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Abstract 

The use of antibiotics and growth hormones in human and veterinary medicine has a significant 

effect on the quality of surface and groundwater. The relevance of an electrocoagulation (EC) 

process for the removal of an antibiotic selected because of its wide application, high solubility in 

water, high residual toxicity and an absence of biodegradability, was examined in this study. 

Metal hydroxides generated during EC were used to remove tetracycline (TC) from aqueous 

solution. The knowledge regarding the removal mechanism of this substance has not been 

investigated up to now. Experiments were carried out in a batch electrochemical reactor using 

aluminum electrodes. The removal of TC was relatively fast and equilibrium was reached within 

15 min. The effects of the main operating parameters were examined and showed that 

irrespective of the initial concentration and for pH ranging from 3 to 10, maximum removal 

efficiency remained close to 99%; while a sharp decrease was recorded at pH 2 (10 % removal). 

The results of this study also showed that the removal of TC from water was strongly affected by 

the current intensity. The mechanism of electrocoagulation was modeled using isotherm models 

and showed that the Sips isotherm matched satisfactorily experimental data, suggesting 

monolayer coverage of adsorbed molecules and assumed a quasi-Gaussian distribution energy 

owing to the high correlation also found for the Toth model. In addition, adsorption kinetic 

studies showed that the EC process followed a pseudo-second-order kinetic model at the various 

current densities, pH and initial antibiotic concentrations considered. 

Keywords: Adsorption; Electrocoagulation; Combined processes; Tetracycline; Kinetics; 

Isotherm. 
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1. Introduction  

Traditionally, the impact of chemical pollution has focused almost exclusively on the 

conventional priority pollutants. However, the growing use of pharmaceuticals worldwide, 

classified as the so-called emerging pollutants, has become a new environmental problem, which 

has raised great concern among scientists in the last few years [1]. More than 3,000 chemical 

products are used in human and veterinary medicine [2]. The use of antibiotics and growth 

hormones in human and veterinary has a significant effect on the quality of surface and ground 

water [3]. Among veterinary pharmaceuticals, antibiotics are widely prescribed with a prevalence 

of the tetracycline family; 50% of the antibiotics sold in France in 2004 [4]. At present, 

tetracycline antibiotics rank second in the production and usage of antibiotics worldwide [5]. It 

has been reported that TCs have been found in soils [6], surface water [7, 8], and groundwater 

[8]. Frequent application of tetracycline antibiotics has given cause for concern about increased 

antibiotic resistance of microorganisms in the terrestrial environment and the effect of antibiotics 

on plant growth [5]. The presence of TC and other antibiotics in natural environments can cause 

bacteria to acquire and transmit antibiotic-resistant genes, which potentially threatens ecosystem 

functions and human health [9]. Even low concentrations of pharmaceuticals released from the 

environmental matrix into water can pose serious environmental damages. Thus, it is of great 

importance to develop some efficient and cost-effective treatment technologies to remove such 

compounds. 

Various techniques such as ozonation [10], photo-Fenton process [11], photo electrocatalytic 

degradation [12], ion exchange [13] and adsorption [14] have been employed for the removal of 
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tetracycline from water. Among these available methods, adsorption is a widely used effective 

technology for the treatment of low concentration antibiotics. Recently, adsorption of tetracycline 

on sorbents based on metal or metal oxides such as montmorillonite [15], hydrous oxides of 

aluminum and iron [16, 17] were reported. 

 

The present study proposes an electrocoagulation (EC) process for the removal of tetracycline, 

which was selected because of its wide application, high solubility in water, high residual toxicity 

and its absence of biodegradability. Recent research has demonstrated that electrocoagulation 

offers an attractive alternative method for treating water [18]. EC treatment is characterized by 

simple and easy operated equipment, short operation time, no addition of chemicals and low 

sludge production. Iron or aluminum is generally employed as a sacrificial electrode material in 

EC process but other anodes like magnesium alloy [19] and aluminium alloy [20] can also be 

used. The dissolved metal ions, at an appropriate pH, can form a wide range of hydro complex 

species and metal hydroxides that destabilize and aggregate the suspended particles or precipitate 

and adsorb dissolved contaminants [21]. The anodic and cathodic reactions for aluminium 

electrodes can be written as [22, 23]: 

