

oxidation state of the metal centre). 
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�
Figure 25. Nonlinear behavior of 79 across its six states as a function of the laser irradiation 

wavelength (nm, horizontal scale). o = open form, c = closed form, a = alkynyl, v = 

vinylidene, (II/III) = formal oxidation state of the metal centers. Red: saturable absorber, 

blue: nonlinear absorber, yellow: inactive nonlinear absorber, white = no data reported [70].  

5.4. Towards switchable molecule-based materials with metal alkynyl complexes 

Although we are now aware that redox switchable quadratic NLO materials have ever been 

used in any applications, redox-switchable cubic NLO materials have been proposed for 

several technological developments such as optronics computer cores [71]. The existing 

materials currently envisioned for such purposes are, however, solid-state and silicon-based 

in nature [72], and for which the cubic NLO properties are size-dependent, rendering 

miniaturization impossible beyond a certain limit. The downsizing limits are more remote 

with equivalent molecule-based materials, so from the applied point of view, there is a 

strong incentive to develop new molecule-based photonic materials. 

5.4.1. Materials for switching of quadratic properties 

As mentioned above, the requirement of having all the dipoles aligned for observable 

quadratic NLO properties limits the prospects for redox switchable materials. Very few 
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attempts have been made, the first of which (to the best of our knowledge) being to deposit 

redox-active ferrocene-based dipolar compounds such as 80 (Figure 26) on a conducting 

(gold) surface and to then use it as a working electrode to switch the redox state of the donor 

group in the monolayer by electrochemical means [73].  However, in the switching process, 

the molecular response was (apparently) swamped by that of the underlying gold surface and 

by the redox-induced structural changes undergone by the monolayer. In a more recent 

approach [74], Langmuir-Blodgett monolayers of the dipolar complexes 81 were grown on a 

translucent ITO electrode. Molecule-based NLO redox switching was clearly demonstrated, 

but a loss of activity of the monolayer was evidenced upon cycling (above 3 times). Thus 

far, no analogous material has been isolated with alkynyl complexes. 

Figure 26. Complexes involved in SHG-active molecule-based materials. 

Metal alkynyl complex-based materials for second harmonic generation (SHG) are scarce. In 

2005, acoustically induced second-harmonic generation (AI-SHG) was reported for 

complexes 46c-f (Figure 26) incorporated (ca. 5-6% w/w) in a poly(methylmethacrylate) 

(PMMA) host [75]. Materials exhibiting SHG values as large as 1.9 pm/V were obtained at 

980 nm following optical poling, but the resulting χ(2)
 value is not stable and decreases over 
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time (by ca. 70 %). AI-SHG values of ca. 0.8 pm/V were obtained at 1760 nm with a doped 

polymer made from 46c in the presence of an acoustic signal�(80 Hz to 1.1 MHz) [42]; the 

latter is required to obtain an SHG signal from these samples containing randomly oriented 

NLO-active complexes [76]. No clear relationship between the molecular properties of the 

constituent complexes and the SHG response of the resultant materials could be drawn.  

Oriented organometallic thin films were also obtained from 45a-c (Figure 28) by corona 

poling at 120 °C over 5 min, the best χ(2)
 values of ca. 1 pm/V at 1064 nm being seen for 

45b [77,78]. Stability of the compounds at 120 °C is a problem limiting longer poling times. 

SHG-active oriented hybrid materials were also obtained from dipolar organoiron(II) NLO-

phores such as Fe (κ2-dppe)(η5-C5Me5)(C≡≡≡≡C-4-C6H4X) (67a: X = NO2, Figure 27;  67g: X = 

C(O)H) [79]. These new polymers were synthesized by photopolymerization of oligoether-

acrylates (OEAs) containing the NLO-active complexes 67a and 67g in the presence of an 

electrostatic dc field, and without heating. SHG values of ca. 3 pm/V at 1907 nm were 

measured with the samples containing 67a, which also corresponds to the most active 

complex. However, there is room for improvement, since these values are roughly two 

orders of magnitude below these obtained by the most active all-organic poled polymers 

designed for HRS [80]. Moreover, due to the essentially insulating nature of PMMA and 

polyacrylate polymers, there is no possibility of switching the NLO activity of the alkynyl 

complexes embedded in the polymeric host by electrochemical means with these hybrid 

materials.  

Figure 27. Photochemical switching with 67a. 
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To perform modulation of the HRS signal with such hybrid materials, some of us have 

recently explored the possibility of photoswitching 67a by irradiating it in its metal-ligand 

charge transfer (MLCT) band (67a*(
1
MLCT)) at ca. 600 nm, and monitored the decay of 

the resultant species by ultrafast time-resolved (fs) spectrocopy (Figure 27) [81]. According 

to its valence bond structure, the metal center bears a positive charge in 67a*(
1
MLCT) and 

certainly possesses a sizeable Fe(III) character (form A). It should therefore possess a 

diminished hyperpolarizability relative to the ground state (GS) 67a. The study reveals that 

the initially populated MLCT singlet state 67a*(
1
MLCT) decays into a longer–lived 

metastable triplet state within 15 ps, which eventually reverts back to the GS. This triplet 

state, which likewise to 66a*(
1
MLCT) should exhibit a strongly diminished 

hyperpolarizability, is formed with a very high quantum yield. This study indicates that 

control of the HRS output might indeed be performed by photochemistry with polymers 

incorporating 67a, but more work is clearly needed. 

