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We are interested in the asymptotic behaviour of a fluid flow contained in a microscopic periodic distribution of fissures perturbating a porous medium where the Darcy law is valid, when the coupling between both systems is modeled by the Beavers-Joseph interface condition. As the small period of the distribution tends to zero, the interface condition is preserved on a microscopic scale under the additional assumption that the permeability coefficients behave like the squared period of the distribution which is also the squared size of the fissures. Moreover, the resulting pressure is purely macroscopic unlike the velocity field which also depends on the microscopic variable.

Introduction

The perturbation of a porous medium by fissures containing a Stokes flow give rise to nontrivial phenomena that cannot be modeled by the laws of fluid mechanics. Given a microscopic periodically distributed collection of thin fissures, we are interested in the asymptotic behaviour of a medium where the Stokes equations of a fluid constrained in the fissures are coupled with the Darcy equations of the surrounding porous medium through a contact law of Beavers-Joseph type [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] known as the Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF]. The pioneering work by Beavers and Joseph yields the existence of a slip velocity at the interface between the fluid part and the fluid-saturated porous solid part. Proper rescaling of the fissures shows that the Beavers-Joseph condition influences the asymptotic behaviour of the system as long as the permeability coefficients obey one of two admissible alternatives. As one of them was studied in [START_REF] Gruais | Fluid flows through fractured porous media along Beavers-Joseph interfaces Preprint I[END_REF], we concentrate on the second alternative, namely the case where permeability is of the same order of magnitude as the squared period of the distribution. Our aim is is to show that although this influence is very small in comparison with the previous case it still plays a nongligeable part that could not be simply deduced from the first one.

As we use arguments of the homogenization theory, we briefly recall basic facts about the homogenization of fluids.

An argument favoring the use of periodic homogenization in fluid flows is that it was already used to justify Darcy's law [START_REF] Tartar | Incompressible fluid flow in a porous medium. Convergence of the homogenization process[END_REF]. Therefore, the present framework may be seen as a further development of this theory, although it does not deal with the formal method of asymptotic expansions [START_REF] Keller | Darcy's law for flow in porous media and the two-space method, Nonlinear partial differential equations in engineering and applied science[END_REF], [START_REF] Lions | Some methods in the mathematical analysis of systems and their control[END_REF], [START_REF] Sanchez-Palencia | Non-Homogeneous Media and Vibration Theory[END_REF] but rather extends the first rigorous proof based on the construction of a pressure extension due to [START_REF] Tartar | Incompressible fluid flow in a porous medium. Convergence of the homogenization process[END_REF] and followed by contextual variants [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF], [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF], [START_REF] Mikelić | Effets inertiels pour un écoulement stationnaire visqueux incompressible dans un milieu poreux[END_REF]. with the restriction that, unlike previous works [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF], [START_REF] Hornung | Homogenization and porous media[END_REF], [START_REF] Tartar | Incompressible fluid flow in a porous medium. Convergence of the homogenization process[END_REF] relying on specific constructions, the velocity and pressure of the fluid have natural bounded extensions in the porous medium. We refer to [START_REF] Hornung | Homogenization and porous media[END_REF] and references therein for developments about the physics and mathematics of this subject. However unrealistic, the periodicity assumption allows to concentrate ideas on the actual process. Homogenization of phenomena in fractured media were studied later in [START_REF] Poliševski | On the homogenization of fluid flows through periodic media[END_REF], [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF] and [START_REF] Poliševski | Basic homogenization results for a biconnected -periodic structure[END_REF] that is, when an assumption of nonconectedness could be dropped. Several models of fluid flows through fractured porous media (see [START_REF] Barenblatt | On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks (in Russian)[END_REF], [START_REF] Barenblatt | Theory of Fluid Flows Through Natural Rocks[END_REF], [START_REF] Showalter | Micro-structure models of diffusion in fissured media[END_REF], [START_REF] Ene | Model of diffusion in partially fissured media[END_REF] and [START_REF] Poliševski | The Regularized Diffusion in Partially Fractured Porous Media[END_REF]) have been obtained by means of asymptotic methodswhere a homogeneous porous medium is altered by a possibly periodic distribution of microscopic fissures. Then, ε-periodicity allows to use procedures of the homogenization theory.

