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ABSTRACT

A new joint diagonalization by congruence algorithm is pre-
sented, which allows the computation of a nonnegative joint
diagonalizer. The nonnegativity constraint is ensured by
means of a square change of variable. Then we propose a
Jacobi-like approach using LU matrix factorization, which
consists of formulating a high-dimensional optimization
problem into several sequential one-dimensional subprob-
lems. Numerical experiments emphasize the advantages of
the proposed method, especially in the presence of bottle-
necks such as for low SNR values and a small number of
available matrices. An illustration of blind source separation
shows the interest of the proposed algorithm.

Index Terms— Nonnegative joint diagonalization by
congruence, LU factorization, blind source separation, semi-
nonnegative independent component analysis.

1. INTRODUCTION

Consider a set C = {C(k)}Kk=1 of K real symmetric matrices
sharing the following joint congruent structure:

C(k) = AD(k)AT (1)
whereA∈RN×N denotes an unknown transformation matrix,
and D = {D(k)}Kk=1 is a set of (N×N) unknown diagonal
matrices. The Joint Diagonalization by Congruence (JDC) of
such matrices consists of identifying the matrix A up to a di-
agonal matrix and a permutation matrix. JDC is a fundamen-
tal tool for Blind Source Separation (BSS) and Independent
Component Analysis (ICA). In such problems, JDC identifies
the mixing matrix A or its inverse from the observation vec-
tor which obeys the linear instantaneous mixing model. The
K matrices C(k) can be chosen as time-shifted covariance
matrices, or higher order cumulant matrix slices.

The JDC problem has been mostly handled as a particular
optimization problem. The algorithms computing A mainly
depend on the criterion chosen to perform the optimization
[1]. A great number of algorithms, such as JAD [2], FFDIAG

[3], LUJ1D [4] and J-DI [5], compute A by minimizing the
following indirect least square criterion:

J(A)=
∑K

k=1‖ off(A−1C(k)A−T)‖2F (2)

where off(.) nullifies the diagonal parts of the input matrix,
the superscript −T means the inverse of the transposed matrix,
and ‖.‖F denotes the Frobenius norm. Other cost functions
are also used. ACDC [6] and the sub-spaces fitting algorithm
[7] estimate A and the set D by using a direct least square
criterion. Pham proposed an information theoretic criterion
[8], which requires the target set C to be positive definite.

Recently BSS involving nonnegativity constraint has
shown an interest in numerous applications such as image
processing, data mining and biomedical engineering (see
chapter 13 of [9]). Some BSS applications only involve a
nonnegative mixing matrix A, such as magnetic resonance
spectroscopy [10]. In this paper, we present a nonnegative
JDC algorithm based on criterion (2), which is committed to
seek a nonnegative joint diagonalizer A. The nonnegativity
constraint is imposed by means of a square change of vari-
able. Then a Jacobi-like approach based on LU matrix fac-
torization is presented, which formulates a high-dimensional
optimization problem into several sequential one-dimensional
subproblems. Numerical experiments emphasize the advan-
tages of the proposed method, especially in the presence of
bottlenecks such as for low Signal to Noise Ratio (SNR) val-
ues and a small number of matrices to be jointly diagonalized.
An illustration of BSS of infrared spectra shows the interest
of the proposed algorithm.

2. NONNEGATIVE JOINT DIAGONALIZATION

A way of imposing nonnegativity of any matrix belonging to
R

N×N
+ is through a square change of variable:

A=B �B
def
=B�2 (3)

with B ∈ RN×N , as originally proposed in [11] for Non-
negative Matrix Factorization (NMF), where � stands for



Hadamard product. By assuming that A is non singular, the
minimization of (2) such that A is nonnegative can be re-
formulated as an unconstrained problem by minimizing the
following criterion:

J+(B)=

K∑
k=1

‖ off((B�2)−1C(k)(B�2)−T)‖2F (4)

Minimizing (4) with respect to (w.r.t) B is the main goal of
this paper. For this purpose, based on LU matrix factorization,
the high dimensional optimization problem is then reduced to
the search of a sequence of sparse triangular matrices. Hence
we obtain a NonNegative extension of Afsari’s LUJ1D algo-
rithm [4], namely NNLUJ1D. Let’s recall the following defi-
nition:

Definition 1 A unit triangular matrix is a triangular matrix
whose main diagonal elements are equal to 1.

Then any non singular matrix B ∈ RN×N can be factorized
as B = LUΛΠ, where L ∈ RN×N is a unit lower trian-
gular matrix, U ∈ RN×N is a unit upper triangular matrix,
Λ∈RN×N is a diagonal matrix and Π∈RN×N is a permuta-
tion matrix. Consequently, due to the fact that (LUΛΠ)�2=
(LU)�2Λ�2Π and the indeterminacies of the JDC problem,
the matrix B solving (4) can be chosen as B=LU without
loss of generality. Now, let’s consider the following definition
and lemma:

Definition 2 An elementary triangular matrix T (i,j)(a) is a
unit triangular matrix whose non-diagonal elements are zeros
except the (i, j)-th entry, which is equal to a.