5.4.2. Materials for switching of cubic NLO properties

For cubic NLO properties it is not necessary to orient the constituent NLO-phores, since no 

symmetry requirements apply. Thus, the synthesis of molecular materials exhibiting such 

properties from ad hoc molecules is considerably easier than those of SHG-active materials. 

As a result, quasi-infinite metal-alkynyl polymers such as those shown in Figure 28 (82a-b, 

for various values of m, p and n) [82]  have been thoroughly investigated for their cubic 

NLO properties since the late 1980s [83-86]. Related materials made from discrete metal 

alkynyl complexes are scarce. χ(3)
 values (of ca. 20 × 10

-13
 esu) were obtained from third-
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harmonic generation measurements (THG) for doped polymers similar to those described 

above but instead incorporating organoruthenium complexes 45a-c (Figure 28) [87,88]. The 

largest value (3.0 × 10
-20

 m
2
/V

2
 or 21.5 × 10

-13
 esu) was found for 45b using the model of 

Kajzar and Messier [89,90].  All-optical switching (based on the Kerr effect) was recently 

reported with these films incorporating the azo-containing complexes 45a-c [91], and the 

thermal behavior of these films has been investigated [92], while similar hybrid materials 

incorporating NLO-phores 45a-f (Figure 28) have also been investigated for optical date 

storage applications [93-96].  

Figure 28. Examples of metal alkynyl polymers and doped polymers for which cubic NLO 

measurements have been undertaken. 

To access redox-switchable surface-supported NLO-phores, which are desirable but still 

challenging targets, an approach similar to that pursued with 80 has been explored, i.e. by 

grafting NLO-active alkynyl complexes with a pendant terminal alkyne unit onto p-doped 

Si-H surfaces. Because p-doped silicon is a semiconductor, the functionalized silicon chip 

might additionally be used as a working electrode to control the redox state of the NLO-

active monolayer. 
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Figure 29. Complexes 83a-c and 84 and photochemical grafting of 83a-c onto Si-H ([Fe] = 

Fe (κ2-dppe)(η5-C5Me5)). 

   

Photochemical functionalization of hydrogenated silicon (Si-H) surfaces by 83a-c forms 

densely packed redox-active monolayers (Figure 29) [97]. The linker-dependent apparent 

rate constants (kapp) derived for the electron-exchange rates between the terminal Fe(II) 

centers and the underlying silicon interface are amongst the highest obtained for 

organometallic monolayers (kapp > 350 s
-1

) on this type of support [98], evidencing that 

much faster rates might be obtained than previously reported for redox switching in 

Langmuir-Blodget films (which necessitated a switching cycle of ca. 2 min) [99]. 

Furthermore, the 4-ethynylphenylethynyl analogue (84; Figure 29) of 75 (Figure 20) has 

been attached to a hydrogenated silicon surface to form densely packed monolayers (around 

10
-10

 mol cm
-2

) and cycled through its three oxidation states [97], with similar behavior to 

that seen in solution; again, redox switching can be performed with high speeds for both 

redox systems addressed (kapp > 200 s
-1

) [100].   While the surface coverage at present may 

not permit measurement of the monolayer cubic NLO properties (because of insufficient 

molecular number density), transfering this silicon surface-based chemistry to the bulk 

(using p-doped porous Si-H) might afford access to Si-supported nanostructured materials 

that may have applications possibilities for controlling optical nonlinearity under potential 

control in their transparency window. 
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6. Conclusion 

�

Studies over the previous decade have demonstrated that Group 8 metal alkynyl complexes 

can be engineered to possess large nonlinearities, which various scaling procedures have 

suggested are arguably superior to similar, purely organic, compounds. Dipolar complexes 

are very efficient as quadratic NLO materials, but quadrupolar and octupolar complexes 

have demonstrable potential with specific cubic NLO properties and, for the latter, 

nonlinearity can be increased on dendrimer generation increase without loss of transparency. 

Examples with large values of multi-photon absorption cross-sections are of particular 

interest for possible applications necessitating tight control of the interaction volume (multi-

photon microscopy, micro-machining, etc.). Molecular switching of the nonlinear optical 

activities has been demonstrated with metal alkynyl complexes employing multiple 

orthogonal stimuli (pH, voltage, light) to generate molecules that are of interest in molecular 

logic applications.  

These achievements have thus far been largely restricted to solution studies. Translating this 

solution behavior to the solid-state is a necessary goal for many possible applications. Albeit 

challenging, the task of isolating metal alkynyl-based materials allowing the remote control 

of their quadratic or cubic hyperpolarizabilities by light or electrochemistry is clearly not out 

of reach, but will necessitate further work. In this respect, the recent demonstration of 

reversible redox behavior for surface-supported heterobimetallic iron-ruthenium assemblies 

appears quite promising in progressing towards these stimulating objectives, both from 

fundamental and applied perspectives.  
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