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Roles for local crowding and pressure in counteracting
density fluctuations at equilibrium

Denis Michel

Universite de Rennesl-IRSET. Campus de Beaulieu Bat. 13.
35042 Rennes cedex. denis.michel@live.fr

Abstract What is the probability that all the gas in a box accumulates in the same
half of this box? Thought amusing, this question underlies the fundamental problem of
density fluctuations in equilibrium, which has profound implementations in many physical
fields. The currently accepted solutions are derived from the studies of Brownian motion by
Smoluchowski, but they are not appropriate for the directly colliding particles of gases. T'wo
alternative theories are proposed here using self-regulatory Bernouilli distributions. A quan-
tum of space is first introduced to develop a mechanism of matter congestion holding for high
densities. In a second mechanism valid in Maxwell-Boltzmann conditions, the influence of
local pressure on the location of every particle is examined using classical laws of ideal gases.
This approach reveals that a negative feedback results from the reciprocal influences between
individual particles and the population of particles, which strongly reduces the probability
of atypical microstates. Finally, a thermodynamic quantum of time is defined (h/4kgT) to
compare the recurrence times of improbable macrostates predicted through these different
approaches.

Keywords: Recurrence time; rare macrostates; density fluctuations; quantum of time.

1 Introduction

If you stand in one side of a closed room and that all the air suddenly accumulates on the
other side, you would fatally suffer from depressurization. Yet nobody seems afraid by this
horrible scenario. People without notions of statistical mechanics just feel that this is im-
possible. Statistical physicists consider that this situation is improbable, but so improbable
that it is completely negligible. In fact, this probability has never been exactly calculated.
This question touches the long standing paradox of macroscopic transitions considered at
first glance as irreversible but underlain by microscopic reversibility. New and rigorous cal-
culations will be presented in this article to quantify the recurrences times of Poincaré.



2 Macro-irreversibility resulting from micro-reversible
processes

According to the second law of thermodynamics, macrosystem evolutions can be classified into
reversible and irreversible ones. From a statistical perspective, irreversible transitions trans-
form macrostates covering a lower number of microstates (less probable) into macrostates
covering a higher number of microstates (more probable). A simple example is the expan-
sion in a box of a gas previously confined in a small subvolume after removal of a partition
membrane. This rational principle of irreversibility however raised concerns, particularly ve-
hement from Zermelo [1]. For historical reviews on these debates, see [2, 3]. The Loschmidt
reversibility paradox [4] stressed that since all microscopic changes are reversible, there is no
reason for an ensemble of microscopic changes to be not reversible. This view is supported
by the recurrence theorem of Poincaré, which states that any very improbable state, such as
a well organized initial state, will necessarily reappear, given sufficient time [5]. Considering
the example of gas expansion described above, such an event would be the reclustering of
gas particles in a small region of the box. Moreover, as this state will reappear once, it will
reappear infinitly often, giving rise to a quasi-periodic phenomenon. The right question is not
whether this event can occur or not, but how often it reproduces. As pointed by Zermelo, this
paradox ruins the idea of irreversibility. The answer of Boltzmann to Zermelo was: ” Young
man, you know mathematics but you don’t know physics. Think how long it takes for that to
happen? It would take far longer than the age of the universe even for a very small system”.
For his calculus, Bolzmann used the example of 1 cm? of gas with the assumptions, somewhat
puzzling, that the system passes through all its microstates before recurrence and that 1027
different microstates take place in one second. To test the answer of Boltzmann, a very small
system and the universe age unit will be used at the end of this study. Indeed, the discon-
nection between realistic observation time windows and the recurrence waiting times would
be an excellent argument, but in fact the parameter of time is absent from the microstate
enumerations of Boltzmann and this point has never been really quantified. Moreover, the
theory generally believed to address this point, that of Smoluchowski, is inappropriate to
quantify recurrence periods for self-colliding systems such as gases.

