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Abstract

Introduction: Case-based reasoning (CBR) is an emerging decision making paradigm in medical research where new cases
are solved relying on previously solved similar cases. Usually, a database of solved cases is provided, and every case is
described through a set of attributes (inputs) and a label (output). Extracting useful information from this database can help
the CBR system providing more reliable results on the yet to be solved cases.

Objective: We suggest a general framework where a CBR system, viz. K-Nearest Neighbour (K-NN) algorithm, is combined
with various information obtained from a Logistic Regression (LR) model, in order to improve prediction of access to the
transplant waiting list.

Methods: LR is applied, on the case database, to assign weights to the attributes as well as the solved cases. Thus, five
possible decision making systems based on K-NN and/or LR were identified: a standalone K-NN, a standalone LR and three
soft K-NN algorithms that rely on the weights based on the results of the LR. The evaluation was performed under two
conditions, either using predictive factors known to be related to registration, or using a combination of factors related and
not related to registration.

Results and Conclusion: The results show that our suggested approach, where the K-NN algorithm relies on both weighted
attributes and cases, can efficiently deal with non relevant attributes, whereas the four other approaches suffer from this
kind of noisy setups. The robustness of this approach suggests interesting perspectives for medical problem solving tools
using CBR methodology.
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Introduction

Case-based reasoning (CBR) is a problem-solving paradigm

emerging in medical decision-making systems [1]. Instead of

relying solely on general knowledge of a problem domain, CBR

utilizes the specific knowledge of previously experienced, concrete

problem situations - also referred to as cases - to tackle new ones

[2]. More specifically, CBR methodology defines a general CBR

cycle composed of four steps centered around a case database [3].

First, the decision making process needs to identify, among the

solved cases, those that seem to be the most similar to the

considered unsolved case. Then, solve the new case relying on the

knowledge extracted from the most similar solved cases. The third

step consists in evaluating the suggested solution for the new case.

Finally, if the solution is found satisfactory, the decision making

process usually stores the part of the experiment likely to be useful

for future problem solving. CBR in biology and medicine has

found one of its most fruitful application areas and appears

particularly suited to designing decision making tools in the field of

Health sciences [4]. Indeed, Medicine appears as a highly

intensive-data field where it is advantageous to develop systems

capable of reasoning from pre-existing cases such as from

electronic health record repositories for instance.

The present paper focuses on the two first steps of the CBR

cycle, viz. retrieve and reuse solutions from previously experienced

situations, called cases. Each case is a problem description linked

to its solution. For solving new problems, the decision making

process requires to select relevant cases, by measuring similarity of

common characteristics between the new and the previously

experienced cases [5]. In accordance with the traditional CBR

view, the knowledge database contains cases, which consist in a

problem-specific definition and construction. Thus, there are as

many case bases as problems to be solved. Bergmann et al.

overcome that problem by introducing the concept of utility [6].

Similarity measures are not directly computed from the problem

descriptions of new and previously experienced cases, they are
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computed with the description of their utility; utility description

being specifically defined in accordance with the solution needed.

Statistical analyses and regression modeling could be useful to

introcuce utility description in CBR systems, by converting

medical data sources - or data bases - into medical case bases.

Regression models contain a part of knowledge which may be used

to define utility description of cases and to perform problem-

specific measures of similarity. The paper precisely consists of such

an illustration by the formal definition of a traditional CBR

retrieval algorithm ‘the K-Nearest Neighbour (K-NN) algorithm’ coupled

with a logistic regression model, and its comparison with the

regression model and the K-NN algorithm alone for the prediction

of registration on the renal transplant waiting list.

Materials and Methods

2.1 Domain Application and Data Source
To carry out this work, we used data from the French Renal

Epidemiology and Information Network (REIN) registry [7]

related to renal replacement therapies (RRT) for end-stage renal

disease (ESRD), and data from the Agence de la Biomédecine, the

French national agency of organ transplantation for registration

on the waiting list of kidney transplantation.

Registration on the waiting list is a medical decision based on

medical factors in accordance with French medical guidelines that

do not really need automated decision-making support. Never-

theless, those data and their domain application were chosen for

several reasons:

N Data come from a national registry that confirms the data

quality by the French Comité National des registres agreement.

N Many studies showed that the selection criteria on the waiting

list diverge from one center to another, and that access to the

renal transplant waiting list is influenced by both medical and

non medical factors [8].

N Recent studies showed that it is possible to predict access to the

waiting list relying on some of these factors [9,10].

N Our main objective is a methodological essay on combination

of CBR retrieval algorithm with logistic regression, and not the

implementation of a medical decision support.

2.2 Study Population and Data Collection
The study population consists of every incident ESRD patients

in Brittany, limited to those who started an RRT (peritoneal

dialysis or hemodialysis) between January the 1st, 2004 and

December the 31th, 2008. Patients who received a preemptive

transplant and patients who came back on the waiting list after a

first transplant have been excluded.