At the anode  

( ) ( )3 3Al s Al aq e+ −→ +  

At the cathode 

(1) 
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2 2
33 3 ( ) 32H O e H g OH− −+ → +  

The generated Al (aq)
3+ ions combine with hydroxyl ions to form the metal hydroxydes which are 

partly soluble in the water under definite pH values. Al 3+ and OH– ions generated by electrode 

reactions (1) and (2) react to form various monomeric species such as Al(OH)2+, Al(OH)2
+, 

Al 2(OH)2
4+,Al(OH)4

–, and polymeric species such as Al6(OH)15
3+, Al7(OH)17

4+, Al8(OH)20
4+, 

Al 13O4(OH)24
7+, Al13(OH)34

5+,which transform finally into Al(OH)3(S) according to complex 

precipitation kinetics [21, 24]. 

( )3
2 3

3 3Al H O Al OH H+ ++ → +  

The polymeric aluminum complexes can have both positive and negative charges capable of 

attracting the opposite charge of polluting species and remove them from the solution. 

Electrocoagulation is a complex and interdependent process strongly dependent on the chemistry 

of the aqueous medium [25]. The electrolyte pH plays an important role in the separation of 

suspended particles; at low pH the separation is dominated by precipitation while adsorption 

dominates at high electrolyte pH [22]. The Al(OH)3(s) formed “sweep flocs” have large surface 

areas which is beneficial for a rapid adsorption of soluble organic compounds and trapping of 

colloidal particles. Finally, these flocs can be easily removed from aqueous medium by 

sedimentation or H2 flotation [24]. 

In this study, a series of batch experiments were conducted. The removal efficiency was 

investigated by a series of experiments under different experimental conditions such as reaction 

time, solution pH, initial tetracycline concentration and current intensity. To our knowledge, no 

report is available in the literature dealing with the reduction of TC concentration in water using 

the EC process. 

(2) 

(3) 
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2. Theoretical part 

2.1. Electrocoagulation kinetics 

The pollutant is generally adsorbed at the surface of the flocs electrochemically generated, 

following two consecutive separate processes: (i) An electrochemical process through which the 

metal flocs are generated; (ii) followed by a physico-chemical process, namely adsorption on the 

surface of the flocs [22]. 

The removal of pollutant is similar to conventional adsorption except the generation of 

coagulants. The electrode consumption can be estimated according to Faraday’s Law and the 

amount of flocs generated can be stoichiometrically estimated. The formed aluminum floc traps 

the pollutant present in the solution by adsorption mechanism: From this, pollutant removal can 

be modeled by adsorption phenomena and the amount of adsorbed pollutant is [22]: 

( )0 t
t

V C C
q

M

−
=  

Where qt is the amount of tetracycline (TC) adsorbed per gram of medium (mg/g), V is the 

volume of solution (L), M is the weight of electrode dissolved (g); C0 and Ct are the initial 

concentration and the concentration of TC at any time t (mg/L), respectively. 

In order to investigate the mechanisms of the OTC adsorption process, various kinetic models: 

pseudo-first-order, pseudo-second-order, Fractional Power and Elovich models were applied to 

describe the adsorption kinetics onto aluminum hydroxides. The most accurate model was 

selected according to the linear regression correlation coefficient values, R2. 

The pseudo-first order kinetic model can be given as [26]: 

(4) 

(5) 
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( )1 e t

dq
K q q

dt
= −  

Where K1 (min-1) is the constant rate of adsorption, qt and qe are the adsorbed amounts at a given 

time t and at equilibrium (mg/g) respectively. After integration between 0 and a given time t, it 

comes: 

 

1ln e t

e

q q
K t

q

 − = − 
 

 

Which can be rearranged to give: 

( ) tKqqq ete 1lnln −=−  

 

The pseudo second-order model kinetic equation is [27]: 

( )2
2 te qqK

dt

dq −=  

Where K2 is the rate constant of the pseudo-second order equation (g/mg/min). 