3 Traditional modeling

A traditional tool of statistical mechanics is a box of volume V' containing N randomly
distributed particles. In this box, the number of particles x present in a subvolume v is
subject to fluctuations around a mean value Nv/V. The probability that z = n is currently
given by a simple Bernouilli distribution:
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which says that the probability of location of a single particle is dictated by the fraction
of available volumes only [6]. This admitted result can however be questioned because it
neglects both particle exclusion and pressure and is valid only for very low densities. The
available space is more and more reduced as density increases. As a consequence, Eq.(1)



overestimates the probability of atypical microstates such as those in which near all the par-
ticles are in the same side of the box. The absence of consideration for concentrations is well
illustrated when v = V//2 since in this case, Eq.(1) reduces to P(z = n) = (V) /2", that is
manifestly independent of densities. Two mechanisms are proposed below to restore a role
for the relative particle density in the compartments: (i) the bulk or congestion hypothesis,
only appreciable for highly concentrated systems, and (ii) the pressure hypothesis, impor-
tant for gases in ordinary conditions and dramatically missing in the current approaches to
density fluctuations. But let us first point out the assumptions of Smoluchowski which are
inappropriate for gases.

4 Brownian motion vs mutual collision

The celebrated study of Smoluchowski on density fluctuations in a medium of constant aver-
age density [8], is far from general. Smoluchowski’s calculations were celebrated because they
remarkably fitted the experiment of Svedberg on particles moving through Brownian motion
[9]. But Brownian motion does not result from mutual collisions. The difference is enormous
since the main starting assumption of Smoluchowski is that the motions of the different
particles are not mutually influenced, so that all possible individual positions have equal a
priori probabilities. With respect to the problem of density fluctuations, this assumption
implies that the probability of entrance of particles in any subvolume, does not depend on
the number of particles already contained in it. Accordingly, the basic ingredient used by
Smoluchowski was a Poisson distribution P(x = n) = v™e™/n! corresponding to the limit of
the binomial formula of Eq.(1) for very large N and V' and a mean value v = Nv/V. The
movements of colloids are the resultant of huge numbers of collisions with solvent molecules
but not of direct collisions between the suspended substances. Moreover, the motion of these
substances is buffered by surrounding solvent molecules, so that they are not transferred to
the other suspended particles, thereby ensuring the mutual independence of these particles
and their insensitivity to crowding and pressure. This independence no longer applies to
systems made of mutually colliding particles. In sharp constrast, the motion of gas particles
is determined by collisions with other gas particles. A very interesting consequence of this
situation is that every individual particle is both (i) an actor of the collective effect known
as pressure, and (ii) a receptor of this pressure which influences its own location. These
reciprocal influences between the individual and the population is the essence of statistical
mechanics and should appear in the formulation of density fluctuations, contrary to Eq.(1)
and to the assumptions of Smoluchowski.

5 The congestion mechanism for dense systems

The description of this mechanism necessitates discretizing space. The discretization of
space allows to reconcile the classical approaches to statistical dynamics with the principle
of spatial exclusion. Indeed, the pioneer versions of the ideal gas theories ignored the size
of the particles, which were conceived as superposable points whose number is defined in
N, scattered in continuous volumes defined in R3. Hence, considering V" /N! as a number



of microstates, as often found in the literature, is formally erroneous. This problem can be
solved by discretizing space.

5.1 Quantum of space

The concepts of volume per particle and of mutual exclusion have been introduced in more
elaborated versions of kinetic theories, for instance to describe transportation properties such
as viscosity, diffusion and thermal conductibility. Moreover, a thermal Planck volume has
then been defined as the volume necessary to include a single particle at given temperature,
shape and mass, with a mean momentum p. For elementary particles, A is the thermal
wavelength of de Broglie A\ = h/p = h/+/2rmkgT where h is the Planck constant, kg the
Boltzmann constant and 7" the temperature. This elementary volume allows to define discrete
volumes corresponding to the integers closer to V/A3. In addition to solve the Gibbs paradox
(Michel, submitted), this space discretization can also be useful for calculating fluctuation
densities of concentrated systems for which the volume occupied by the particles cannot be
neglected.

