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REGULARITY FOR MAXWELL EIGENPROBLEMS IN PHOTONIC CRYSTAL

FIBRE MODELLING

MONIQUE DAUGE, RICHARD A. NORTON, AND ROBERT SCHEICHL

ABSTRACT. The convergence behaviour and the design of numerical methods for modelling

the flow of light in photonic crystal fibres depend critically on an understanding of the reg-

ularity of solutions to time-harmonic Maxwell equations in a three-dimensional, periodic,

translationally invariant, heterogeneous medium. In this paper we determine the strength

of the dominant singularities that occur at the interface between materials. By modifying

earlier regularity theory for polygonal interfaces we find that on each subdomain, where the

material in the fibre is constant, the regularity of in-plane components of the magnetic field

are H2−η for all η > 0. This estimate is sharp in the sense that these components do not

belong to H2, in general. However, global regularity is restricted by the presence of an inter-

face between these subdomains and the interface conditions imply only H3/2−η regularity

across the interface. The results are useful to anyone applying a numerical method such as a

finite element method or a planewave expansion method to model photonic crystal fibres or

similar materials.

1. Introduction

This paper is concerned with source-free time-harmonic Maxwell equations in a three-

dimensional, periodic, heterogeneous medium that is non-magnetic. The problem is: Find

non-zero (E,H) ∈ L2
loc(R

3)×L2
loc(R

3) and ω ∈ R such that

∇×E− iωµH = 0,(1.1a)

∇×H+ iωεE = 0,(1.1b)

where L2
loc(R

3) = (L2
loc(R

3))3 is the space of locally square integrable vector fields on R3,

the magnetic permeability µ = µ0 is constant and equal to the permeability of a vacuum, and

the electric permittivity ε (also called the dielectric) is a given function which is positive,

bounded and with bounded inverse. The vector fields E and H are respectively the electric

field and magnetic field, and ω is the frequency.
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An alternative equivalent formulation of problem (1.1) is the following eigenproblem where

the electric field has been eliminated: Find non-zero H ∈ L2
loc(R

3) and κ ∈ R such that

∇× ( 1
n2 ∇×H) = κ2H,(1.2a)

∇ ·H = 0,(1.2b)

where n is the refractive index of the material and is related to ε by ε = ε0n2 (where constant

ε0 is the permittivity of free space). The wave number κ is related to ω by κ2 = ε0µ0ω2. As

we will see in this paper, the motivation for using (1.2) instead of (1.1) is that the regularity

of H is better than E, so we expect numerical methods to perform better on (1.2).

The electric permittivity ε is assumed periodic with respect to a given lattice K : For linearly

independent primitive lattice vectors a1,a2,a3 ∈ R
3, the lattice K is the set {k ∈ R

3 : k =
k1a1 + k2a2,+k3a3, k1,k2,k3 ∈ Z} and ε satisfies

(1.3) ε(x+k) = ε(x) for all x ∈ R
3 and k ∈ K .

Applying the Floquet-Bloch transform translates the problem on R3 into a family of prob-

lems on the periodicity cell (torus) Q = R
3/K . The new problems are thus posed on a

compact manifold, and the new operators have compact resolvent and discrete spectra. The

spectrum (in the form of spectral bands) of the original (un-transformed) problem is then

obtained by taking the union of the spectra of the family of transformed problems (c.f.

[22, 23, 14]).

In this paper, we focus in particular on problems arising from the propagation of light in

photonic crystal fibres (PCF), novel optical devices that overcome the limitations of con-

ventional fibre optics [20, 33, 19]. In PCFs we have translational invariance along the length

of the fibre, as well as periodicity in the transverse directions. Let (x,y,z) be the coordinates

of the generic point x ∈ R
3 and assume that the medium is translationally invariant in the

z-direction, i.e., ε = ε(x′) with x′ denoting the transverse variables (x,y). In this case the

periodicity is relative to a two-dimensional lattice K ′ with primitive vectors a1, a2 and ε
satisfies

(1.4) ε(x′+k′) = ε(x′) for all x′ ∈ R2 and k′ ∈ K ′.

