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Seven competing ways to recover the Michaelis-
Menten equation reveal the alternative approaches
to steady state modeling

Denis Michel - Philippe Ruelle

Abstract The Michaelis-Menten enzymatic reaction is sufficient to perceive
many subtleties of network modeling, including the concentration and time
scales separations, the formal equivalence between bulk phase and single-
molecule approaches, or the relationships between single-cycle transient prob-
abilities and steady state rates. Seven methods proposed by different authors
and yielding the same famous Michaelis-Menten equation, are selected here to
illustrate the kinetic and probabilistic use of rate constants and to review basic
techniques for handling them. Finally, the general rate of an ordered multi-
step reaction, of which the Michaelis-Menten reaction is a particular case, is
deduced from a Markovian approach.

1 Preliminary tools: the helpful scale separations

The approximation of concentration and time scales separations is often rea-
sonable in cellular biochemistry, but some discernment is necessary for its
proper application, in particular to define pseudo-first order constants and de-
cide which reactions can be considered as in quasi-equilibrium compared to
others.
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1.1 Concentration scale separation

The wide differences of molecular concentrations in the cell greatly facilitate
network modeling. The concentration of the more concentrated reactant, gen-
erally called the ligand, or the substrate in enzymology, can be associated to
second-order constants to give so-called pseudo-first order constants. This ap-
proximation strongly simplifies elementary treatments, for example to define
hyperbolic saturation functions through equating the concentrations of total
and free ligand. To apply the concentration scale separation, it is important
to decide which reactant should be fused to the second-order constant. De-
pending on the cases, the same molecule can behave as either the leading
macromolecule or as the ligand. This is the case, for example, for a transcrip-
tion factor, say the estrogen receptor (ER), activated by the estrogen hormone
(E2) and then capable of binding to a given unique gene (G) from the X chro-
mosome. Even if ERs are not very numerous in the cell, they are however
much more abundant than the single gene. Hence, ER can be considered as a
diffusible ligand whose concentration varies slowly compared to the dynamics
of its interaction with the gene. Conversely, when studying the activation of
ER by E2, the ligand is now E2, which should be integrated in pseudo-first
order rates of ER state changes. If the binding of E2 to ER and the binding of
ER to G are to be mixed in the same model, a new approximation intervenes:
the time scale separation.

1.2 Time scale separation

In the example introduced above, the interactions between E2 and ER can
be considered as more dynamic than those occuring between ER and G. Time
scale separation is particularly important to obtain smooth graded interactions
between a ligand and a very unique binding site [1]. This approximation allows
kinetic and equilibrium constants to coexist in the same equation, as long pro-
posed [2]. Once built, the first-order network can be treated through different
methods yiedling equivalent results. A survey of some of them is proposed
below using a founder example of historical importance: the Michaelis-Menten
(MM) enzymatic reaction. In these methods, rate constants are envisioned as
frequencies corresponding to the inverse of mean waiting times. Indeed, molec-
ular events are primarily dictated by waiting times whereas the transitions are
themselves considered as instantaneous. Before examining the MM reaction,
it is first necessary to introduce elementary recipes mixing kinetic and proba-
bilistic thinking [3,4] and which can be addressed using the simple questions
of Fig.1.

2 Shortcuts to steady state modeling

Fundamental kinetic rules are illustrated by the three simple reactions shown
in Fig.1. For (a) and (b), what is the rate constant of the global transition



Concurrent approaches to stochastic chains 3
a ki
_—
R
b
ky ) k,
Al—s | A|——

C 'S
k, B
a/g
PRt
2 C

Figure 1. Basic rules of direct rate constant manipulation.

from A to B and what is the mean lifetime in state A ? For (c), what is the
probability for A to shift to B rather than to C and what is the mean lifetime
in state A ?

In Fig.la, there are two ways to leave A so that the global rate is the
sum of the individual rates k = k1 + ko. This intuitive result is related to a
property of the exponential distribution £(8). If X = £(\) and Y = £(u) are
two independent random variables with exponential law, then min(X,Y) =
(N + p). Indeed, £(0) is characterized by its tail P(¢ > x) = e~ 9. Hence
Pmin(X,Y) > z) = P(X >z and Y > z) = P(X > 2)P(Y > z) =
ef)\xefp,:v —_ ef()\+p,)z'

The rate of the global transition of Fig.1b is obviously lower than that of
Fig.1a since there are two waiting times from A and B. The mean time to
reach B from A is 1/k; + 1/ko and the mean lifetime of A is 1/k;. Hence,
in case of continuous supply with A, the frequency of the arrivals to B is the
reciprocal of its mean time: k = k1ko/ (k1 + k2).