Integration leads to: 

e
2
e2t q

t

qK

1

q

t +=  

The adsorption of TC onto aluminum hydroxides was also examined by Elovich and Fractional 

Power. The linearized method was used to determine the parameters of the kinetic models.  

The Elovich model kinetic equation is:  

tq
t

ln
1

ln.
1








+






=
ββ

α
β

                                                          (10) 

(6) 

(7) 

(8) 

(9) 
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The Elovich model was originally developed to describe the kinetics of heterogeneous 

chemisorptions of gases on solid surfaces. It has been used to describe the kinetics of 

sorption/desorption of various chemicals on solid phases. A plot of (qt) vs. (lnt) should give a 

linear relationship if the Elovich model is applicable, with a slope of 1/β and an intercept of 1/β 

ln(αβ). 

The Fractional Power or Power Function model kinetic equation is:  

qt = K tν                                                                   (11) 

with ν a positive constant (<1) and K a constant. 

The kinetic parameters were obtained from the plot ln(qt) vs ln(t), with a slope of �and an 

intercept of lnK.  

Equation 11 is empirical, except for the case where ν = 0.5; then Eq.11 becomes similar to the 

Weber-Morris model. Equation 11 and various modified forms have been used by a number of 

researchers to describe the kinetics of solid phase sorption/desorption and chemical 

transformation processes. 

2.2. Adsorption isotherm 

Since the removal of pollutant is similar to conventional adsorption, except the generation of 

coagulants, adsorption isotherm models can be extended to describe experimental isotherm data 

and identify the mechanism of the adsorption process. Isotherm models with two and three 

parameters have been therefore considered to establish the relationship between the amounts of 

tetracycline adsorbed onto the aluminum hydroxides and its equilibrium concentration in the 

aqueous solution containing tetracycline. The general forms of both these models were described 

as follows. 

The Langmuir equation: 
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01e
e

e

C q
C

q b b
= +  

Where b (L/mg) is the binding constant and q0(mg/g) refers the maximum adsorption capacity, 

evaluated by potting the Ce/qe against Ce. 

The Freundlich isotherm: 

1
ln ln lne f eq K C

n
= +  

Where Kf and n are the constants which give adsorption capacity and intensity respectively. 

The Sips equation: 

In the Sips model (eq.14), qe and Ce are the adsorption capacity at equilibrium and the 

equilibrium concentration, q0 represents the maximum adsorption capacity, b the adsorption 

equilibrium constant and n the dissociation parameter. If n = 1, the Sips model reduces to the 

Langmuir model. 

n
e

n
eo

e
bC

Cbq
q

+
=

1
                                                                            (14) 

The Toth equation: 

The Toth model is derived from potential theory and is applicable to heterogeneous adsorption. 

This isotherm (Eq. (15)) presupposes a quasi-Gaussian energy distribution. Most sites have an 

adsorption energy lower than the peak or maximum adsorption energy. 

( ) m/1m
e

eo
e

Cb

Cq
q

+
=                                                                     (15) 

 

3. Materials and Methods 

3.1. Chemical and reagents 

(12) 

(13) 
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Tetracycline hydrochloride (>96%) was obtained from Fluka – sigma-Aldrich (St. Quentin 

Fallavier, France). The molecular structure and pKa of TC are shown in Fig.1. TC could have 

different charges on different sites depending on the pH. According to the speciation of TC under 

various pHs [28], when solution pH is below 3.3, TC exists as a cation, +00, due to the 

protonation of the dimethyl ammonium group. At pH between 3.3 and 7.7, the zwitterion form, 

+−0, predominates due to the loss of a proton from the phenolic diketone moiety. At solution pH 

greater than 7.7, a monovalent anion +−−, or a divalent anion 0−−, from the loss of protons from 

the tricarbonyl system and phenolic diketone moiety prevail [29]. 