Then the three-dimensional Floquet-Bloch transform degenerates into a two-dimensional

Floquet-Bloch transform in transverse variables x′ and a partial Fourier transform in lon-

gitudinal variable z. Again we obtain a family of Maxwell problems posed on a compact

manifold without boundary, the torus Q′ = R2/K ′ (period cell of K ′).

Besides proving basic regularity in H1 for each component of the magnetic field for both the

primitive equations (1.2) and the problems deduced by Floquet-Bloch transforms in general

periodic media, the main aim of this paper is to establish optimal regularity results in the

case of PCFs with polygonal cross section. In this latter situation, our results are more

precise than those provided by the general regularity theory for Maxwell interface problems

in [6, 7]. Let us mention also the paper [12] which studies the same problem as we do in the

context of diffraction gratings, however considering only the regularity of the z-components

of H and E. Here, by focusing on the regularity of the x- and y-components of H we
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manage to obtain better regularity results, even in the more general situation of an interface

between any finite number of materials with distinct dielectric values. The results carry over

to piecewise C2 cross sections without cusps. The improved regularity results are important

for the design and analysis of numerical methods for PCF modelling. It is important to note

that the PCF problem that we investigate is the full vectorial problem (without additional

simplifications), as studied in the physics literature [13, 34, 32, 26, 30, 19]. See [29] for

more details.

The paper is organised as follows: The rationale is to examine the regularity of solutions of

problem (1.2) under more and more specific assumptions on the electric permittivity ε . In §2

we simply suppose that the material is non-magnetic and ε bounded with bounded inverse,

and prove the H1–regularity for H. In §3 we impose periodicity and exploit symmetries to

derive a weak formulation for the family of Floquet transformed operators on a compact

manifold. We prove the existence of a sequence of real eigenvalues with corresponding

eigenvectors. In §4 we assume in addition that ε is translationally invariant and obtain more

specific results. In the remaining sections we then focus on piecewise constant permittivity

ε on a polyhedral partition of the full space, still assuming periodicity. First, in §5 the

assumptions are again very general and we recall results from the literature. In §6 we add the

assumption of invariance in one direction and prove the main result of the paper: piecewise

H2−η –regularity for the transverse components of the magnetic field, for any η > 0. In §7

we finally assume that in addition there are only two materials with simple edge interfaces

(no cross points), which is typical for PCFs. We recall a result from [12] which gives the

regularity of the longitudinal components of the electric and magnetic fields, and deduce

an explicit expansion for the transverse components of the magnetic field which slightly

improves the result from §6, but also shows that the eigenfunctions are not piecewise H2.

The final section §8 contains some conclusions and a discussion of how our new result can

be applied in the convergence theory of Galerkin methods.

2. Bounded electric permittivity

Revisiting classical arguments we prove the following theorem.

Theorem 2.1. Let the magnetic permeability µ = µ0 be constant and let the electric per-

mittivity satisfy

ε > 0, ε ∈ L∞
loc(R

3), ε−1 ∈ L∞
loc(R

3).

(i) If (E,H) is a solution of (1.1) in L
2
loc(R

3)×L
2
loc(R

3) with ω 6= 0, then H is a solution of

(1.2) and belongs to H1
loc(R

3). (ii) On the other hand, if H and ∇×H belong to L2
loc(R

3)

and are such that equations (1.2) are satisfied, then H belongs to H1
loc(R

3) and, setting

E = i
ωε ∇×H, we find a solution (E,H) of equations (1.1).
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Proof. Taking the divergence of (1.1a) yields ∇ ·H = 0 since µ is constant and ω 6= 0. So

we have (1.2b). Equation (1.1b) implies

E =
i

ωε
∇×H

and (1.1a) in the distributional sense reads

〈E,∇×F〉= iωµ〈H,F〉, ∀F ∈ D(R3)3.