The dependent variable for the study was the patients

registration on the renal transplant waiting list (e.g. registered on the

waiting list: yes/no). The registration status was computed relying on

the date of the first RTT as well as the date of registration on the

waiting list. Only patients recorded on the waiting list within 12

months after inclusion on the REIN registry have been considered

as registered patients.

A set of description factors have been defined according to data

availability of the REIN database and the renal transplant

scientific literature [8,11–14]. All factors have been reduced to a

binary value in order to simplify similarity calculation, in

accordance with the traditional dichotomization procedure

retrieved in the literature [8]. Three categories of factors likely

to be related to registration on the transplant waiting list have been

studied:

N Social and demographic factors: sex, age and current

occupation at the first RRT.

N Clinical and biological factors at the first RRT: existence of

hypertension, diabetes, chronic respiratory failure, chronic

heart failure, ischemic heart disease, heart conduction disorder

or arrhythmia, positive serology (HCV, HBV, HIV), liver

cirrhosis, disability, past history of malignancy and hemoglobin

as ,11 g/dl and $11 g/dl.

N Factors related to medical care: ownership of nephrology

facility where the first RRT were performed (private or public),

follow-up in institution performing transplantation, type of first

RRT (hemodialysis or peritoneal dialysis), urgent versus

planned first dialysis session and first catheterization.

Due to missing data ($10%), some factors potentially related to

registration on the waiting list have not been considered either for

statistical analyses or CBR algorithms: distance from patients

residence to the transplantation department, smoking status, body

mass index, vascular comorbidities and serum albumin level.

2.3 Decision Making Model
2.3.1 Decision making process and mathematical

notations. We depict, in this section, the overall mechanism

designed to predict patient accessibility to renal transplant waiting

list. Upper case notations refer to vector (or a set of vectors, viz., a

matrix) whereas lower case notations refer to scalar real variables -

an exception is made for the scalar parameter K of the K-NN

algorithm for the sake of consistency with the literature. Curved

notations denote sets of elements. For the sake of generality, Let p
refer to the decision making process considered hereafter.

Moreover, let CL refer to a set of labeled cases, viz. patients, and

let CU refer to a set of new analyzed cases. We aim at designing a

decision making process that maps new cases to previously solved

(i.e., labeled) cases.

We consider two possible classes: as a matter of fact, a patient is

either registered in the renal transplant waiting list or not.

Consequently, the labels are assumed to be binary. let yp [ f0,1g
denote the label assigned to patient p [ PL, where PL refers to the

set of patients considered in CL. The set of cases consists, in either

case-sets -labeled, CL, or not CU - of a set of patients, PL (or PU

respectively), and two sub-sets: A and VL (or VU in the case of CU )

named respectively, Attribute-set and Value-set. On the one hand, A
represents the set of elements that characterize a case such as,

social and demographic data (e.g., age, gender and current

occupation for instance) and, clinical as well as biological data

(e.g., existence of hypertension, diabetes, chronic respiratory

failure, chronic heart failure, to name a few). The complete set

of criteria is further detailed in the section 0.2. The set A is

considered common to both CL and CU . On the other hand, V
(i.e., either one of the sets VL and VU ) represents a set of vectors

related to the considered attributes for every patient: Let, va,p refer

to the value assigned to the attribute a [ A for the patient p [ P
(i.e., either one of the sets PL and PU ). For the sake of ease of

representation, V can be seen as a matrix of size DAD|DPD (the

product of the cardinal of both sets A and P), where every cell contains a

value va,p. For every attribute a, a patient p, can either verify the

attribute a or not. Consequently, va,p can only take a binary value

in f0, 1g, where 1 refers to attribute verified and 0 otherwise. Thus,

Vp refers to a vector of DAD binary elements that represents the

condition of a patient p [ P regarding a set of attributes A. As

previously mentioned, the set of patients PL considered in CL is

already labeled. The set of labels yp are stored in a vector Y .

Finally, we can see the decision making process p as a function

that classifies unlabeled patients in the set PL relying on the

Combining K-NN Algorithm with Logistic Regression
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similarity of the unlabeled patients with the set of labeled patients.

Let S refer to the vector of labels provided by the decision making

engine, where every patient p [ PU is assigned a numerical value

sp [ ½0,1�, such that for every patient p[PU :

sp~p fva,pga [ A,CL,Y
� �

ð1Þ

where sp quantifies the possible proximity of patient p to the

possible classes in CL. If sp is a binary value, i.e. sp [ f0, 1g, the

decision making policy p is referred to as a hard classification.

Otherwise, it is usual to speak of soft classification. We consider in

this paper this latter approach.

In the context of CBR, the decision maker assigns a label to new

cases depending on their similarity with previously solved cases.

The assignment relies on a measure that quantifies the

resemblance of the analyzed case with the set of labeled cases.

Such decision making approach mimics the decision making

process of a physician when dealing with new patients for instance.