3.2. Experiments 

Experiments were carried out in a batch electrochemical reactor of 800 mL capacity (Fig.2) with 

Aluminum / Aluminum as sacrificial anode of 28.5 cm2 of submerged area. The electrode 

distance between anode and cathode was maintained constant at a value of 2 cm during 

electrolysis. A direct current was supplied by a DC regulated power source. Proper agitation was 

provided to maintain an uniform concentration inside the cell. A stock solution was prepared by 

dissolving an appropriate quantity of tetracycline in distilled water. The concentration of the 

supporting electrolyte was adjusted by adding KCl, and the tetracycline solutions were 

characterized by measuring their conductivity, which was found to be 1.2 mS/cm. The pH of the 

solution was adjusted by adding diluted HCl or NaOH. The sample was collected at every 30 s 

interval and then analyzed by UV-Vis spectroscopy. Experiments have been duplicated and the 

error was found to be below 5%. 

3.3. Tetracycline measurement 
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Antibiotic concentrations were quantified by UV/Vis spectroscopy [30, 31] (UV-Vis – Shimadzu 

Recording Spectrophotometer UV-1800). Tetracycline absorbance was measured at 360 nm. This 

wavelength is an isobestic point for this antibiotic. 

 

 

 

 

 

4. Results and Discussion 

4.1. Effect of the operating parameters 

4.1.1. Effect of the contact time 

Fig.3 shows the effect of the shaking time on the removal of TC by electrocoagulation process. 

High removal rates of TC were observed at the onset; and then plateau values were gradually 

reached within 15 min. 

The residual TC concentration versus time showed a single, smooth and continuous curve until 

reaching saturation (Fig.3), suggesting possible monolayer coverage of TC on the surface of the 

sorbent produced in situ.  

4.1.2. Effect of the current intensity 

In all electrochemical process, the current density is the most important parameter for controlling 

the reaction rate within the electrochemical reactor [32]. The current density is expected to 

exhibit a strong effect on EC, especially on the kinetics of removal, shortening the treatment. 

This is ascribed to the fact that at high current density, the extent of anodic dissolution of 

aluminum increases, resulting in a greater amount of precipitate for the removal of pollutants. 
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Moreover, bubble generation rate increases with increasing current intensity. These effects are 

both beneficial for high pollutant removal by H2 flotation. 

To investigate the effect of the current density, a series of experiments were performed using 50 

mg/L TC containing solution, at pH=6, for current intensities varying from 0.1 to 0.8 A (Fig.4). 

The removal efficiency of TC increased rapidly up to 98% for a current intensity of 0.3 A after 

only 6 min (Fig.4). It can also be observed that when the current intensity increased, the operating 

time decreased. For example, when the current intensity was increased from 0.1 to 0.8 A, the 

retention time of TC solution in the electrocoagulation unit was shortened from 15 min to 5 min. 

This means that the electrocoagulation equipment can be almost three times smaller for 0.8 A 

current intensity. These results have to be related to the increase of the amount of Al3+ cations 

released by the anode and hence the increase of Al(OH)3 particles. However, the difference 

between the curves corresponding to different current intensity became small when it was higher 

than 0.3 A. An optimum current density can therefore be defined. For the experimental conditions 

of Fig.4, optimal current seemed therefore to be equal to 0.3A 

4.1.3. Effect of the pH 

It has been established that the pH is one of the most significant factors affecting the performance 

of the electrochemical process, particularly on the performance of the electrocoagulation process 

[33]. To evaluate its effect, a series of experiments were performed, using 50 mg/L tetracycline 

for initial pH in the range 2 to 10. As illustrated in Fig.5, the removal efficiency of tetracycline 

remained constant and close to 99% for pH in the range 4 to10, and decreased to 10 % for pH 2. 

The effect of pH can be explained considering aluminum and TC equilibrium related to pH. At 

low pH, such as 2-3, cationic monomeric species Al3+ and Al(OH)2
+ predominated. Furthermore, 

when pH was below 3.3, TC existed as a cation, +00, due to the protonation of dimethyl 



13 

 

ammonium group, so the electrostatic repulsion between the cationic monomeric species (Al3+ 

and Al(OH)2
+) hindered the TC adsorption, resulting in a low efficiency. 