5.2 Fluctuation probabilities of dense systems

This theory applies to any dense system, including suspensions. If the volumes v and V'
contain n and (N — n) particles respectively, the probability for a (N + 1)th particle to be
in v is not v/V as assumed in Eq.(1), but (v —nA?)/(V — NA?). This difference is of course
negligible when V is very large compared to NA3, but not for dense systems. When the
intrinsic volume of particles is no longer negligible, the general probability that n particles
are present in v can be obtained after defining unitless volumes V = V/A3 and © = v/\3.
This discretization does not forbid using Eq.(1), rewritten for the circumstance

N\ ¢"(V — g)N-n )
(o o
In this equation, the exponents mean that the entry of a particle in one compartment
does not depend on the number of particles already in this compartment. But if minimal
space per particle is not negligible, when one a particle in present, ¥ — 1 places remain free;
when 2 particles are present, ¥ — 2 places are available etc. Hence, Eq.(2) becomes

’ ’ ’

N) [6(60 —1)..(6 =+ D][(V=0)(V =t —1)..(V =0 —N+n+1)]
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Note that instead of starting from Eq.(1), the result can be conceived directly from Eq.(4)
which describes the number of ways to distribute n and (N — n) particles in ¥ and (V — 0)
cells respectively, among a total number of possible distributions of N particles over V cells.

Eq.(4) is intrinsically normalized, as should be a probability density function, since

P(x =n) = ( (3)

n

that can be rewritten
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One can verify that Eq.(1) is recovered when the particles are very scarce in a very large
volume. Indeed, Eq.(3) can be rearranged as

R (6)

e =m0 pt) (- ) - (2]
(0=3) (=) ()]

If V >> N, it is likely that ¢ >> n and then that (V — @) >> (N —n), so that R ~ 1.
Then, Eq.(6) reduces to Eq.(2) and to Eq.(1) since the A\* factor disappears.

A satisfactory behaviour of Eq.(4) is that the probabilities of typical configurations is
higher than for Eq.(1), while those of highly asymmetric configurations are much lower
(Fig.1). However, this difference is only marginal for moderately dense systems. It can
be strikingly increased by introducing a role for local pressures in particle distribution.

with

(7)
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Figure 1. Comparative results of Eqs(1) and (4). For a small but dense system made of 60
particles running and colliding in a box of V/A3 = 75 cells, the curves represent the probabilities
of finding n particles in a subvolume of 25 cells, calculated using either Eq.(1) (red) or Eq.(4)
(blue, darker). Eq.(1) underestimates the symmetric microstates around the mean density n = 20
(n = Nv/V) and conversely overestimates the probability of the asymmetric microstates, because
it does not take into account the intrinsic volumes of the particles.

6 The pressure feedback

Suppose that a box contains N particles, out of which n are present in a subvolume v and
(N —n) are in the remaining volume (V' —v). As previously, these compartments are defined
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conceptually and are not enclosed by any physical boundary. Now imagine the fate of a
single particle present at the interface between v and (V' — v). To determine the probability
that this particle enters either v or (V — v), it is reasonably not acceptable to neglect the
influence of the relative densities in these subvolumes, because of the associated probability
of expulsive collisions. This parameter is related to pressure. A crude modeling attempt is
proposed to illustrate the consequence of incorporating this parameter, as follows. Pressure
represents the density of collisions, itself proportional to the density of the particles (%) at
given temperature (because P = $kgT). The probability (written below P[€ ...]) for any
particle to enter one compartment rather than the other one, is a function of the competitive
propensities of these compartments to recruit this particle. These propensities are named
F, and Fy_, for the compartments v and (V' — v) respectively. Given that they should be
normalized to 1 over the whole box, these probabilities take the forms

F,
Pled=55r, &
and 7
o V—v
P[E (V - U)] - Fv i vau (Sb)

The propensity to incorporate a particle should now be defined. It seems rational to postulate
that F' is the product of two parameters which concur equally to take up a particle, which
are:

e The fractional volume available in the absorbing compartment (the only parameter
considered in Eq.(1)), whose values are % for the compartment v and (1 — %) for the
compartment (V' —v).

e The fractional pressure in the rejecting compartment, equivalent to the outside frac-

tional particule density, whose values are here % = (1 — %) / (1 — %) for the

compartment v and ]’\"”,ﬂ’/ = (%) /(%) for the compartment (V — v).

Introducing these values into Eq.(8) gives

Ple v] = - %) @) (9a)

and

Vi () 1—3)°
T T e - .