Lemma 1 Any (N×N) unit lower (or upper) triangular ma-
trix can be factorized as a product of N(N−1)/2 elementary
lower (or upper, respectively) triangular matrices.

The proof of lemma 1 is straightforward by reducing L (or
U ) into identity matrices using Gaussian elimination. Lemma
1 yields that B can be written as a product of elementary
triangular matrices:

B=

N∏
j=1

N∏
i=j+1

L(i,j)(`i,j)

N∏
i=1

N∏
j=i+1

U (i,j)(ui,j)
def
=

N(N−1)∏
(i 6=j)

T (i,j)(ti,j)

(5)
where T (i,j)(ti,j) is defined for the sake of convenience as
follows:

T (i,j)(ti,j) =

{
L(i,j)(`i,j), if i > j

U (i,j)(ui,j), if i < j
(6)

and N(N −1) is the total number of elementary lower and
upper triangular matrices. As a consequence, the minimiza-
tion of (4) is reduced to the sequential search of the N(N−1)
parameters ti,j . Indeed, instead of simultaneously identify-
ing these N(N−1) parameters, a Jacobi-like procedure will

repeat several sweeps of N(N−1) sequential optimizations
until convergence. Each optimization w.r.t only one parame-
ter ti,j with a selected (i, j) index. Let Ã and B̃ denote the
current estimate of A and B before estimating the parameter
ti,j , respectively. Then Ã(new) and B̃(new) stand for Ã and B̃
updated by T (i,j)(ti,j), respectively.

Proposition 1 If we have B̃(new)=B̃T (i,j)(ti,j), then Ã(new)=

(B̃(new))�2 can be written as a function of ti,j as follows:

Ã(new) =(B̃�2)T (i,j)(t2i,j)+2 ti,j(b̃i � b̃j)ej
T (7)

where b̃i denotes the i-th column of B̃, and ej is the j-th
column of the identity matrix I∈RN×N .

The proof of proposition 1 is straightforward and therefore
omitted. A natural way to compute the parameter ti,j is to
minimize the criterion (4) w.r.t ti,j by replacing matrix B by
B̃T (i,j)(ti,j). We use J+(ti,j) instead of J+(B̃T (i,j)(ti,j))
for the sake of convenience.

According to (4), the minimization of J+(ti,j) requires to
express the following update of the K matrices C(k):

C(k,new)=(Ã(new))−1C(k)(Ã(new))−T (8)

as an explicit function of ti,j . This can be done by means of
proposition 1. From equation (7), the first term of the sum is
a non singular matrix and the second term is a rank-1 matrix.
The sum of such two matrices can be inverted by Sherman-
Morrison formula [12]:

Theorem 1 Suppose that R is a non singular square matrix
and u, v are two vectors satisfying 1+vTR−1u 6=0, then:

(R+ uvT)−1 =R−1 − R
−1uvTR−1

1 + vTR−1u
(9)

Suppose that B̃, and the two vectors 2 ti,j(b̃i � b̃j) and ej
satisfy the conditions of the Sherman-Morrison formula, the
expression of (Ã(new))−1 has the following form:

(Ã(new))−1 =T (i,j)(−t2i,j)Q(B̃�2)−1 (10)

with:
Q=I − 2ti,j

1 + 2ti,jβj
βei

T (11)

where I∈RN×N is the identity matrix, β=(B̃�2)−1(b̃i�b̃j)
is a column vector and βj is the j-th element of β. Inserting
(10) into (8), C(k,new) can be rewritten by:

C(k,new)=T (i,j)(−t2i,j)QC̃
(k)
QT T (i,j)(−t2i,j)T (12)

where C̃
(k)

= Ã
−1

C(k)Ã−T is a constant matrix. Then
through a straightforward computation of (12), each ele-
ment of C(k,new) can be expressed as a function of ti,j as
described in the following proposition:



Proposition 2 Each non-diagonal element of C(k,new) is a
rational function in ti,j:

C(k,new)
m,n =E(k,3)

m,n t
3
i,j + E(k,2)

m,n t
2
i,j + E(k,1)

m,n ti,j + E(k,0)
m,n (13)

where E(k,3)
m,n , E(k,2)

m,n , E(k,1)
m,n and E(k,0)

m,n are the (m,n)-th el-
ements of the (N×N) symmetric coefficient matrices E(k,3),
E(k,2), E(k,1) and E(k,0), respectively, with 1≤m 6=n≤N .
These coefficients are defined as follows:

E(k,3)
m,n =


2(C̃

(k)
j,j βm−C̃

(k)
m,jβj)

(1 + 2ti,jβj)2
if n= i, 1≤m 6= i≤N

E(k,3)
n,m if m= i, 1≤n 6= i≤N

0 otherwise
(14)

E(k,2)
m,n =



4(C̃
(k)
j,j βmβn+C̃

(k)
m,nβ

2
j−(C̃

(k)
m,jβn+C̃

(k)
j,nβm)βj)

(1 + 2ti,jβj)2

if 1≤m<n≤N,m 6= i, n 6= i

4(C̃
(k)
j,j βmβn+C̃

(k)
m,nβ

2
j−(C̃

(k)
m,jβn+C̃

(k)
j,nβm)βj)−C̃(k)

m,j

(1 + 2ti,jβj)2

if n= i, 1≤m<i

E(k,2)
n,m if 1≤n<m≤N

0 otherwise
(15)

E(k,1)
m,n =


4C̃

(k)
m,nβj−2(C̃(k)

m,jβn+C̃
(k)
j,nβm)

(1 + 2ti,jβj)2
if 1≤m<n≤N

E(k,1)
n,m if 1≤n<m≤N

0 otherwise
(16)

E(k,0)
m,n =


C̃

(k)
m,n

(1 + 2ti,jβj)2
if 1≤m 6=n≤N

0 otherwise
(17)

where C̃(k)
m,n is the (m,n)-th element of the matrix C̃(k).

The proof of proposition 2 is omitted due to lack of space.
Then the total sum of the squares of these non-diagonal ele-
ments can be expressed in a compact matrix form as follows:

J+(ti,j) =

K∑
k=1

‖E(k)τ‖2F =τ TQEτ (18)

with:
QE =

∑K
k=1 E

(k)TE(k) (19)

where E(k) = [vecE(k,3), vecE(k,2), vecE(k,1), vecE(k,0)] is a
(N2×4) matrix, τ =[t3i,j , t

2
i,j , ti,j , 1]T is a 4-dimensional pa-

rameter vector, and vec(.) reshapes a matrix into a column
vector. MatrixQE is a (4×4) symmetric coefficient matrix.

Equation (18) shows that J+(ti,j) is a rational function,
where the degrees of the numerator and the denominator are
6 and 4, respectively. The global minimum ti,j can be ob-
tained by computing the roots of its derivative and selecting
the one yielding the smallest value of (18). Once the opti-
mal ti,j is computed, the matrix Ã is updated by computing

(B̃T (i,j)(ti,j))
�2. Then the Jacobi-like procedure is repeated

to compute ti,j with the next (i, j) index. The processing of
all the N(N−1) parameters is called a sweep. The algorithm
requires several sweeps to converge and can be stopped when
the value of (18) falls below a fixed small positive threshold.

3. SIMULATION RESULTS

In this section, the performance of the proposed NNLUJ1D
algorithm is evaluated with synthetic data, in order to show
the influence of SNR and the number K of matrices to be
jointly diagonalized. The proposed algorithm is compared
with two classical non-orthogonal JDC methods, namely FF-
DIAG [3] and LUJ1D [4]. Then an illustration of BSS appli-
cation is given to show the interest of the proposed algorithm.
The performance is measured in terms of the error between
the true diagonalizer A and its estimate Ã. So the scale and
permutation invariant distance defined in [13] is used:

∆(A, Ã) = min
Π

Ψ(A, ÃΠ) (20)

where the distance (20) requires to sweep all the (N ×N)
permutation matrices Π, and:

Ψ(M ,M̃) =
1

N

N∑
n=1

‖mn −
m̃n

Tmn

m̃n
T m̃n

m̃n‖2F (21)

with mn and m̃n the n-th columns of M and M̃ , respec-
tively. A small ∆(A, Ã) value means a better JDC perfor-
mance in the sense that Ã is closer toA.

The synthetic matrix set C is generated randomly accord-
ing to the JDC model (1). In the following tests, A ∈ R3×3

+

is generated according to (3) where B ∈ R3×3 is a random
matrix with elements independently drawn from a real zero-
mean unit-variance Gaussian distribution. The diagonal ele-
ments of D(k) ∈R3×3 are similarly generated. The resulting
target set CN is perturbed by a white Gaussian noise array N :

CN =
C
‖C‖F

+ σN
N
‖N ‖F

(22)

where σN is a scalar controlling the noise level. Then the
SNR is defined as SNR =−20 log10(σN ). Moreover, we re-
peat all the experiments with 500 independent Monte Carlo
trials. All the algorithms stop either when the relative error of
the corresponding criterion between two successive sweeps is
less than 10−5 or when the number of sweeps exceeds 500.
All the algorithms are initialized by identity matrices.

