Evaluation of InGaPN and GaAsPN materials lattice-matched to Si for multi-junction solar cells - Université de Rennes Accéder directement au contenu
Article Dans Une Revue Journal of Applied Physics Année : 2013

Evaluation of InGaPN and GaAsPN materials lattice-matched to Si for multi-junction solar cells

Résumé

We compare the potentiality of bulk InGaPN and GaAsPN materials quasi-lattice-matched to silicon (Si), for multi-junction solar cells application. Bandgaps of both bulk alloys are first studied by a tight-binding model modified for nitrogen incorporation in diluted regimes. The critical thicknesses of those alloys are then calculated for various compositions. For the same lattice-mismatch and nitrogen amount, the bandgap of bulk GaAsPN is found to be closer to the targeted gap value of 1.7 eV for high efficiency tandem solar cell. GaPN and GaAsPN epilayers are then grown by molecular beam epitaxy on GaP substrate and studied by photoluminescence and X-ray diffraction. A GaAsPN bulk alloy emitting light at 1.77 eV at room temperature is obtained, demonstrating promising properties for further use in III-V/Si photovoltaic multijunction solar cells.
Fichier non déposé

Dates et versions

hal-00918663 , version 1 (13-12-2013)

Identifiants

Citer

Samy Almosni, Cédric Robert Robert, Thanh Tra Nguyen, Charles Cornet, Antoine Létoublon, et al.. Evaluation of InGaPN and GaAsPN materials lattice-matched to Si for multi-junction solar cells. Journal of Applied Physics, 2013, 113 (12), pp.123509. ⟨10.1063/1.4798363⟩. ⟨hal-00918663⟩
165 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More