These equations satisfactorily simplify in singular situations. If the density in v is the
same as in (V' —v), that is to say when n = Nv/V, one obtains

Ple v] = (10a)

<|=

and

Ple(V—v)]=1- (10b)

v
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which are simply the probabilities used in Eq.(1). Reciprocally, if the compartments have
the same volume (v = V//2), then the probabilities become only dependent on the number of
particles in these compartments, as expected

Plev] =1- % (11a)
and n
Ple (V= v) = (11h)

This result, symmetric to the previous one found when the number of particles does not
matter, is valid for moderate fluctuation ranges around n = N/2 and relevant for ordinary
macroscopic systems. The next step of the reasoning is to understand that every individual
particle can be considered as the Nth component of a population already containing all
others, so that all the particles are equally submitted to Eq.(9), which are functions of n
ranging from 0 to N and v ranging from 0 to V. A factor 2 is introduced for normalization of
the probability that n particles are present in v, yielding the completely developped equation

re=n=2(3) (= ar=m) (w=mesar=ap) 02

This equation holds when V' >> N, otherwise it requires introducing the bulk approach de-
scribed previously. Eq.(12) is a self-regulatory Bernoulli distribution embodying the circular
influence between individuals and the population, which is a negative feedback. This nega-
tive feedback severely readjusts any deviation from equipartition back to equipartition, with
a strength even stronger when the gap is large. Numerical application reveals that Eq.(12)
tolerates very much less than Eq.(1) atypical microstates such as the strongly asymmetric
ones containing few particles in v or (V' — v). To concretely conceive this point, if all the
particles are already present in the left half of the box (a purely theoretical hypothesis), then
the probabilities for an additional particle to enter either the left or right halves are not 1/2
and 1/2 as in Smoluchowski’s theory, since there is near 100% chance that it bounces back
in the empty side.

7 Recurrence times

Strongly asymmetric distributions are supposed to be so improbable that they never occur.
Physically speaking, the recurrence time of Poincaré of extreme microstates is expected to
exceed all possible observation windows. However, to formally establish this point, it is first
necessary to define the time step separating two different configurations in a box of gaz.
Indeed, if particle trajectories are conceived as continuous, then any time window dt, as
short as desired, is expected to contain an infinite number of configurations. As noticed by
Zermelo, probabilities do not contain temporal terms. This problem forebids the calculation
of recurrence times and contradicts the finite number of configurations (V/N!\?) assumed in
the Sackur-Tetrode equation. Once again, discretization (in this case of time) can save us.
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7.1 Thermal quantum of time

The goal is now to define the time step 7 separating two consecutive configurations. There is
no reason to define this step as a function of the collisions since it is expected to not depend
on the density of a gas at given temperature. Instead, it is proposed here that this quantum
of time is the time necessary to cross the length unit below which successive configurations
cannot be distinguished, because of the uncertainty principle. This is precisely what is the
thermal wavelength of de Broglie A. Hence, for a mean particle velocity (v) = \/8kgT /mm
obtained by averaging the velocities distribution [11], one obtains

A b
(v)  4kpT

Recurrence times can now be calculated.

T =

=4x10"sat T =300 K (13)

7.2 Calculation of recurrence times
7.2.1 For a microstate

A microstate of probability P = 1/, is expected to reappear after a mean waiting time
(T) = Qr, regardless of the initial observation time.

7.2.2 For a macrostate

A macrostate covers a certain number of microstates giving the same macroscopic outcome
X; for example those in which all the particles are in the same half of a box. The probability
of a macrostate X is the fraction of these microstates Px = Qx/€2. The mean recurrence
time of a macrostate is of course lower than those of its constituent microstates, such that

Q T

Ty =—7=—

< >X QX PX

Strictly speaking, (1), is not a period because rare events are not regularly spaced in
time contrary to the numerical estimate of Boltzmann. Given the memoryless nature of
transitions resulting from numerous chaotic collisions [12], the probability that a given state

occurs before ¢ is

(14)

P(X <t)=1-¢"/Dx (15)

To get a concrete idea of the potency of Eq.(12) compared to Eq.(1), the recurrence
times expected from the classical and the pressure approaches, are compared in the case of
the distribution of only 100 gas particles (Table 1). Results are obtained by integrating the
probability density functions Eqs(1) and (12).