According to the speciation of TC under various pHs [28], at pH between 3.3 and 7.7, TC exists 

as zwitterion +-0, due to the loss of proton from the phenolic diketone moiety. On the other hand, 

when the pH was between 4 and 10, the Al3+and OH-ions generated by the electrode react to form 

various monomeric species such as Al(OH)2
+, Al(OH)2

2+ and polymeric species such as 

Al 6(OH)15
3+, Al7(OH)7

4+, Al13(OH)34
5+ which are finally converted into insoluble amorphous 

Al(OH)3(S) through complex polymerization/precipitation kinetic [32]. The best removal of TC 

was accomplished by charge neutralization and adsorption in the presence of the species 

mentioned above. For Zhou et al. [34], the hydrolytic species such as Al(OH)3 with a large 

surface area and amorphous structure are positively charged and are therefore strongly adsorbed 

onto the organic anionic particle and become insoluble by hydrolyzed cationic species such as 

Al(OH)2
+ and hence are more strongly adsorbed on negative surface than the free hydrated metal 

ion. 

At pH greater than 7.7, TC prevails as a monovalent anion, +-- or a divalent anion 0--, from the 

loss of protons from the tricarbonyl system and phenolic diketone moiety. The high removal 

efficiency can be assigned to the double effects of the attracted force between the cationic species 

of Al3+ and anionic species of TC and the adsorption of this latter onto Al(OH)3, which presents a 

large surface area. These flocs are active leading to a rapid adsorption of soluble organic 

compound (and trapping of colloidal particle) and are easily separated from aqueous medium by 

sedimentation or H2 flotation [35] 

The surface complexes of zwitterionic species of TC were previously suggested by Figueroa et al 

[36] as the major contributor to the adsorption mechanism of a kaolinite, montmorillonite. These 
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results were also reported by Chen et al [37] who studied the adsorption and transformation of 

TC onto aluminum oxide. 

4.1.4. Effect of the initial TC concentration 

The initial concentration provides an important driving force to overcome all mass transfer 

resistances of solutes between the aqueous and the solid phase [38]. The effects of the initial 

concentration (10-300 mg/L) were investigated at constant current intensity 0.8 A with1.25 g/L 

KCl in each experiment. The temperature of TC solution was maintained at 20°C and the EC 

experiments were run each time for about 15 min. The effect of the initial concentration on the 

removal yield is displayed in Fig.6, showing that the removal efficiency (RE) decreased almost 

linearly for increasing TC concentrations. The highest RE (96.5%) was obtained after only 2 min 

at 10 mg/L, while the lowest RE (50%) was obtained at 300 mg/L. Lower RE at higher TC 

concentration was caused by a lower amount of coagulant, Al(OH)3 species, which became 

therefore limiting. 

 

4.2. Isotherm modeling 

Analysis of the experimental adsorption data was carried out by considering the Langmuir, 

Freundlich Sips and Toth isotherms. The applicability of these isotherms was compared using the 

correlation coefficient R2. The values for the constants q0, b, Kf , n and m of the isotherms are 

collected in Table 1. 

From Table 1 and based on the R2 values, it can be noticed that the considered adsorption 

isotherms matched experimental data in the following increasing order: Sips > Toth > Langmuir 

> Freundlich isotherms. The above order revealed that the equilibrium data are better fitted by 

three-parameter models than two-parameter models. The Sips model was found to be the most 
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relevant to represent equilibrium data, showing that adsorption was heterogeneous and assumed a 

quasi-Gaussienne distribution energy owing to the high R2 value also found for the Toth model. 

 

4.3. Kinetic studies 

Pseudo-first, pseudo-second, Elovich and fractional Power models have been considered to 

describe experimental data and the corresponding correlation coefficients are given in Table 2. As 

shown, for all studied parameters the correlation coefficients for the first-order, Elovich and 

Power function kinetic models were relatively lower than those obtained for the second-order 

kinetic model for the various current densities, pH and initial TC concentrations considered. 

These results indicate that the second-order kinetic model can be suitably applied to predict the 

tetracycline adsorption process onto aluminum hydroxides. 

This model supposes that two reactions either in series or in parallel occur; the first one is fast 

and reaches equilibrium quickly and the second is a lower reaction that can continue for a long 

period of time [39]. 