For Fig.1c, the probability to obtain B is k1 /(k1+k2) and the mean lifetime
in state A is the same as for Fig.1a: 1/(k; + ko). These results are the very
basic ingredients of network modeling and will be used in the following section.
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Figure 2. The famous Michaelis-Menten enzymatic reaction, where an enzyme E catalyses
the conversion of a substrate S into a product P. The final reaction of rate k. is considered
as irreversible.

3 Seven ways to the Michaelis-Menten reaction rate

The 2-step Michaelis-Menten enzyme reaction scheme represented in Fig.2 has
become an unavoidable chapter of enzymology textbooks and a masterpiece
of biochemistry courses. Interestingly, a sort of game has been established by
different authors to propose new alternative methods of treatment. Some of
them are of great pedagogical interest and will be listed below, but let us first
consider the pioneer work of Michaelis and Menten.

3.1 Michaelis-Menten: the quasi-equilibrium assumption

The names of Michaelis and Menten [5] are associated with both the hyper-
bolic equilibrium fraction of saturation Y = [S]/(K4+[S5]) and the elementary
steady state enzymatic reaction rate k = k.[S]/(Kpr + [S]) where Ky is pre-
cisely known as the Michaelis constant. But in fact, if the founding contribution
of Michaelis and Menten to biochemical modeling cannot be denied, they did
not discover these two fundamental bases of systems biology. The Michaelis-
Menten equilibrium hyperbola, also known as the isotherm of Langmuir, was
described by Jean-Baptiste Biot [6] and the Michaelis constant was intro-
duced by Briggs and Haldane [8]. The name of Michaelis was perhaps given to
the Michaelis constant in honour of his previous scientific contribution. Nev-
ertheless, the approach of Michaelis-Menten remains interesting because they
seemed to assume, non-explicitely or unintentionally, the principle of time scale
separation. As explained by Briggs and Haldane, Michaelis and Menten con-
sidered that the kinetics of noncovalent interaction between the enzyme and
the substrate is much more rapid than that of the catalytic reaction, so that
they used the dissociation equilibrium constant instead of the Michaelis con-
stant introduced later. Further confusing the situation, Michaelis and Menten
did not write their constant Ky but K [5], which should be interpreted as the
K, for the substrate (s) [8].

The method of Michaelis-Menten can be described as follows. Given that
catalysis concerns only the fraction of enzyme bound to the substrate, the rate
of product synthesis (k) normalized by the total amount of enzyme [El;; is

E E
k:kc[s]:kc L2 . (1la)
[Etot [E] + [ES]
Considering that the catalytic reaction is infrequent compared to the bind-
ing and dissociation reactions, the substrate and the enzyme can be assumed
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to be in equilibrium and the equilibrium constant can be written as a ratio of
concentrations,

_ [E][S]
Kq= B (1b)

Combining these two equations yields

[5]

k=ke——.
Kq+[9]

(1c)

3.2 Briggs and Haldane: the steady-state assumption

In the classical scheme represented in Fig.2, the catalytic transition is repre-
sented by a one-way arrow. The system is thus said to be micro-irreversible,
which means that it is out of equilibrium and can be sustained only through to
a continuous refuelling with fresh substrate. An in depth analysis of the legit-
imacy of the quasi-steady state approximation is proposed in [7]. The fraction
of enzyme bound to the substrate is the steady state resultant of its formation
and its disappearance according to [8]

ka[E[S] = (ka + kc)[ES]. (2a)
Therefore we have
[E] . kg + ke
[ES] = alS] (20
so that
_ [ES]  keka[S] [S]
M= R A IES] ~ ket ke + kalS] Ko +19]° (2¢)
where

Ky = (kd + kc)/ka. (Qd)

3.3 The first-order network of King and Altman

The method of King and Altman [9] was a precursor of modern single-molecule
approaches in that it is basically probabilistic. Let us recall its rules.

(i) All rates should be first- or pseudo-first order (s~1). In the scheme of Fig.2,
there is a second-order constant: k, (M ~'s~!). As explained in section 1,
by virtue of the excess of substrate relative to the enzyme, a pseudo-first
order constant can be defined k¥ = k,[S].

(ii) A single kind of molecule should be considered in the different nodes of the
network: the leading molecule is in the present case the enzyme.

(iii) Finally, every state transition must be associated to a single arrow.
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ka
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Figure 3. The MM reaction redrawn as a 2-node network in the manner of King and
Altman.