We consider an incompressible viscous fluid flow in a fractured porous media represented by a periodically structured domain consisting of two interwoven regions, separated by an interface. The first region represents the system of fissures which form the fracture, which is connected and where the flow is governed by the Stokes system. The second region, which is also connected, stands for the system of porous blocks, which have a certain permeability and where the flow is governed by Darcy's law. These two flows are coupled on the interface by the Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] of the Beavers-Joseph condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF] which was confirmed by [START_REF] Jäger | Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] as the limit of a homogenization process. Besides the continuity of the normal component of the velocity, it imposes the proportionality of the tangential velocity with the tangen-tial component of the viscous stress on the fluid-side of the interface. We prove here the existence and uniqueness of the solution of this model in our ε-periodic structure.

The paper is organized as follows. The problem of the flow is introduced in Section 2. More precisely, considering a microscopic periodic distribution of fissures we are interested in the behaviour of the equivalent material when the size of the fissures is of the same order of magnitude as the vanishing period of the distribution. The porous medium is described by a Darcy model in the solid part of the system and is coupled with Stokes equations in the fissures through a law of Beavers-Joseph type, see [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF]. An adequate scaling shows that two cases arise depending on whether the permeability coefficients is of unity order or behave like the squared period of the distribution. Letting aside the first alternative which was studied in [START_REF] Gruais | Fluid flows through fractured porous media along Beavers-Joseph interfaces Preprint I[END_REF], we concentrate on the second one which displays new a priori estimates. The homogenization process is initiated in Section 3 thanks to a priori estimates and compacity arguments of the two-scale convergence theory (see [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], [START_REF] Lukkassen | Two-scale convergence[END_REF] and [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]) to identify convergent subsequences.

The flow through the ε-periodic structure

Let Ω be an open connected bounded set in R N (N ≥ 2), locally located on one side of the boundary ∂Ω, a Lipschitz manifold composed of a finite number of connected components.

Let Y f be a Lipschitz open connected subset of the unit cube Y =]0, 1[ N , such that the intersections of ∂Y f with ∂Y are reproduced identically on the opposite faces of the cube and 0 / ∈ Y f . The outward normal on ∂Y f is denoted by ν. Repeating Y by periodicity, we assume that the reunion of all the Ȳf parts, denoted by

R N f , is a connected domain in R N with a boundary of class C 2 . Defining Y s = Y \ Y f ,
we assume also that the reunion of all the Ȳs parts is a connected domain in R N .

For any ε ∈]0, 1[ we denote

Z ε = {k ∈ Z N , εk + εY ⊆ Ω} (2.1)
I ε = {k ∈ Z ε , εk ± εe i + εY ⊆ Ω, ∀i ∈ 1, N } (2.2)
where e i are the unit vectors of the canonical basis in R N . Finally, we define the system of fissures by

Ω εf = int ∪ k∈Iε (εk + ε Ȳf ) (2.3)
and the porous matrix of our structure by Ω εs = Ω\ Ωεf . The interface between the porous blocks and the fluid is denoted by Γ ε = ∂Ω εf . Its normal is:

ν ε (x) = ν x ε , x ∈ Γ ε (2.4)
where ν has been periodically extended to R N . Let us remark that Ω εs and Ω εf are connected and that the fracture ratio of this structure is given by

m = |Y f | ∈]0, 1[, as |Ω εf | |Ω| → m when ε → 0. (2.5)
To the previous structure we associate a model of fluid flow through a fractured porous medium by assuming that there is a filtration flow in Ω εs obeying the Darcy's law and that there is a viscous flow in Ω εf governed by the Stokes system. These two flows are coupled by a Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] of the Beavers-Joseph condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF]. This system is completed by an impermeability condition on ∂Ω:

divv εs = 0 in Ω εs (2.6) 
µ ε v εs = K ε (g ε -∇p εs ) in Ω εs , (2.7 
)

divv εf = 0 in Ω εf , (2.8 
)