Substituting E gives

〈ε−1∇×H,∇×F〉= ω2µ〈H,F〉

which clearly implies (1.2a). To finish the proof of (i), it remains to establish the regularity

of H. Equation (1.1b) implies that ∇×H ∈ L2
loc(R

3). Together with (1.2b), for any cut-off

function χ ∈ D(R3), we then have

χH ∈ L
2(R3), ∇ · (χH) ∈ L2(R3), ∇× (χH) ∈ L

2(R3).

The Fourier transform then yields ∇(χH)∈ (L2(R3))9 (cf. [17, Ch. 1, Lem. 2.5]). Therefore

H ∈H
1
loc(R

3). The proof of (ii) is then immediate. �

Note that we have shown the following result.

Lemma 2.2. There holds the embedding

{v ∈ L
2
loc(R

3) : ∇×v ∈ L
2
loc(R

3), ∇ ·v ∈ L2
loc(R

3)} ⊂H
1
loc(R

3).

3. Periodic electric permittivity

In this section, we assume that ε is periodic with respect to the lattice K , cf. (1.3) and that

(3.1) ε > 0, ε ∈ L∞(R3), ε−1 ∈ L∞(R3).

The operator H 7→ ∇× ( 1
n2 ∇×H) appearing in (1.2a) defines an unbounded self-adjoint

operator L on L2(R3) with domain

D(L) := {v ∈ L
2(R3) : ∇×v ∈ L

2(R3) and ∇× ( 1
n2 ∇×v) ∈ L

2(R3)}.

We find the relevant part of the spectrum, by imposing in addition the gauge condition (1.2b).

The form domain of the operator (still denoted by L) is then

V := {v ∈ L
2(R3) : ∇×v ∈ L

2(R3), ∇ ·v = 0}.

Due to the periodicity of ε (equivalently, the periodicity of n) we can apply the Floquet-

Bloch transform to L (cf. [1, 19, 22, 23]). This reduces the problem from studying the

operator L to a family of operators Lξ acting on periodic functions on a compact manifold,

the period cell Q = R3/K . The key result from Floquet-Bloch theory that is used to find

the spectrum of L is

(3.2) σ(L) =
⋃

ξ∈B

σ(Lξ),
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where σ(·) denotes the spectrum of an operator. See [22, 23] and references therein for

details. In particular, [14] has a good description of Floquet-Bloch theory for the Maxwell

operator in R3 where n is periodic on a three-dimensional lattice.

Let us quickly describe the set B ⊂ R3 that appears in (3.2). It is the 1st Brillouin zone of

K (i.e. the Wigner-Seitz period cell of the reciprocal lattice, for definitions see e.g. [1]). If

a1 = (ℓ1,0,0), a2 = (0, ℓ2,0), and a3 = (0,0, ℓ3), then

Q = (− ℓ1
2 ,

ℓ1
2 ]× (− ℓ2

2 ,
ℓ2
2 ]× (− ℓ3

2 ,
ℓ3
2 ] and B = (− π

ℓ1
, π
ℓ1
]× (− π

ℓ2
, π
ℓ3
]× (− π

ℓ3
, π
ℓ3
].

The details of the Floquet-Bloch transform may be hidden by simply requiring that we

search for magnetic fields of the form

(3.3) H(x) = u(x)eiξ·x

where x = (x,y,z), ξ = (ξ1,ξ2,ξ3) ∈ B and u is periodic with respect to K . In this way L

is associated with the family of operators,

(3.4)
{

Lξ : ξ ∈ B
}

,

parameterised by ξ, where each Lξ is the self-adjoint operator

Lξ := ∇ξ× ( 1
n2 ∇ξ×·) with ∇ξ := ( ∂

∂x
, ∂

∂y
, ∂

∂ z
)+ iξ

operating on a Hilbert space of periodic functions (form domain):

(3.5) Vξ := {v ∈ L
2
per : ∇ξ×v ∈ L

2
per, ∇ξ ·v = 0}

where L2
per := {v ∈ L2

loc(R
3) : v is periodic on K }. Note that L2

per(R
3) identifies with

L
2(Q). Likewise we define H

1
per as {v ∈ H

1
loc(R

3) : v is periodic on K }, which identifies

with H1(Q). Let aξ : Vξ×Vξ → C be the sesquilinear form associated with Lξ, i.e.

aξ(u,v) :=
∫

Q

1
n2 ∇ξ×u ·∇ξ×v dxdydz, u,v ∈ Vξ .