The system considered in Table 1 is very small since it corresponds to only 0.37 billionth
of a picoliter of gas under one atmosphere, but it is however sufficient to reveal the aston-
ishing gap between the predictions of Eq.(1) and Eq.(12). Even when using the time step
arbitrarily used by Boltzmann (1072° s) which is many times shorter than 7 used here, the
former calculation gives amazingly smaller recurrence times. This difference results from the
introduction of a role, so far neglected, for pressure. When taking this role into account,



Table 1: Recurrence times of atypical macrostates in which more than 90 out of 100 particles
are confined in 3/4 or 1/2 box. The results shown are obtained with the classical approach
(Eq.(1)) and with the pressure feedback model examined here (Eq.(12))(Note that the unit
of age of the universe is used in reference to the response of Boltzmann to Zermelo quoted
previously, but it is purely illustrative and not very rigorous since 7 is likely to have been
much shorter in the primordial universe).

Macrostate Model  Recurrence time

ARSI Eq.(1) 0.5 nanosecond
> 90% particles in 3/4 of the box Eq.(12) 2 hours 45 minutes

R Eq.(1) 1 hour 47 minutes
> 90% particles in a half-box Eq.(12) 10%" universe ages

recurrence times of Poincaré, even for very small systems, become purely mathematical but
no longer physical, in agreement with the response of Boltzmann to Zermelo, thus restoring
the idea of macroscopic irreversibility.

8 Discussion

The tool of discretization is used twice in this study: for space in the bulk approach, and for
time for measuring recurrence times. The discretization of physical parameters previously
conceived as continuous, is illustrated by the Planck’s constant and long proved successful
by allowing to get rid of dimensions in mathematical treatments and, incidentally, opened
the way to quantum mechanics. As established for matter since Boltzmann, and for energy
since Planck and Einstein, the continuous appearance of space and time could be also, af-
ter all, only illusions resulting from scale separation. Anyway, their discretization allows to
generalize the use of powerful discrete probabilities. Following the advice of Mark Kac, for
finding a lot of solutions in mathematical physics, ”Be wise, discretize!”. The thermodynamic
quantum of time h/4kpT defined and used in this article is satisfactory enough in that it is
universal, only dependent on temperature but not on parameters such as specific densities
and masses. This time step could be very useful to make the connection between probabilities
and time. It is important to precise that this time step is microscopic and reversible, valid as
well in equilibrium and nonequilibrium situations. In this respect, it should not be confused
with the thermodynamic arrow of time, which is macroscopic by nature and defined by the
tendency of equilibration [13]. For example, the arrow of time, but not time steps, disappears
for resting water in a bucket, in spite of its incessant microscopic movements.

It is shown here that the propensity of dynamic systems to homogenize is much stronger
than previously anticipated. The new formulations provided are original and highlight the



reciprocal influences between individuals and the population which are a fundament of sta-
tistical mechanics. This study formally quantifies and further supports the probabilistic view
of Boltzmann without denying the existence of fluctuations. The fluctuation theorem saying
that microscopic fluctuations cause local decreases in entropy even in isolated systems, mis-
leadingly connects microscopic phenomena to entropy, whereas Boltzmann clearly indicated
that this notion is purely macroscopic and meaningless at the microscopic scale. The present
study also provides tools for explicitly quantifying the nonphysical status of the Poincaré
recurrence theorem. According to this theorem, after sufficiently long time, any finite system
can turn into a state which is very close to its initial state, which means that the second law
of thermodynamics will be broken in even macroscopic scale. But only brains of mathemati-
cians can be not impressed by the value of the "sufficiently long time” given by Eq.(12) in
Table 1. Mathematical modeling of physical phenomena, though incomplete, is certainly one
of the noblest successes of humankind, but care should be taken, particularly in the field of
probabilities, to always distinguish between mathematics and physics, following the recom-
mendation of Boltzmann. For instance, certain asymptotes which are never reached from a
mathematical viewpoint, are reached in the real world. Conversely, infinitesimal probabilities
which exist mathematically, must be translated as "never” in the real world.
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