σ ε ij = -p εf δ ij + 2µ ε e ij (v εf ) in Ω εf (2.9) - ∂ ∂x j σ ε ij = g ε i in Ω εf (2.10) v εs • ν ε = v εf • ν ε on Γ ε , (2.11) 
-p εs ν ε i -σ ε ij ν ε j = α ε µ ε β -1 ε (v εf i -(v εf • ν ε )ν ε i ) on Γ ε , (2.12 
)

v εs • n = 0 on ∂Ω, n the outward normal on ∂Ω, (2.13) 
where v εs , v εf and p εs , p εf stand for the corresponding velocities and pressures, µ ε > 0 is the viscosity of the fluid, α ε ∈ L ∞ (Ω) is the positive nondimensional Beavers-Joseph number, g ε ∈ L 2 (Ω) N is the exterior force and e(v) denotes the symmetric tensor of the velocity gradient defined by

e ij (v) = 1 2 ∂v i ∂x j + ∂v j ∂x i .
Finally, the positive tensor of permeability is defined by:

K ε (x) = β 2 ε K x ε , (2.14) 
where K ∈ L ∞ (Y ) N ×N and β ε > 0 stands for the magnitude of (T rK ε ) 1/2 with respect to ε → 0.

As usual, we use the notations:

H 0 (div, Ω) = {v ∈ H(div, Ω), v • ν = 0 on ∂Ω} (2.15) L 2 0 (Ω) = {p ∈ L 2 (Ω), Ω p = 0} (2.16) V 0 (div, Ω) = {v ∈ H 0 (div, Ω), divv = 0 in Ω} (2.17)
Next, we define

H ε = {v ∈ H 0 (div, Ω), v ∈ H 1 (Ω εf ) N }, (2.18) 
the Hilbert space endowed with the scalar product

(u, v) Hε = Ωεs uv + Ωεs divu divv +ε 2 Ω εf e(u)e(v)+ε Γε (γ ε u-(γ ε ν u)ν ε )γ ε v (2.19)
where γ ε and γ ε ν denote respectively the trace and the normal trace operators on Γ ε with respect to Ω εf . Its corresponding subspace of incompressible velocities is

V ε = {v ∈ V 0 (div, Ω), v ∈ H 1 (Ω εf ) N } (2.20)
A useful property of the present structure is the existence of a bounded extension operator similar to that introduced in [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF], [START_REF] Conca | On the application of the homogenization theory to a class of problems arising in fluid mechanics[END_REF] and [START_REF] Allaire | Homogenization of the Navier-Stokes Equations with a Slip Boundary Condition[END_REF] in the case of isolated fractures.

Theorem 2.1. There exists an extension operator P

ε : H 1 (Ω εf ) → H 1 0 (Ω) such that P ε u = u in Ω εf (2.21) |e(P ε u)| L 2 (Ω) ≤ C|e(u)| L 2 (Ω εf ) , ∀u ∈ H 1 (Ω εf ) (2.22)
where C is independent of ε.

A straightforward consequence, via the corresponding Korn inequality, is Lemma 2.2. There exists some constant C > 0, independent of ε, such that

|u ε | L 2 (Ω εf ) + ε|∇u| L 2 (Ω εf ) ≤ C|u| Hε , ∀u ∈ H ε . (2.23)
Proof. We prove that:

|e y (u)| 2 Y f + |γu -(γ ν u)ν| 2 Γ (2.24) is a norm on H 1 (Y f ). Indeed, let |e y (u k )| 2 Y f + |γu k -(γ ν u k )ν| 2 Γ → 0 (2.25)
and

|u k | 2 Y f + |∇ y u k | 2 Y f = 1. (2.26)
From (2.26), we deduce that, at least for some subsequence and for some

u ∈ H 1 (Y f ): u k u in H 1 (Y f ). (2.27)
Moreover, (2.25) implies that e y (u) = 0 and γu -(γ ν u)ν = 0.

It follows that u is a rigid displacement with vanishing the tangential trace on our Γ, that is u ≡ 0. The compactness of the inclusion L 2 (Y f ) ⊂ H 1 (Y f ) leads to the strong convergence

u k → u in L 2 (Y f ).
Applying (2.26) again and Korn's inequality, we infer that (2.27) is a strong convergence, which leads to a contradiction between (2.26) and u = 0. Finally, (2.23) is obtained by rescaling the fact that (2.24) is a norm on H 1 (Y f ).