To do so, the decision maker needs to assess the importance of the

different factors as well as the reliability of the cases, i.e. patients,

dealt with in the past. In this paper, the designed CBR relies on a

soft K-NN algorithm, perhaps one of the most widely used

technology in CBR [15]. Namely, rather than assigning a label to

either classes, we compute a probability of being assigned such

labels. Such probability is computed relying on the K most similar

patients already labeled. A simple threshold decision making

would lead to a hard classification process.

Designing our decision making mechanism requires estimating

the distance between patients as well as qualifying the reliability of

the labeled patients. These notions are discusses in the next

sections.

2.3.2 Similarity metric and attributes’ weights. Ideally

speaking, similar patients should belong to a same class (registered

or not registered). Similar patients usually express similar values to

their respective attributes. Equivalently, to the notion of similarity,

we can define a distance measure that quantifies the proximity of

the new patient to treat with the previously seen patients (i.e. the

labeled set of patient). The larger the similarity measure is the

smaller becomes the distance.

For the sake of simplicity we define, in this paper, the distance

measure as follows. Let p and p’ denote two patients (label or

unlabeled), the distance between these patients is quantified

through the measure:

d(p,p’)~
X
a[A

va 1{va,p+va,p’
� �

where + refers to the exclusive OR (XOR) operator and such

that:

X
a[A

va~1

where, va denotes the weight assigned to attribute a[A, and the

similarity measure appears equal to:

X
a[A

vava,p+va,p’

The weights fvaga[A are, usually, not known a priori. Therefore,

the decision maker needs to acquire that information through a

learning process. Thus, relying on the labeled set of cases, the

decision maker estimates the impact of the various attributes

considered. This step is discussed in Section 0.4, where all required

learning steps are detailed.
2.3.3 Soft K-Nearest neighbour algorithm. K-NN

Algorithms refer to simple classification techniques that assign

labels to new cases depending on their similarity with a reference

set of already labeled cases. Thus, for every new patient p to label,

p [ PU , a K-NN algorithm operates through mainly two major

steps, the selection step and the fusion step.

1. Selection Step:

N Compute first the similarity of patient p with patients p’[PL.

N Sort the similar patients p’[PL according to their similarity

measure.

N Select the K most similar patients p’.

2. Fusion Step: Compute a numerical value that quantifies the

proximity of the new case (i.e. Patient p) to the set of possible

classes in the training set (i.e. CL).

Depending on this last step, a decision maker can, if needed,

assign a label to the new case. Usually a threshold based classifier is

used for the assignment process. This latter is however out of the

scope of this paper.

Let P�K refer to the optimal K-NN set obtained after the

selection step. More specifically P�K contains the K labeled patient

-stored in PL- that have the largest similarity measures with

respect to the currently analyzed patient p [ PU . The fusion step

consists in quantifying the possible outcome of the decision making

process. Finally, the outcome of the decision making process, sp for

a patient p [ PU is defined as:

sp~

P
p’[P�

K

vp’d(p,p’){1yp’

P
p’[P�

K

vp’d(p,p’){1
ð2Þ

where the set of patients’ weights is denoted by the variables

fv’pgp’[PL
, and fy’pgp’[PL

are the labels assigned to the labeled

cases as defined in the section 0.3.1. The weights fvp’gp’[PL
are

designed to verify:

X
p’[PL

vp’~1

We conclude this section discussing, briefly, the settings of the

K-NN model: i.e., the selection of an appropriate value K .

Usually, it is not possible to define, a priori, the value of the

parameter K . Thus, a setting phase is necessary to evaluate a

satisfactory value with respect to a learning set. The setting phase

consists in three steps. First, a specific subset CS of the learning set

CL, CS5CL, is defined. We refer to this subset as setting set in

Section 0.5. Then an evaluation metric that quantifies how well

behaves the K-NN algorithm on the setting set is computed for the

integers (1,2, � � � ,Kmax) smaller than a specified limit Kmax. Finally

the smallest integer K[f1,2, � � � ,Kmaxg that maximizes the

Combining K-NN Algorithm with Logistic Regression
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evaluation metric is kept and used on the set CU during the

learning process.

2.4 Learning Process based on Logistic Regression
This section deals with the learning phase. As a matter of fact, in

order to implement the K-NN based CBR, we need to compute,

on the one hand, the parameters fvaga[A to evaluate the similarity

between patients, and on the other hand, the parameters fvpgp[PL

in order to evaluate the importance -or contribution- of each

patient in PL. We consider the scenario where the set of

parameters is computed once relying on the labeled cases. Then

they are exploited to solve new cases.