The MM scheme of Fig.3 is a simplistic network made of only two nodes.
Since there are two ways to convert [ES] into [E], it is necessary to give to this
transition the rate obtained by summing the individual rates (as for Fig.1a).
As a result, one obtains the first order network schematized in Fig.3.

This scheme shows that a single enzyme can exist only in two forms. The
probability of each form is straightforwardly defined by a King and Altman-like
graphical method:

— kq[S]
Prc — -
S 5 T kat ket kalS] (32)
and
— kg + ke
Pg = = b
BT S kit ke + kS]] (3)
so that the rate is simply
kckqlS)
k=kPps = —7——"—.
ot RS kc + kd + ka [S] (3C)

3.4 The frequency of successful enzyme cycles

The total time T necessary for a single enzyme to achieve the reaction of Fig.2
is the sum of two residence times: that of E waiting for catching a substrate
molecule and then of ES, waiting for either a reaction or a dissociation [3].
The first one is simply 1/k,[S] and the second one is 1/(kq + k.) (see the
question of Fig.1c), so that

1 n 1
kalS]  ka+ ke

(4)

The turnover frequency is the reciprocal of this time, v = 1/T, but all
the turnovers are not successful since [ES] can simply dissociate into E + S
instead of giving E + P. The probability of this latter possibility is P(ES —
P) =k./(kq + k¢) (see Fig.1c), giving the final expression

ke kckq[S)
k = = . 5
"ka+ ke kot ka+ kalS] (5)
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3.5 The frequency of non-abortive cycles

This is the pessimistic counterpart of the previous approach, but which works
as well [10]. The probability that ES merely dissociates instead of reacting
is the complementary to the previous one P(ES — E + S) = kq/(ka + k.)
and in the case, the whole chain is reinitiated. This situation can be explicitly
transcribed into

1 1 kq

O =B Ttk Tk

(7). (6a)

It implies, after some rearrangements,

po Lo keka[S]
TAT) T ket ka+ ka[S]

3.6 Sum of direct conversion times

This powerful method is inspired from [11-13]. In the steady state, the rate of
product formation & is the inverse of the sum of the forward conversion times
for all enzyme states, which can be written as

b= 7

where T, is the time necessary to directly reach the objective (release of the
product) when starting from the enzyme state E;. For the Michaelis-Menten
reaction, only two states of the enzyme are to be considered: F waiting for
a substrate and ES waiting for reacting. For the latter, the calculation is
immediate,

1
T, = —. 8
=g (®)
For E, the forward rate is k,[S] conditioned by the probability that when
bound to S, the reaction proceeds rather than the substrate dissociates, which
is, as defined previously, equal to k./(kq + k.). Hence, one has

1 1
Tegs+T8 = -+ o 5 (9)
ke kalS) e
which implies
1 kckq|S]

k: = . 10
Tgs+ Ty ke+ka+ kalS] (10
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3.7 Transient approach

Interestingly, all the methods described above avoid transient treatments, but
the mean cycling time obtained in this way expectedly gives the same results.
At the single-enzyme level, a single-MM reaction follows a biexponential cycle
[14]. The MM behaviour can be recovered as the reciprocal of the mean time
of a single cycle between the enzyme state waiting for a substrate (Ey) and
the enzyme state that released the first product (E1). The transient behaviour
of this cycle is obtained by solving the following system

dPg,(t)

T:deES(t) —ka [S]PEO (t)? (113)
%f(t)zka [S1Pg, (t) — (ka + ke) Pps(t), (11b)
%Z(t):kcp s (t) (11c)

At every time, a single enzyme can take only one of these three states so that
Pg, + Pgps + Pg, = 1. (11d)

With the initial condition Pg,(0) = 1, this system predicts that the prob-
ability of cycle achievement at time ¢ approaches 1 according to

Pg (t)=1—e# (% sinh At + cosh )\t) , (12a)

where
= (kq+ ke + kalS])/2, A=/ p? = kcko[S]. (12b)

The first moment of the distribution (12a) gives the mean time of a single

cycle,

(T) = /Ooct Pp, () dt = u22—ux2 _ka +kl:]2a+[sl§a [S] (13)

whose inverse is the average product formation rate.

3.8 Markovian modeling

A brute force approach is to define the general equation valid for any n-step
enzymatic reaction and then to simplify it for the case of the 2-step MM
reaction. Indeed, the reaction of Michaelis-Menten is a minimal version of the
heterogeneous linear walk represented in Fig.4 and involved in many research
areas beside this particular context [15-17].