Denoting A ε = (K ε ) -1 , (2.28) 
and using the positivity of K ε , we can assume without loss of genenerality that

∃a 0 > 0 such that A ε ij (•) ξ i ξ j ≥ a 0 |ξ| 2 , ∀ξ ∈ R N , a.e. in Ω. (2.29)
Rescaling the velocity by

u ε =    u εs in Ω εs u εf in Ω εf = µ ε β 2 ε    v εs in Ω εs v εf in Ω εf (2.30)
then, for any u, v ∈ H ε and q ∈ L 2 0 (Ω), we define

a ε (u, v) = Ωεs A ε uv + β 2 ε Ω εf e(u)e(v) + β ε Γε α ε (γ ε u -(γ ε ν u)ν ε )γ ε v (2.31) b ε (q, v) = - Ω q divv. (2.32)
We see that if the pair (u ε , p ε ) is a smooth solution of the problem (2.6)-(2.13), then it is also a solution of the following problem: To find (u ε , p ε ) ∈

H ε × L 2 0 (Ω) such that a ε (u ε , v) + b ε (p ε , v) = Ω g ε v, ∀v ∈ H ε (2.33) b ε (q, u ε ) = 0, ∀q ∈ L 2 0 (Ω) (2.34) Theorem 2.3. There exists a unique pair (u ε , p ε ) ∈ H ε × L 2 0 (Ω) solution of (2.33)-(2.

34).

Proof. As H 1 0 (Ω) is obviously included in H ε , the following inf-sup condition is easily satisfied by b ε :

∃C ε 1 > 0 such that inf q∈L 2 0 (Ω) sup v∈Hε b ε (q, v) |v| Hε |q| L 2 0 (Ω) ≥ C ε 1 .
The coercivity condition (2.29) implies that

∃C ε 2 > 0 such that a ε (v, v) ≥ C ε 2 |v| 2
Hε , ∀v ∈ H ε , that is the V ε -ellipticity of a ε . As we also have

V ε = {v ∈ H ε , b ε (q, v) = 0, ∀q ∈ L 2 0 (Ω)}, (2.35) 
the proof is completed by Corollary 4.1, Ch. 1 of [START_REF] Girault | Raviart Finite Element Methods for Navier-Stokes Equations[END_REF].

In the rest of the paper we shall study the asymptotic behaviour (when ε → 0) of (u ε , p ε ), the unique solution of (2.33)-(2.34).

As A ε defined by (2.28) is of ε 0 -order, we assume that

∃A ∈ L ∞ per (Y ) N 2 such that A ε (x) = A x ε , x ∈ Ω (2.36) ∃g ∈ L 2 (Ω) N such that g ε → g strongly in L 2 (Ω). ( 2 

.37)

Because |Γ ε | is of ε -1 -order, we expect that macroscopic effects of the Beavers-Joseph condition will appear only when α ε β ε is of ε 1 -order (see [START_REF] Neuss-Radu | Some extensions of two-scale convergence[END_REF]). Therefore, we shall work under the hypothesis:

∃α ∈ C 1 per (Y ) and α 0 > 0 such that ε -1 β ε α ε (x) = α x ε ≥ α 0 , x ∈ Ω. (2.38)
Thus, for the study of the asymptotic behaviour it remains only the order of β ε to be taken into account.

In the sequel we shall study the case when β ε = O(ε). Without loss of generality we can consider from now on that

∃β > 0 such that β 2 ε = ε 2 β, ∀ε > 0.
(2.39)

The homogenization process

From now on, for any function ϕ defined on Ω × Y we shall use the notations

ϕ h = ϕ| Ω×Y h , φh = 1 |Y h | Y h ϕ(•, y)dy, h ∈ {s, f }, (3.1) φ 
= Y ϕ(•, y)dy, that is φ = (1 -m) φs + m φf . (3.2)
Also, for any sequence (ϕ ε ) ε , bounded in L 2 (Ω × Y ), we denote