2.4.1 Logistic regression. In a nutshell, logistic models are

useful to predict the presence or absence of an outcome or a

characteristic based upon the values of a set A of predictor

variables. The methods fits regression model for binary response

data relying on the maximum likelihood method [16]. More

specifically, in this paper we consider the following definition:

Definition 1 (Logistic regression). Let A denote a set of

explanatory variables, PL a set of cases, V a binary matrix in f0,1gDAD|DPD

such that fVga,p~va,p with a [ A and p [ PL, and finally, let Y refer to

a vector of binary expert outcomes (e.g., registered or not registered). LR

assumes that there exist an underlying model that can explain the decision

outcomes Y as a logistic function of the matrix V and a vector of regression

parameters b [ RDADz1. Then LR fits the data in V to a logistic function

such that for any case p [ P characterized by a vector of values of the set A:

ŷyp~ 1ze
{(
P

a[A va,pbbbazbbb0)

� �{1

where ffbbbagfa[Ag,bbb0g represent maximum likelihood estimated regression

parameters and ŷyp, in ½0,1� the estimated prediction outcome for any analyzed

case p.

In Definition 1, the regression coefficients reflect the relative

influence of predictor factors to define cases’ registration on the

waiting list. Thus it is natural to take them into account when

computing the weights of the attributes A and the patients PL as

described in Section 0.3. This matter is further detailed in next

section.

2.4.2 Weighting of attributes and patients. Significance of

each factor, when the regression provides maximum likelihood

estimates, could be based on the Wald’s test defined as follows:

Definition 2 (Wald Statistic and Weighting of Attri-

butes) Let fbbbagfa [ Ag denote a vector of maximum likelihood estimates and

fbssagfa [ Ag their respective maximum likelihood standard deviations. Then

Wald’s statistic with respect to the attribute a [ A is defined as:

Walda~
bbb2

abss2
a

Finally, the vector of weights of attributes, fvaga[A, is defined such that:

va~
WaldaP

a’[AWalda’
:

When dealing with the set of labeled cases CL, LR introduces a

gap between the stored binary outcomes bYY and the predicted soft

outcomes . For every p [ PL, the value of the gap equals

yp{ŷyp

� �
. Relying on the definition of Pearson residuals, we

introduce the cases’ attributes fvpgfp[PLg as follows:

Definition 3 (Weighting Cases) Let p [ PL denote a labeled

case, yp its label and ŷyp the logistic regression outcome. Pearson residuals are

defined as:

Ep~
yp{ŷypffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷyp(1{ŷyp)

p
where Ep is assumed to be roughly drawn from a standard normal

distribution. Thus vp is defined as:

vp~
P jjEpjj
� �

P
p0[P�

K
P jjEp0 jj
	 


where DD:DD refers to the absolute value function and P :ð Þ refers to the probability

of observing Ep, and thus to the density function of a standard normal

distribution.

We end this section introducing a last notation for the sake of

clarity. Usually, many training phases are needed in order to

estimated all the parameters of a complete decision making

process. In such case, the labeled set PL needs to be divided and

distributed among the different phases. In this paper, the

parameters of both the LR and the K-NN algorithm need to be

learned. Thus the set PL needs to be subdivided into two sets PS ,

introduced in previous section, for the sake of the algorithm K-

NN, and a set PT , referred to as training set, dedicated to the

estimates of LR parameters. Finally, PL~PT|PS and since PT

and PS must not overlap, i.e., they contain no common cases We

can write, to conclude this section, that their intersection is empty:

PT\PS~1.

Experimental Protocol and Results

3.1 Data description: Training, Setting and Evaluating
sets

The initial population included 1647 patients who began an

ESRD treated by dialysis (652 (41%) women and 995 (60%) men).

Among them, 350 i.e., 21%, have been registered on the waiting

list of renal transplantation in the first year following the start of

RRT.

Unfortunately, patients’ data with respect to the selected

explicative variables (Cf section 0.2 for further details), were not

always complete or fully available. Since, logistic models cannot

deal with missing data, we decided to restrict this analysis to a

subset of patients with no missing data. Thus, the study population

was reduced to 1137 patients with complete data, which only

represent 70% of the initial population. It is worth mentioning that

the general caracteristics of this population remain similar to the

original population. As a matter of fact, the population still

included a majority of men (692 men, 61%) and the rate of

patients registered on the waiting list remains similar to the

original population (255 patients, 23%). For the rest of this section,

we only focus on the 1137 patients with complete data. We denote

this set of patients P as introduced in previous sections. Thus, the

set of patients P is such that DPD~1137. For the sake of the

experiment, P is distributed into two sets: PL and PU . On the one

hand, the set PL represents the labeled set that we use for training

the LR as well as for setting the parameter K of the K-NN

algorithm, while on the other hand, we kept a set PU , considered

as the unlabeled data on which we apply our methodology, for the

evaluation phase. The labeled set is also partitioned into two sets:

Combining K-NN Algorithm with Logistic Regression
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PL~PT|PS . The training set PT is dedicated to the LR, while

the setting set PS is used to estimate an appropriate K-value of the

K-NN algorithm.

Finally, the training database, the setting database and the

evaluation database are built relying on a random sampling for the

set population set, such that:

DPT D~DPS D~DPU D~379

It is worth mentioning that no specific filtering was used to

obtain the same number of patients in all three databases. It is a

simple coincidence that occurred after discarding patients with

incomplete data. A Pearsons chi-squared test was performed to

verify that all three sets share common characteristics. The chi-

squared test showed no significant difference between the three

databases (data not shown).