Note that to obtain such a chain, it is sometimes necessary to prune some
branches in case of disordered events (see an example in Appendix 5.1). This n-
step chain is micro-irreversible because k,, = 0. This general chain can be used
as a common frame adaptable to many different enzymatic reaction schemes,
simply by replacing the first-order constants by appropriate pseudo-first order



Concurrent approaches to stochastic chains 9

k,+ k+ A+ k+
0 1 n—2 n—1

Eo < _' En < _' """ 47—' Eni —— En-0
kl k? l”n—l

Figure 4. First order chain where the different nodes represent different states of the
same enzyme (conformation, post-translational modification, substrate(s) ligation(s)
complexes etc.). The kinetic constants associated to each transition are labelled with
+ or - depending on whether they are forward or backward transitions and the indices
refer to the starting state of the enzyme. It is important to note that the enzyme is
not consumed during the reaction but is simply recycled (E, = Ejp).

ones. The mean arrival time of this generic reaction is (see Appendix 5.2 for
a derivation of this expression)

3
|
—
~
+

n—

-1 i —
1 k;
> = 1 &+ (14)

=0 tog=i+1 "7

~
Il

o
¥

This impressive formula dramatically simplifies for the Michaelis-Menten
reaction, reduced to three constants ki = k,[S], k" = k. and k] = kg,

<T>:]%—S+i+7. (15)

Considering that a single enzyme is recycled with a period (T) the fre-
quency of the successive state conversion cycles corresponds to the reaction

rate
1 kckaS]
FE T Rtk kalS) (16)

4 Conclusion

The previous section includes eight paragraphs whereas seven methods had
been announced, because the first one does not correspond to a steady state
situation. Somewhat ironically the so-called Michaelis-Menten reaction has
not been properly described by Michaelis-Menten. Alternative methods exist
to recover the steady state MM equation in addition to those reviewed here,
including for example the chemical master equation [18], but the methods
listed above are sufficient to provide the main recipes for modeling first order
biochemical networks, which are the basics of systems biology.

5 Appendices

5.1 Branch pruning to generate a linear chain

The reduction of disordered cycles to ordered transitions has been addressed
for example in [4,13]. The most general treatment of a linear chain with one
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input and one output and including a branched module, leads to a Michaelian
kinetics with respect to the distribution of the reaction time between the input
and output, irrespective of the complexity of the intervening module.

kas
E EAB
k4B

Figure 5. How to compress lateral alternative states (top scheme) into an unbranched
ordered chain (bottom scheme).

In a simplified case, if the fraction of time spent by the enzyme in the forms
EA and EB (Fig.5), is negligible compared to its total mean cycling time,
these alternative forms can be eliminated and the disordered individual rates
can be replaced by ordered rates according to

K, %
kap=ka ——B— +kp —A 17
AB A T T Tk, (172)
k an—Kk' _hoa + _ kB (17b)
IR S Ry P

In addition, postulating that the walk is random implies that the tran-
sitions k4 and kg do not influence each other. For example, if they are the
pseudo-first order rates of ligation to two substrates A and B, the binding of
one substrate has no influence on the binding of the other one. In this case,
k4, =k and kg = kz and the global rates are

; (18a)

kakp k_ak_p
Fan = TR

k_ =
R AB

with 0 - k)
+k_B)(k—a + kB

R="A , 18b

ka+kp+k_a+k_p (18b)

5.2 Mean completion time for a general chain

Eq. (14) can be rigorously obtained through a continuous time Markovian
modeling. In the following formulation, the probabilities of the different enzy-
matic states are written P;(t), ¢ = 0,1,...,n, and correspond to the amount
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of final state ¢ at time ¢. Their evolution is determined by a linear differential
system,

d L.
&Pi(t):ZAiij(t), i=0,1,...,n, (19)
j=0

with the initial condition P;(0) = d;,0. The matrix A is numerical and contains
the transition rates: the coefficient flij is equal to the rate of the transition
j — i. As the only allowed transitions are from j to j,j & 1, the matrix Ais
tridiagonal; in addition all its column sums are equal to 0, .., Al‘j =0 (a
consequence of the conservation law S Pi(t) = 0). The last column of A is
also zero since n is an absorbing state. For this reason, it is sufficient to consider
the restriction A of A to its first n rows and n columns, A = (Aij)ogi,jgnq.
The differential system can then be written as

%P(t) = AP(1), where P(t) = (P;(t))o<i<n—1, (20)

supplemented by the extra equation %Pn(t) =k} | P,_1(t), as well as the
initial condition P(0) = (1,0,...,0)".
Our purpose is to compute

(1) :/OOO att Lol _jer | /OoodttPnl(t). (21)

Up to the factor k:zlp this is the last component of the length n vector (T) =
JoSdttP(t).