Here follows the main result of this section.

Theorem 3.1. Let the magnetic permeability µ = µ0 be constant and let the electric per-

mittivity ε be periodic (1.3) and satisfy the boundedness conditions (3.1). Then for any ξ in

the Brillouin zone B, the variational space Vξ (3.5) is contained in the Sobolev space H1
per.

Moreover aξ satisfies a Gårding inequality on Vξ with respect to the H1
per-norm: for any

ξ ∈ B and v ∈ Vξ

(3.6) ‖n‖2
L∞

per
aξ(v,v)+(3|ξ|2+1)‖v‖2

L2
per

≥ 1
2‖v‖2

H1
per
.

The spectrum of Lξ is discrete and formed by a sequence of nonnegative eigenvalues.

Proof. We first notice that Vξ is embedded in the space

{v ∈ L
2
per : ∇ξ×v ∈ L

2
per, ∇ξ ·v ∈ L2

per}= {v ∈ L
2
per : ∇×v ∈ L

2
per, ∇ ·v ∈ L2

per},
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which is itself contained in {v ∈ L2
loc(R

3) : ∇×v ∈ L2
loc(R

3), ∇ ·v ∈ L2
loc(R

3)}. According

to Lemma 2.2, the latter space is embedded in H1
loc(R

3), which proves that Vξ ⊂H1
per. For

the Gårding inequality we first write

‖n‖2
L∞

per
aξ(v,v)≥ ‖∇ξ×v‖2

L2
per

for all v ∈ Vξ.

For any v ∈H1
per, we may integrate by parts over Q to obtain

‖∇ξ×v‖2
L2

per
+‖∇ξ ·v‖

2
L2

per
=−〈∆ξv,v〉 ,

where 〈·, ·〉 is the duality pairing between H1
per and its dual, and

∆ξ := ( ∂
∂x

+ iξ1)
2 +( ∂

∂y
+ iξ2)

2 +( ∂
∂ z
+ iξ3)

2.

Another integration by parts yields for any v ∈H1
per

‖∇ξv‖2
L2

per
=−〈∆ξv,v〉 .

Hence, for any v ∈ Vξ ⊂H
1
per there holds ‖∇ξ×v‖2

L2
per

= ‖∇ξv‖2
L2

per
, which implies

‖n‖2
L∞

per
aξ(v,v)≥ ‖∇ξv‖2

L2
per
.

By the arithmetic-geometric mean inequality we find that

‖∇ξv‖2
L2

per
≥ 1

2
‖∇v‖2

L2
per
−3|ξ|2‖v‖2

L2
per
,

which proves (3.6). The spectral properties of Lξ are now a classical consequence of the

compact embedding of H1(Q) into L
2(Q). �

Remark 3.2. We have shown the identity

‖∇ξ×v‖2
L2

per
+‖∇ξ ·v‖

2
L2

per
= ‖∇ξv‖2

L2
per
, for any v ∈H

1
per .

This can be compared with [5, Theorem 2.3]. Note that in our case, there is no boundary,

which greatly simplifies the analysis.

4. Translationally invariant periodic electric permittivity

In this section, in addition to the boundedness condition (3.1), we assume that ε is transla-

tionally invariant in the z direction and periodic with respect to the two-dimensional lattice

K ′, see (1.4).