3.2 Experimental Protocol
The key aims of this section are twofold. On the one hand, we

describe the algorithms considered in this experimental section

and compare them to the overall approach detailed hereabove.

On the other hand, we present the evaluation criteria considered

in this paper to assess the quality of the different simulated

approaches.

As discussed in previous Sections, we consider in this paper the

combination of a case based reasoning approach, viz. K-NN

algorithm, with a logistic regression model. Moreover, in order to

enhance its behavior, we suggested several weighing parameters

that capture the relevance of the explicative variables and the

labeled cases. In order to evaluate the suggested approach, we

propose to simulate five different algorithms analyzed within two

scenarios. The five algorithms combine different elements

described in Sections 0.3 and 0.4. First we simulate, separately,

the two main algorithms describes in previous sections:

N (i) The standalone logistic regression algorithm.

N (ii) The standalone K-NN algorithm (also referred to

standalone CBR algorithm in the rest of the paper).

Both algorithms were extensively studied and know to be

efficient prediction tools. In order to analyze the benefit of

weighting the attributes and/or the patients, we start by simulating

the standalone versions. Then we progressively add the weighting

variables introduced in sections 0.3.2 and 0.4.2. This results into

three other approaches to consider. Thus, we can enumerate the

following algorithms:

N (iii) A K-NN with weighted attributes (also referred to as

CBR+va in the simulation results).

N (iv) A K-NN with weighted patients (also referred to as CBR+vp

in the simulation results).

N (v) A K-NN with both weighted attributes and weighted

patients (also referred to as CBR+va+vp in the simulation

results). This latter is the suggested approach of this paper. The

four other algorithms are used as comparison material.

All five algorithms are computed within two scenarios: on the

one hand, 19 explicative variables, i.e., attributes, that comply with

the general medical model are used. This first scenario analyses

the performances of these algorithms when the variables are

already reliable from the empirical point of view. On the other

hand, 50 additional attributes randomly defined are considered in

the second scenario in order to evaluate the robustness of the

simulated algorithms with respect to uncertain models. Namely,

the objective is to study the behavior of the prediction tools when

the knowledge database contains factors not related to the

prediction object.

Moreover, in every scenario we evaluate the benefit of

automated variable selection for LR before simulating the

algorithms. Thus for every scenarios, we describe two sub-

scenarios. We refer to them in simulations as the sub-scenarios

Prediction using all attributes and Prediction using selected attributes. All

scenarios and algorithms are summarized in Figure 1.

All performance results are presented in terms of the receiver

operating characteristic curve (AUC). In order to compute

confidence intervals of AUC results, a bootstrap resampling

procedure is performed [17]. Thus, the probability distribution of

AUC statistic is simulated by 500 random samples from the

original evaluation database. Then a specific non parametric

Monte Carlo AUC estimator, AUC, is computed. The chosen

estimator is a non biased AUC estimator such that:

AUC~

Pk
b~1 AUCb

k

where the index b refers to the bootstrap iteration and k is the total

number of iterations (k~500 in this case). We computed the

performance evaluation estimates such that the confidence

intervals limits are the 2.5 and 97.5 percentiles of the AUC
distribution.

3.3 Computational Tools
All computations involved in this study, including LR and CBR

algorithms, were performed on the free software environment ‘R’

version 2.12.2 GUI 1.36 Leopard build 32-bit for Mac OS X [18].

More specifically, we relied on the package ‘stats’ (version

2.12.2) to implement logistic regression. As a matter of fact, it

allows modeling generalized linear models thanks to the ‘glm’

function. Then, the functions ‘Anova’ and ‘summary’ enabled the

estimates of our LR parameters. Finally, the ‘step’ function was

used to perform a backward stepwise selection of the LR variables

relying on Akaike’s criterion. Related to CBR algorithms, we

designed our specific functions using the programming language of

the R user interface to ensure calculation of similarity measures,

selection of nearest neighbours, prediction of probability to be

registered, and classification of cases.

3.4 Results
Table 1 shows the weights of attributes calculated from the

Wald statistics using the regression coefficient estimates of the LR,

as defined in section 0.4.2, and their respective standard

deviations. Both sub-scenarios, summarized in Figure 1, are

considered where estimates are conducted after (or without) a

stepwise selection procedure on the set of explicative variables (viz,

attributes). The results of Table 1 consider first the case database

with only 19 attributes relevant to our problem (referred to as before

adding of 50 random factors). Then, 50 random attributes are added

and the computations of both sub-scenarios are once again

repeated.

As expected, the attributes have a different impact on the

registration. Their respective impact reflects on the performance of

the K-NN algorithm through the values of the weights of attributes.