Let us observe that the solution of the differential system is formally given
by
Pt)=) & AFP(0) = 4 P(0), (22)

k=0

where, as indicated, the exponential of the matrix tA is defined by its Taylor
series. Applying A? on (T), using A2P(t) = %P(t) and integrating by parts,
we obtain

A2(T) = /OOO art EPO _ i dp(t)r’ ~[p0] T =PO). @3

dt? dt Jo 0

where we have used the fact that P(¢) goes exponentially to zero when ¢ — oc.
From this we obtain that (T) = A=2P(0). Taking the last component of this
vector equation and using P(0) = (1,0,0,...,0), we find that

n—1

(T) =k (Ao =ki_y D AL Ay (24)
i=0

is proportional to the scalar product of the last row of A~! and its first column.
Let us first apply this formula to the simplest situation, namely when all
transition rates k:ii are equal to 1. In this case, the entries of A are equal to
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+1 on the lower and upper diagonals, namely A;;+1 = +1. They are equal
to —2 on the main diagonal, with the exception of Agg = —1. One can verify
that the inverse of A is given by

Al = max(i, j) — n, 0<i,j<n-—1. (25)
We therefore have A;ilj = —1 and A;& =i — n, and the following result for
(T),
n—1
1
=Y iy = " (26)
i=0

In the completely general case with arbitrary rates, the matrix A takes the
following form

kg kT 0 0
kg —(ki +k7) ky 0
| o kF —(k3 +k3) ... 0
A=1 0 ky 0 27)
k.
0 0 0 0 Ky —(kyy +kyy)

Because the column sums of A are all zero except the last one which is

1

—k} |, the last row of A~! is constant and equal to An 1= "7%F . Beside,

n—1

the first column of A~! is somewhat more complicated and given by

. n—1—1 k;r1 k;_( .
0 =- k+ Z — i=0,1,...,n—1, (28)
(=0 7,+1 i+0

where, by convention, the term ¢ = 0 is set to 1. We then obtain

n—1—1 k_l kT
Z Z l+ kf€7 (29)

z+1 i+

which is equivalent to (14) upon the interchange of the two summations.

5.3 Testing another example: the 3-step enzymatic reaction

To validate the above recipes, let us apply them to a slightly more complicated
(3-step) enzymatic reaction shown in Fig.6.

ka ke

E+S = > ES .

EP ——FE+P

A

Figure 6. Extended MM reaction where the catalytic reaction is reversible.
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The 3-step reaction is more realistic than the traditional 2-step MM reac-
tion of Fig.2. Indeed, the last transition of the MM scheme (rate k. in Fig.2)
mixes two elementary reactions: the catalysis sensu-stricto and the dissocia-
tion of the product from the enzyme. From a chemical viewpoint, the catalytic
reaction has no obvious reason to be micro-irreversible. Instead, irreversibility
can be understood as the consequence of the very low concentration of the
product in the medium preventing it to rebind to the enzyme. This is true in
vitro when measuring initial reaction rates because no product molecules are
added in the reaction mixture. This is also generally true in vivo because the
products are immediately removed by sequestration or by subsequent reactions
of which they are the substrates, so that their steady state concentration re-
mains negligible in the cell. Whatever the method used, the rate corresponding
to the scheme of Fig.6 is the following function of the substrate concentration

kckpkalS]

k= .
kpke + kpkg + kak—o + (kp + ke + k—o)kalS]

(30)

The most direct methods to obtain this result are listed below.

5.8.1 The King and Altman method

The first order enzyme cycle corresponding to Fig.6 is represented in

Fig.7.
E
/7‘ \kam
ka
ke
EP ES
ke

Figure 7. The first order cycle of the reaction of Fig.6, whose drawing is a prerequisite
for using the King and Altman procedure.

The turnover rate of a single-enzyme corresponds to the reaction rate
and is

k = kyPgp, (31)

where Pgp is given by the graphical method of King and Altman.

\

Pep - —
A‘+L+;\+/\+/\+g
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Pgp can be calculated by hand by replacing every graph by the
product of rates corresponding to the arrows, but the result can be more
safely obtained using an algorithm such as the KAPattern algorithm of
[19], very useful for more complex networks.

5.83.2 The sum of direct conversion times

Here the rate reads

1 1 1 1
- =-—+ = + - . (32)
ko ky k. el 9] ke m
‘ 7 katke =0
5.3.3 Markovian modeling of a random walk
We obtain by this method
1 1 1 1 kq k_. kak_c

==t —+—+ (33)

F - RalS] ke Ry RalSTke | Eoky  RalSlkoky
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