The invariance with respect to z can be seen as periodicity of period 0 in that direction,

leading to an unbounded Brillouin zone B = B′×R where B′ ⊂ R2 is the first Brillouin

zone of the two-dimensional lattice K ′. Likewise the Floquet-Bloch transform degenerates

into the usual Floquet-Bloch transform in variables x′ = (x,y) and partial Fourier transform

in variable z, [15, Annexe B]. This is the reason why the reduction of problem (1.2) to a

family of operators Lξ with compact resolvent has now two steps:
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(1) Consider the Ansatz for any chosen constant β ∈ R

(4.1) H(x,y,z) = h(x,y)eiβ z,

to obtain a problem that is posed on R2 instead of R3. Some authors (e.g. [11, 16,

35]) assume further that β = 0 so that Maxwell’s equations decouple into the so-

called transverse electric (TE) and transverse magnetic (TM) mode problems. We

do not make this assumption here. Neither will we reduce the problem to the linear

Schrödinger equation as in [28].

(2) The constant β being chosen, perform the Floquet-Bloch transform in transverse

variables x′, leading to the family of operators,

(4.2)
{

L ′
(ξ′,β ) : ξ′ ∈ B

′
}

,

parameterised by ξ′, where L ′
(ξ′,β ) is the self-adjoint operator

L ′
(ξ′,β ) := ∇ ′

(ξ′,β )×
(

1
n2 ∇ ′

(ξ′,β )× ·
)

and ∇ ′
(ξ′,β ) := ( ∂

∂x
, ∂

∂y
,0)+ i(ξ′,β ),

operating on the space of periodic functions in two dimensions:

(4.3) V ′
(ξ′,β ) := {v ∈ L

2(Q′) : ∇ ′
(ξ′,β )×v ∈ L

2(Q′), ∇ ′
(ξ′,β ) ·v = 0}

Here Q′ = R
2/K ′ and L

2(Q′) identifies with the two-dimensional space L
2
per rela-

tive to the lattice K ′.

Let a ′
(ξ′,β ) : V ′

(ξ′,β )×V ′
(ξ′,β ) → C be the sesquilinear form associated with L ′

(ξ′,β )

a ′
(ξ′,β )(u,v) :=

∫

Q′

1
n2 ∇ ′

(ξ′,β )×u · ∇ ′
(ξ′,β )

×v dxdy, u,v ∈ V ′
(ξ′,β ) .

The main result of this section is very similar to Theorem 3.1.

Theorem 4.1. Let the magnetic permeability µ = µ0 be constant and let the electric permit-

tivity ε be periodic, translationally invariant (1.4), and satisfy the boundedness conditions

(3.1). Then for any β ∈ R and any ξ′ in the Brillouin zone B′, the variational space V ′
(ξ′,β )

(4.3) is contained in the Sobolev space H1(Q′). Moreover a ′
(ξ′,β ) satisfies a Gårding inequal-

ity: for any v ∈ V ′
(ξ′,β ) , ξ′ ∈ B′ and β ∈ R

‖n‖2
L∞(Q′) a ′

(ξ′,β )(v,v)+(3|ξ′|2 +1)‖v‖2
L2(Q′) ≥

1
2
‖v‖2

H1(Q′)+β 2‖v‖2
L2(Q′).

The spectrum of L ′
(ξ′,β ) is discrete and formed by a sequence of nonnegative eigenvalues.

The proof follows the same lines as Theorem 3.1. Since the embedding of H
1(Q′) into

L2(Q′) is compact, we deduce the spectral properties of L ′
(ξ′,β ).
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5. Piecewise constant and periodic permittivity on a polyhedral partition

Here we return to the primitive Maxwell equations (1.1) and drop for the moment the as-

sumption of translational invariance again. We assume that ε and µ are piecewise con-

stant and periodic with respect to the lattice K , which determines a periodic partition

P = {Pj}
J
j=1 of R3 into a finite set of unbounded Lipschitz polyhedral domains1 P1, . . . ,PJ,

such that

(5.1a) R
3 = ∪ jPj, Pj +k = Pj, ∀k ∈ K , ∀ j, and Pi ∩Pj = /0 if i 6= j,

and

(5.1b) ε = ε j, µ = µ j on Pj, with ε j and µ j positive constants.