3.1. Effect of SNR

In this test, the compared algorithms are applied to noisy
data for different SNR levels. The number of matrices is
set to K = 3. We repeat the experiment with SNR rang-
ing from 0 dB to 30 dB. Figure 1 shows the averaged er-
ror ∆(A, Ã) of compared algorithms as a function of SNR.
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Fig. 1. The average error ∆(A, Ã) evolution of compared
algorithms versus SNR. The dimension of A and the number
of matrices are set to N=3 and K=3, respectively.

One can notice that, as SNR grows, the performance of all
the JDC methods increases quasi-linearly. The difference be-
tween FFDIAG and LUJ1D is small. It appears that the pro-
posed NNLUJ1D algorithm achieves better estimations than
FFDIAG and LUJ1D, especially when the SNR values are
lower than 15 dB.

3.2. Effect of the number of matrices

In this test, the effect of the number K of matrices on the
performance of the compared algorithms is evaluated. The
SNR value is fixed to 5 dB. We repeat the experiment with
K ranging from 3 to 30. Figure 2 shows the averaged error
∆(A, Ã) of compared algorithms as a function of K. For
all the JDC algorithms, the increase of K induces better es-
timation performance. The classical algorithms FFDIAG and
LUJ1D behave similarly. NNLUJ1D maintains a competitive
advantage over FFDIAG and LUJ1D through all K values.

3.3. Performance of BSS of infrared spectra

In this section, we demonstrate the potential usefulness of
the proposed algorithm through a BSS application carried out
on infrared spectra. NNLUJ1D is compared with three well-
known BSS algorithms, namely the ICA methods CoM2 [14]
and SOBI [15], and a NMF method based on alternating
NonNegative Least Squares (NNLS) [16]. Three gas phase
Fourier-transform infrared spectra of three materials, namely
Toluene, Dichloromethane and Methanol (see figure 3(a)),
with 0.125 cm−1 resolution [17], serve as source signals s.
Three linear observations (see figure 3(b)) are created by the
linear mixed model x = As with A similarly generated as
in the previous section. The matrix set C contains 12 matrix
slices chosen from the third and fourth order cumulants.
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Ã
)

 

 

NNLUJ1D

LUJ1D

FFDIAG

Fig. 2. The average error ∆(A, Ã) evolution of compared al-
gorithms versus the number of matrices K. The dimension of
A and the SNR are set toN=3 and SNR=5 dB, respectively.

Table 1. Average estimating errors of the mixing matrix
∆(A, Ã) and the sources ∆(sT, s̃T) of four methods for BSS
of infrared spectra

NNLUJ1D CoM2 SOBI NNLS

∆(A, Ã) 0.0401 0.0494 0.2845 0.1144
∆(sT, s̃T) 0.0690 0.0837 0.4165 0.1863

The average estimation errors ∆(A, Ã) of the mixing ma-
trices and that ∆(sT, s̃T) of the source spectra of the compared
methods are shown in table 1. It can be seen that the proposed
NNLUJ1D method gives the smallest estimating errors both
for A and s. The estimated spectra of the compared methods
are displayed in figures 3(c) to 3(f). It shows that the pro-
posed NNLUJ1D algorithm gives a better result than classic
methods. The results infer that when the source spectra are
partially correlated, using only the independency or the non-
negativity may not yield a perfect decomposition. In such a
case, the complementary nonnegative information along with
the independence could improve the separation result.

4. CONCLUSION

In this paper, we address the problem of nonnegative JDC.
We exploit the elementary triangular parameterization of the
Hadamard square root of the nonnegative joint diagonalizer.
Thus we propose a Jacobi-like approach. In each Jacobi-like
iteration, the optimization is formulated into the minimization
of a rational function w.r.t only one parameter. Numerical ex-
periments on simulated data spotlight the advantages of the
proposed method in the presence of bottlenecks, such as for
low SNR values and a small number of available matrices to
be jointly diagonalized. Furthermore, the potential interest of
the proposed algorithm is demonstrated through a BSS exper-



0 1 2.5 4 5.5
x 10

4

1

2

3

(a) Source spectra

0 1 2.5 4 5.5
x 10

4

1

2

3

(b) Observations

0 1 2.5 4 5.5
x 10

4

1

2

3

(c) Estimated by NNLUJ1D

0 1 2.5 4 5.5
x 10

4

1

2

3

(d) Estimated by CoM2

0 1 2.5 4 5.5
x 10

4

1

2

3

(e) Estimated by SOBI

0 1 2.5 4 5.5
x 10

4

1

2

3

(f) Estimated by NNLS

Fig. 3. Infrared source spectra, mixtures and estimated spec-
tra by NNLUJ1D, CoM2, SOBI and NNLS.

imental context.
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