ϕ ε 2 ϕ iff ϕ ε is two-scale convergent to ϕ ∈ L 2 (Ω × Y ) in the sense of [3]. Noticing that u ε ∈ V ε and setting v = u ε in (2.33) we get |u ε | 2 Hε ≤ C|u ε | L 2 (Ω) . (3.3)
Applying (2.23) we find that

{u ε } ε is bounded in V ε and in V 0 (div, Ω), (3.4 
)

|u ε | L 2 (Ω εf ) + ε|∇u ε | L 2 (Ωε f ) ≤ C, C being independent of ε. (3.5)
It follows that ∃u ∈ L 2 (Ω × Y ) N such that, on some subsequence

u ε 2 u (3.6) u ε Y u(•, y)dy ∈ V 0 (div, Ω) weakly in L 2 (Ω) N (3.7) Denoting χ εf (x) = χ f x ε and χ εs (x) = χ s x ε
, where χ f and χ s are the characteristic functions of Y f and Y s in Y , we see that (

χ εs u ε ) ε , (χ εf u ε ) ε and χ εf ∂u ε ∂x i ε are bounded in (L 2 (Ω)) N , ∀i ∈ {1, 2, • • • , N }.
Let us denote:

H1 per (Y f ) = {ϕ ∈ H 1 loc (R N f ), ϕ is Y -periodic, Y f ϕ = 0}. (3.8) Lemma 3.1. u f ∈ L 2 (Ω, ( H1 per (Y f )) N
) and satisfies:

εχ εf ∇u ε i 2 χ f ∇ y u f i . (3.9)
Proof. Using the compacity result of [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], it follows that ∃η i ∈ L 2 (Ω × Y ) N such that, on some subsequence we have

εχ εf ∇u ε i 2 η i . (3.10) 
Next, we easily remark that η i | Ω×Ys = 0. Let us introduce

V per 0 (div, Y f ) = {ϕ ∈ H loc (div, R N f ), div y ϕ = 0 in R N f , ϕ • ν = 0 on Γ, ϕ is Y -periodic}. (3.11) Let ψ ∈ L 2 (Ω, V per 0 (div, Y f )); denoting ψ ε = ψ x, x ε , we have ψ ε ∈ H 1 (Ω εf ) N and ψ ε ν ε = 0 on Γ ε (3.12) Ω εf ε∇u ε i (x)ψ ε (x)dx = - Ω εf εu ε i (x)div x ψ x, x ε dx. (3.13) 
Using the two-scale convergences (3.6)-(3.10) we find

Ω×Y f η i (x, y)ψ(x, y)dxdy = 0, ψ ∈ L 2 (Ω, V per 0 (div, Y f )). (3.14)
As the orthogonal space of

V per 0 (div, Y f ) in L 2 (Ω × Y ) is: ∇ H1 per (Y f ) = {∇q, q ∈ H1 per (Y f )} (3.15) 
(see Th.2.7, Ch.I [START_REF] Girault | Raviart Finite Element Methods for Navier-Stokes Equations[END_REF]), it follows that there exists w ∈ L 2 (Ω; H1

per (Y f ) N ) such that η i (x, y) = χ f (y)∇ y w i (x, y), ∀i ∈ {1, ..., N }. (3.16) 
Further we prove that

w i (x, y) = u f i (x, y) -ũf i (x)
, ∀i ∈ {1, ..., N }, which complets the proof. Proposition 3.2. There holds:

div y u f = 0, in Ω × Y f (3.17) div y u s = 0, in Ω × Y s (3.18) u f n = u s n , on Ω × Γ (3.19) (1 -m)divũ s + mdivũ f = 0, in Ω. (3.20) Proof. First, let a ∈ {s, f } and let ζ ∈ D(Ω), θ ∈ D(Ω × Y a ). Define θ ε = θ x, x ε .
There holds

0 = Ωε s divu ε (ζ + εθ ε ) + Ωε f divu ε (ζ + εθ ε ) = = - Ωε s u ε (∇ζ + ε(∇θ) ε + ∇ y θ ε ) - Ωε f u ε (∇ζ + ε(∇θ) ε + ∇ y θ ε ) → - Ω×Y f u f (∇ζ + ∇ y θ) - Ω×Ys u s (∇ζ + ∇ y θ) = = Ω×Y f div y u f θ + Ω×Ys div y u s θ + Ω (mdivũ f + (1 -m)divũ s )ζ
from which we deduce (3.17 There holds