When only the 19 relevant factors are considered and without a

stepwise selection procedure, the most relevant predictive factors

seem to be: age, hypertension, ischemic heart disease, past history

of malignancy, ownership of nephrology facilities and follow-up in
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institution performing renal transplantation. It is worth noting that

age and past history of malignancy are the only factors with a

significant Wald test value. After the stepwise selection procedure,

LR kept the same eight predictive factors where age, hypertension,

ischemic heart disease and ownership of nephrology facilities

showed a significant Wald test value.

We can notice that the logistic regression performed in this

study showed results equivalent to those described in recent

literature [8,14]. We used both medical and non-medical

predictive factors of transplant registration. As mentioned in

section 0.1, non-medical factors might not be relevant for clinical

practice; however our main objective is to discuss the efficiency of

a new computational K-NN and not to meet concrete decision-

making applications. Age in this kind of application field is, with no

surprise, one of the most relevant clinical factors. As it could be

expected, it showed a very high weight level compared to other

factors. This fact might limit the results of the study. Nevertheless,

since we need to design a decision-making process that performs

automatically, we decided to keep the factor age within the

discriminating factors in LR and K-NN algorithms.

After adding 50 random factors, estimates from the LR and the

weights of attributes showed a significant change. As a matter of

fact, the weight of age at the first RRT, for example, decreased

from 65% and 69%, respectively before and after stepwise

attribute selection, to 12% and 24% in the protocol arm including

the random factors. Overall, the role of both the socio-

demographic factors and the factors related to medical care

decreased after the introduction of random factors, while the role

of clinical and biological factors remained stable. The decrease of

the values of sociodemographic factors’ weights and factors related

to medical care happened in favor of random factors that kept a

significant weight on prediction despite the selection of the

attributes by a stepwise selection procedure. As expected, adding

random factors creates an artifact in the definition of the relevant

factors and the course of the prediction procedure. This artefact

help us assess the robustness of LR combined with K-NN

algorithms which is discussed in the rest of this Section.

The Figure 2 shows the prediction results performed by the LR

and the CBR methods using the K-NN standalone, the K-NN with

weighting of either attributes or patients, and using the K-NN with

weighting of both patients and attributes; respectively before and

after adding 50 random attributes (as summarized in Figure 1).

First of all, we evaluate the performance of the algorithms in the

ideal case with no artifact, i.e., only the 19 relevant attributes are

considered. In this context, results show that predictions provided

by LR and standalone CBR methods tend to be more powerful

than methods combining K-NN and LR. This is not a surprise as

both LR and K-NN are known to be quite efficient when the

Figure 1. Experimental Protocol. During the learning phase, a training set is used to compute the parameters of a logistic regression model.
These parameters enable the computations of the weights of attributes as well as patients’ weights. Then a setting set is used to evaluate an optimal
K value for the K-NN algorithm. Finally all these estimates are exploited to evaluate five decision making algorithms referred to by the indexes (i) to
(v).
doi:10.1371/journal.pone.0071991.g001
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attributes are relevant. Right sub-figure in Figure 2a and Figure 2b

show the performances of the tested algorithm in the ideal case

with no artifact, however a pre-selection of the attributes in

conducted before computing the algorithms. We notice that their

performances do not significantly change except for the algorithm

referred to as CBR+va (viz, K-NN with weighted attributes). As a

matter of fact, we notice that this latter suffers a significant

performance decrease. Since a stepwise selection of the attributes

is conducted before launching the algorithm, i.e., before weighting

the attributes and computing the K-NN algorithm, we can

conclude that the stepwise attribute selection might discard some

of the attributes that seem to have a significant impact when the

attributes are weighted later.

Then, a similar evaluation is performed after adding 50 random

attributes that, usually, are not considered as relevant. In such a

scenario, the standalone LR and K-NN could suffer difficulties as

the context is not optimally chosen to tune their performances.

This is indeed observed in Figure 2c and Figure 2d where the

performances of standalone LR and K-NN degrade significantly.

One of the most interesting results through out Figure 2 is the

robustness of the combination of LR and CBR when both

attributes and patients are weighted. As a matter of fact, in all

scenarios, with or without artifact, with or without stepwise

attribute selection, the algorithm referred to as CBR+vazvp

performs in a consistent way. It provides for all scenarios a

prediction rate around 88%; whereas all other algorithms, tested

in this paper, seem to suffer at one point or another. This

robustness offers a performance guaranty. This latter might prove

to be less efficient than others in some specific scenarios, however

since in realistic scenarios it is usually impossible to tell a priori

wheather there is an artifact or not, choosing the algorithm that

combines both weighted attributes and weigthed cases seems to be

a cautious choice.

Discussion

Pattern recognition in the present study used logistic regression

and K-NN algorithm, as they represent classical methods

respectively in biomedical and CBR domains, and thus it could

be interesting to combine them for medical CBR systems.

Nevertheless, although logistic regression analyses are widely used

in medical research, it is more commonly reserved for determining

prognostic factors than for predicting disease. In addition, K-NN is

known to be slightly unstable, which could probably lead to

inconsistencies in the individual estimations and predictions.