It has been observed above that the operating parameters have a significant influence on the rate 

constant K2 of the pseudo-second order model (Eq.9). Fig.7a shows the influence of pH on the 

rate constant. It can be ascertained that the rate constant remained constant for pH values in the 

range of 4-10, similarly to the pH effect on TC removal yields.  

The effect of the initial concentration on the rate constant shows that the reaction rate constant 

(K2) decreased significantly for increasing initial TC concentrations (Fig.7b). This may be due to 

the fact that for a given charge, the number of hydroxides flocs generated was insufficient and an 

increase in the ratio of the initial concentration to the amount of flocs generated resulted in a 

reduction of the yield of TC removal. 
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The effect of the current intensity on the rate constant shows an increase for increasing current 

intensities (Fig.7c). This may be explained by the fact that for a given amount of pollutant, the 

amount of Al(OH)3 generated increased with the current intensity. 

 

5. Conclusion 

This work was a first step to improve the knowledge regarding the process removal by 

electrocoagulation with aluminum electrodes. The EC method applied in this study provided a 

sensitive, rapid and reliable technique for the removal of TC. The use of aluminum as sacrificial 

electrodes in the treatment of synthetic TC solutions by electrocoagulation has been found to be 

dependent on pH, current intensity and initial concentration. By applying linear methods, the 

mechanism of EC was modeled using pseudo-first, Elovich, Power Function and pseudo-second 

order models and it was shown that the EC kinetic followed pseudo-second order kinetic and that 

the reaction rate constant was influenced by the operating parameters. The metal hydroxides 

generated by EC can efficiently remove tetracycline by adsorption, and the EC process was 

modeled using adsorption isotherm models, showing that the Sips model accurately described 

experimental data. 

The results obtained in this study appear promising for the application of EC technology for the 

treatment of waters loaded with antibiotics, such as TC. For this purpose, they should be 

subsequently confirmed on real effluent 

 

Nomenclature 

α and β constants in the Elovich model  
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b the binding constant in the Langmuir model (L/mg) 

C0  the initial TC concentration (mg/L) 

Ct  TC concentration at a given time t  (mg/L) 

K1 the rate constant of adsorption (min-1) 

K2 the rate constant of the pseudo-second order equation  (g/mg/min) 

Kf refers to the adsorption capacity in the Freundlich model  

K, ν constants in the Fractional Power model  

M the mass of electrode dissolved  (g) 

qe the adsorbed amount at equilibrium  (mg/g) 

qt the amount of tetracycline (TC) adsorbed per gram of medium  (mg/g) 

q0 refers to the maximum adsorption capacity (mg/g) 

n refers to the intensity value in the Freundlich model  

m Constant in the Toth model  

V the volume of solution  (L) 
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Figure captions 

Fig.1. Molecular structure of TC. 

 

 

Fig.2. Schematic experimental setup of the electrocoagulation cell 
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Fig.3. Effect of the contact time on the removal of TC by electrocoagulation process (conditions: 

initial concentration of TC, 50 mg/L; volume of solution medium, 800 mL; temperature, 20±1°C;  

agitation rate, 400 tr/min, conductivity 1.2 ms/cm). 

 

Fig.4. Effect of the current intensity on the removal of TC by electrocoagulation process 

(conditions: initial concentration of TC, 50 mg/L volume of solution medium, 800 mL; 

temperature, 20±1°C; agitation rate, 400 tr/min, conductivity 1.2 ms/cm). 
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Fig.5. Effect of pH on the removal of TC by electrocoagulation process (conditions: initial 

concentration of TC, 50 mg/L; volume of solution, 800 mL; temperature, 20±1°C; agitation rate, 

400 tr/min, conductivity 1.2 ms/cm). 

 

Fig.6. Effect of the initial TC concentration on its removal by electrocoagulation process 

(conditions: volume of solution, 800 mL; current intensity, 0.8A; temperature, 20±1 ◦C; stirring 

rate, 400tr/min, conductivity 1.2 ms/cm). 
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Fig.7. Effect of pH (a) initial concentration (b) and current intensity (c) on the rate constant K2. 

 