0 = Ω divu ε (ζ + εθ ε ) = - Ω u ε (∇ζ + ε(∇θ) ε + ∇ y θ ε ) + Γε [u ε n ](ζ + εθ ε ) = = - Ω u ε (∇ζ+ε(∇θ) ε +∇ y θ ε ) → - Ω×Y f u f (∇ζ+∇ y θ)- Ω×Ys u s (∇ζ+∇ y θ) = = Ω×Y f div y u f θ + Ω×Ys div y u s θ + |Y | Ω (divũ f + divũ s )ζ - Ω×Γ (u f n -u s n ) θ = - Ω×Γ (u f n -u s n ) θ
which yields (3.19) and achieves the proof.

The same arguments as in [START_REF] Gruais | Fluid flows through fractured porous media along Beavers-Joseph interfaces Preprint I[END_REF] yield:

Proposition 3.3. There exists a constant C > 0 independent of ε such that

|p ε | L 2 (Ω) + |∇p ε | L 2 (Ωεs) ≤ C. (3.21) 
Lemma 3.4. There exists p ∈ L 2 0 (Ω × Y ) with p s = ps ∈ H 1 (Ω) and p f = pf ∈ L 2 (Ω) such that, up to some subsequence, we have:

p ε 2 p. (3.22) 
Moreover: p s = p f = p and thus p ∈ H1 (Ω).

Proof. The same arguments as in [START_REF] Gruais | Fluid flows through fractured porous media along Beavers-Joseph interfaces Preprint I[END_REF] yield p s = ps ∈ L 2 (Ω). Let

Q ε : H 1 (Ω εs ) → H 1 (Ω)
denote the continuous extension operator introduced in [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]. From (3.21), we deduce that, at least for some subsequence, ∃z ∈ H 1 (Ω) such that

Q ε p ε z in H 1 (Ω).
Noticing that χ εs Q ε p ε = χ εs p ε in Ω, we deduce that that z = ps in H 1 (Ω), which yields

p s = ps ∈ H 1 (Ω). (3.23)
Using (2.9)-(2.10) and noticing that Murat-Tartar inequality together with Korn's inequality yield, for some constant C > 0 independent of ε:

|v| L 2 (Ω εf ) ≤ C|e(v)| L 2 (Ω εf )
, ∀v ∈ H 1 0 (Ω εf ) we find that there exists a constant C > 0 such that

|∇p ε | H -1 (Ω εf ) ≤ Cε.
Theorem 3.2 of [START_REF] Poliševski | Basic homogenization results for a biconnected -periodic structure[END_REF] yields the existence of p f ∈ L 2 (Ω) such that, on some subsequence:

χ εf p ε 2 χ f p f . (3.24) To conclude, let ϕ ∈ D(Ω), ψ ∈ C ∞ per (Y ) N such that Γ ψ • ν = 0 and set v ε i (x) = εϕ(x)ψ i x ε , ∀i ∈ {1, • • • , N }.
Using v ε in the variational formulation (2.33)-(2.34) and passing to the limit as ε → 0 yields

Ω (p f (x) -p s (x))ϕ(x)dx Γ ψ • ν = 0, ∀ϕ ∈ D(Ω)
that is, p s = p f . We conclude thanks to (3.23).