A number of other data mining and statistical methods have

been applied in the medical field to assist discriminative tasks and

binary classifications, as diagnosis decision-making [19,20].

However, classification and predictive accuracy remain not-

sufficient to justify a routine practice, which often results in

developing and using more and more sophisticated techniques (e.g.

Artificial Neural Network, Bayesian Network, support vector machine,

adaptative regression models…). Another emerging approach is rather

to include more information into classification rules, and to

Table 1. List of the attributes and weights used by the K-Nearest Neighbours algorithms before and after adding the 50 random
attributes, and before and after stepwise selection of the case description attributes.

Before adding of 50 random factors After adding of 50 random factors

Before attribute
selection

After attribute
selection

Before attribute
selection

After attribute
selection

Social and demographic factors Sex 0.0% – 0.2% –

Age* 65.4% 68.8% 12.2% 23.9%

Current occupation* 2.5% 2.7% 1.3% 1.3%

Clinical and biological factors diabetes (type 1 or 2) 1.0% – 2.7% 2.5%

Hypertension 5.2% 5.1% 5.2% 4.8%

Chronic respiratory failure 0.4% – 2.4% 1.9%

Chronic heart failure 2.0% – 1.3% 2.2%

Ischemic heart disease 5.7% 7.3% 2.0% 1.3%

Heart conduction disorder (or arrythmia) 0.2% – 0.8% 1.2%

Past history of malignancy 6,1% 4.5% 3.1% 4.3%

Positive serology (HCV, HBV, HIV) 1.3% – 1.4% –

Liver cirrhosis 0.9% – 1.0% 1.9%

Disability 2.7% 3.0% 1.5% 1.5%

Hemoglobin (, or $ 11 g/dl) 0.0% – 0.0% -

Factors related to medical care Ownership of nephrology facilities
(private or public)

3.4% 5.9% 0.1% –

Institution performing transplantation 3.1% 2.8% 0.1% –

Hemodialysis or perotoneal dialysis* 0.0% – 1.4% 2.6%

Urgent or planned dialysis session* 0.0% – 0.1% –

Urgent or planned first catheterization 0.0% – 0.2% 1.8%

Random factors 0.0% 0.0% 63.1% 48.9%

*at the first renal replacement therapy;
{HCV: Hepatitis C Virus, HBV: Hepatitis B Virus, HIV: Human Immunodeficiency Virus.
doi:10.1371/journal.pone.0071991.t001
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Figure 2. Performances of the different classification algorithms. Predictions were performed by a logistic regression, a K-NN algorithm
(standalone CBR), and three combinations of the K-NN algorithm with the logistic regression: CBR+va - a K-NN with weighted attributes, CBR+vp - a K-
NN with weighted patients, CBR+va+vp - a K-NN with both weightings of attributes and patients. Performances are presented in terms of bootstrap
estimates of the aera under the ROC curve with 95% confidence intervals. Prediction before adding the 50 random variables, using either the
complete available attributes of the case database (A), or only the attributes selected by a stepwise automatic selection procedure (B). Prediction
after adding the 50 random variables, using either the complete available attributes of the case database (C), or only the variables selected by a
stepwise automatic selection procedure (D).
doi:10.1371/journal.pone.0071991.g002
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combine simple classifiers in order to improve predictive ability of

the classification ensemble (e.g. bagged and boosting methods) [21,22].

Most theoretical analysis confirms superiority of sophisticated or

combinative methods, however, in real analysis of medical data,

performance of more simple methods is often at least comparable

[23]. And considering clinical interpretation and applicability,

simple models are often more appropriate than complexe ones. It

is entirely in that spirit that the methods of the present paper have

been thought: a simple and well-known method, as the LR, has

been used to fine-tune a simple and explicit methodology, as the K-

NN algorithm into a CBR system.

To our knowledge, no study evaluates prediction of access to the

renal transplant waiting list by a LR. Bayat et al invested the issue

in two recent publications using a Bayesian Network and a

Classification And Regression Tree method [10]. They do not

present any AUCs, thus it is not possible to directly compare their

results with ours. However, they conclude both methods have very

high predictive performances and age is the most important factor

for predicting access to the waiting list, which is coherent with our

results. In another domain, Chuang compared several classifiers

including LR and CBR methods to predict presence of liver

disease [24]. For the author, results related to CBR methods testify

to the solid diagnosis capacity of CBR in examining healthy data.

Our results support this conclusion since we have shown that CBR

method present predictive performances equivalent to those

obtained by LR. This paper shows however that it is true only if

the considered attributes are well chosen and reliable regarding

the problem to solve.

Nugent et al presented the first association between CBR and

LR in 2009 with a methodology called KLEF for Knowledge - Light

Explanation Framework [25]. The method describes how gaining

high-level knowledge by a top-down mechanism using logistic

regression. LR is used a posteriori to define one nearest neighbour

from cases retrieved by a K-NN algorithm. LR in the present study

was used differently. As a matter of fact, the logistic model was

directly fitted from the overall knowledge database. Information

from LR was a direct contribution to compute similarity measures

and classification probabilities. This latter approach is described

by Stahl et al as a bottom-up mechanism [26].

To the best of our knowledge, only two publications describe

methods similar to our hybrid approach. The first one is applied to

breast cancer diagnosis (Huang et al [27]) and the second one is

applied to the diagnosis of liver disease (Chuang [24]). In Chuangs

paper, CBR methodology is different from the one applied in the

present study. As a matter of fact, similarity measures are

performed separately for cases with and without liver disease. In

Huangs paper, similarity computation is performed through a K-

NN algorithm, but LR is only used for defining the most relevant

factors and to compute attribute weights. In the present study, LR

is also used to perform attribute selection and attribute weighting.

However, we proposed in addition to introduce Pearson residuals

to weight the cases in the design of our K-NN algorithm. In our

opinion, Pearson residuals based case weighting help, with

attribute weighting, to the cases’ description and specification

when defining problem-specific knowledge [6]. Thus, the model

built by LR defines an archetype of registered and not registered

patients in the knowledge database, and LR residuals reflect the

adequacy of each patients with regard to the archetype. Relying

only on regression coefficients or stepwise selection to define the

cases as well as the problem utility would consider that all patients

match perfectly the LR archetype. We know for a fact that it is not

true. Hence, computing specific weights for each case, relying on

LR residuals, appears as an attempt to correct of that approxi-

mation. To the best of our knowledge, this is the first time that

such an approach is discussed in the literature.

As for Chuangs paper, the author points out classification

improvements relying on Hybrid CBR approach compared to a

standalone CBR. Huang’s publication also compares several kinds

of hybrid approaches: a neural network with or without fuzzy logic

and two hybrid CBR systems, one combining CBR with a decision

tree and one combining CBR with LR. The neural networks show

superior performances, but the authors emphasized rapidity of

cases retrieval and the more easily interpretable results of CBR

methodology. In the present study, the CBR hybrid approaches

did not show significant improvements for patient classification,

compared to standalone CBR approach. However, the hybrid

CBR system combing both attribute weighting and case weighting

seems to be very robust to artifacts in the database that might

occur in all realistic scenarios. From our point of view, this

interesting observation provides new perspectives for future CBR

system, particularly for integrating CBR systems into large and

unspecific knowledge database such as data from electronic health

records [4,28].

Finally, we join Huang et al’s opinion as we believe that CBR is

an explicit problem solving methodology. We believe that an

association between LR and CBR systems improves comprehen-

siveness of problem-solving processing. This latter provides the

users with more reliable information about relevant decision

factors and case utility. Thus, the integration of bio-satistical

analyses, widely used in the medical research, may also help in the

dissemination and development of CBR decision support for

medical practice.

Conclusions

In the paper, we presented and detailed different ways of

coupling a K-NN algorithm and a logistic model. We have used

logistic modeling in order to perform selection and weighting of

cases’ features, and a new methodology have been proposed to

define cases’ utility using residuals of the logistic regression. The

logistic regression herein worked as an automated bottom-up

procedure to define problem-specific similarity measures, and we

have showed that it could improve algorithms of case retrieval and

optimize reuse of cases, and at the same time it could improve

CBR performance and robustness, especially when facing unspe-

cific knowledge such as data coming from clinical care directly.

Reuse of medical data for secondary purposes, such as

translational biomedical research, public health and healthcare

quality improvment, provides large and interesting perspectives for

medical informatics. Many initiatives have already explored

solutions for integrating clinical data (e.g. caBIG [29], BRIDG

[30], I2B2 [31], STRIDE [32], R-oogle [33]), and several recent

projects are of interest for data warehousing, sharing and analysing

of heterogeneous clinical dataset (e.g. DebugIT to improve

detection and elimination of bacteria [34], EU-ADR to improve

detection of adverse drug events [35] and EHR4CR to improve

clinical trials recruitment [36]). Recognition pattern algorithm and

CBR are promising methods for the secondary use of data, for

instance in an hospital information system by automatically

identifying new eligible patients to the clinical trials going on at the

hospital (ASTEC project [37]), or by automatically detecting new

healthcare-associated infections [38].

Nevertheless, althought electronic information systems and data

warehouse offer opportunity for secondary use of data, it still is

challenging in practice to reuse data [39], and in our opinion, it

still is necessary in medical field to apply methods manually

supervised to lead and control automated medical decision
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support. In addition, in medical field, the process of clinical care

are so complexe that it still appears necessary to provide tools that

could provide to the users a better understanding of the decision-

making process, and tools that allow adaptating the decisions to

the varying clinical context.

In our opinion, CBR integration in medical decision support is

not only dependent of the ability to introduce practical and

patient-oriented data elements in problem-solving procedure, even

though they are essential for decision making in medical practice,

but also on their ability to be fully integrated into medical

reasoning processes. The hybrid approach we suggested and

discussed, could thus also help to meet both requirements.
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