The homogenized problem

Consider the Hilbert space:

X = {u ∈ L 2 (Ω×Y ), u f ∈ L 2 (Ω, H1 per (Y f )), (ũ s , ũf ) ∈ H 0 (div, Ω) 2 , div y u = 0}
endowed with the scalar product:

(u, v) X = Ω×Ys u v+ Ω divũ divṽ+ Ω×Y f e y (u)e y (v)+ Ω×Γ α(y)(γuγv-γ ν uγ ν v)
and set: X 0 = {u ∈ X, divũ = 0}, M = L 2 0 (Ω). We can present our first homogenization result: Proposition 4.1. The limit problem reads: Find

(v, q) ∈ X × M such that a(v, ϕ) + b(q, ϕ) = Ω g φ, ∀ϕ ∈ X (4.1) b(π, v) = 0, ∀π ∈ M (4.2)
where we set

a(v, ϕ) = Ω×Ys Avϕ + β Ω×Y f e y (v) : e y (ϕ) + Ω×Γ α(y)(γv -(γ ν v)ν)γϕ (4.3) b(π, v) = - Ω πdivṽ, (4.4 
) Proof. Let ϕ ∈ X ∩ C ∞ (Ω × Y ) and set ϕ ε (x) = ϕ x, x ε .
Then ϕ ε ∈ V ε . Passing to the limit in (2.33) with ϕ ε as the test function, we obtain (4.1). Notice that the integral on Ω × Γ results from the same arguments as in [START_REF] Gruais | Fluid flows through fractured porous media along Beavers-Joseph interfaces Preprint I[END_REF].

Let π ∈ M and set likewise:

π ε (x) = π x, x ε .
Then, π ε ∈ L 2 0 (Ω) and we may pass to the limit in (2.34) with π ε as the test function to obtain (4.2). 

(Ω) ≤ C|π| L 2 (Ω) . Noticing that |v| 2 X ≤ C|v| 2 H 1 (Ω) ≤ C|π| 2 L 2 (Ω)
we deduce that:

sup ϕ∈X b(π, ϕ) |ϕ| X |π| Ω ≥ b(π, v) |v| X |π| Ω = |π| 2 Ω |v| X |π| Ω ≥ 1 C .
The coercivity of a(•, •) follows from the coercivity of the matrix A and that X may be equipped with the norm (2.24). We conclude as in Theorem 4.2 of [10] using Corollary 4.1, Ch. 1 of [START_REF] Girault | Raviart Finite Element Methods for Navier-Stokes Equations[END_REF]. Proof. By definition of w i , the matrix K is symmetric. Introducing w ξ = N i=1 ξ i w i for every ξ ∈ R N , we see that K is also positively definite. Therefore, the positivity is given by the lowest, necessarily positive, eigenvalue of K.

From (4.5) we get the Darcy's law ũ = K(g -∇p),

where ũ ∈ H 0 (div, Ω) and p ∈ H1 (Ω) is the unique solution of the following boundary value problem: div(K∇p) = div(Kg) in Ω, (4.8)

K∇p • n = Kg • n on ∂Ω, (4.9) 
where obviously div(Kg) ∈ H -1 (Ω). Proof. As K is symmetric and positively defined, (4.8)-(4.9) is a clasical non homogeneous Neumann problem. The compatibility condition is obviously satisfied. Then there exists a unique solution in H1 (Ω).

  ),(3.18) and(3.20).Second, let ζ ∈ D(Ω), θ ∈ D(Ω; C ∞ per (Y )) and defineθ ε = θ x, x ε .

Proposition 4 . 2 .

 42 The problem (4.1)-(4.2) is well-posed. Proof. Let π ∈ M . Using Theorem 4.2 of [10], let v ∈ H 1 0 (Ω) N ⊂ X be the unique solution of π = divv such that |v| H 1 0

Proposition 4 . 3 .Proposition 4 . 4 .

 4344 The problem (4.1)-(4.2) equivalently reads:Find u ∈ X 0 such that a(u, ϕ) = Ω (g -∇p) φ, ∀ϕ ∈ X 0 .Consider the cell problem: for every i ∈ {1, • • • , N }, let w i ∈ W , where:W = {w ∈ L 2 (Y ), u f ∈ H1 per (Y f ), div y w = 0 in Y }, such that Ys Aw i ψ + β Y f e y (w i ) : e y (ψ) + Γ α(γw i -(γ ν w i )ν)ψ = Y ψ i , ∀ψ ∈ W.Then, using the convention of repeated indices, the solution of the homogenized problem reads:u(x, y) = w i (y) g i (x) -The effective permeability tensor K is symmetric and positively defined.

Proposition 4 . 5 .

 45 The problem (4.8)-(4.9) is well-posed.
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