Note that the quotient sets

Q j := Pj/K , j = 1, . . . ,J,

make sense and determine a finite partition into (bounded) polyhedral subdomains of the

torus Q = R3/K .

We study the regularity of solutions (E,H) of system (1.1). Associated with partition P we

define the piecewise Sobolev spaces

PHs
loc(R

3,P) := {u ∈ L2
loc(R

3) : u|Pj
∈ Hs

loc(Pj)}, s ≥ 0,

PHs(Q,P) := {u ∈ L2(Q) : u|Q j
∈ Hs(Q j)}, s ≥ 0.

The regularity results of [7] adapt in the following way. In view of its use for α = ε or

α = µ let us make the following definition.

Definition 5.1. For α piecewise constant and positive on the partition P of the torus Q,

define an operator ∆α : H1(Q)→ H−1(Q) by

∆αu = ∇ · (α∇u), for all u ∈ H1(Q).

Associated with this operator let σα (for α = ε or µ) be the supremum of s > 0 (s 6= 1/2)

such that

(5.2) u ∈ H1(Q) and ∆αu ∈ H−1+s ⇒ u ∈ PH1+s(Q,P).

The values of σα depend on the singular exponents at interface edges and corners.

Remark 5.2. If α takes two distinct values in the neighbourhood of an interface edge be-

tween two materials, an explicit formula for singular exponents shows that σα < 1 (cf. [8]

and [7, Th.8.1]).

Results on interior regularity of polyhedral transmission problems apply to our situation

since we do not have any external boundaries, and thus no exterior boundary conditions.

The following theorem is adapted from [7, Thm. 7.1]. As usual, we denote PHs
loc(R

3,P)3

by PHs
loc(R

3,P).

1We call [Lipschitz] polyhedral domain any [Lipschitz] open set with piecewise plane boundary. The

singular points of the boundary form the edges and the corners.
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Theorem 5.3. Let (E,H) ∈ L2
loc(R

3)×L2
loc(R

3) satisfy equations (1.1) with ω 6= 0. Then E

and H have the following regularity:

E ∈ PHs
loc(R

3,P), for all s < min{σε ,σµ +1},(5.3)

H ∈ PHs
loc(R

3,P), for all s < min{σµ ,σε +1}.(5.4)

This result is a direct application of [7, Thm. 7.1]. It relies on the analysis of edge and

corner singularities. These depend on the interface edge and corner singularities of the

scalar operators ∆ε and ∆µ .

Remark 5.4. It follows from Remark 5.2 that

1) if ε has interfacial edges then σε < 1 and so, in general, E /∈ PH1
loc(R

3,P).

2) Likewise if µ has interfacial edges then σµ < 1 and, in general, H /∈ PH1
loc(R

3,P).

3) If ω = 0, the regularity results (5.3)-(5.4) still hold provided that we complete the system

(1.1) by the gauge conditions divεE = 0 and divµH = 0 (cf. [7]).

In the case of a non-magnetic material, µ = µ0. Since µ is constant the operator ∆µ (Defi-

nition 5.1) is simply µ0∆ : H1(Q)→ H−1(Q). Thus we are reduced to the ordinary Laplace

operator. The standard theory of elliptic operators yields that there does not exist an upper

bound on the s for which (5.2) holds, so we may formally take σµ = ∞ and the regularity

result becomes the following.

Corollary 5.5. Let (E,H) ∈ L2
loc(R

3)×L2
loc(R

3) satisfy equations (1.1) with ω 6= 0. We

assume that µ = µ0. Then E and H have the following regularity:

E ∈ PHs
loc(R

3,P) for all s < σε(5.5)

H ∈ PHs
loc(R

3,P) for all s < σε +1.(5.6)

This result implies that the regularity of the magnetic field may be a whole degree better

than the electric field. This is a very good justification for posing the original problem (1.1)

in terms of only the magnetic field (1.2), because we would expect numerical methods to

converge faster to the more regular magnetic field.

As a corollary of the previous statement, we obtain the regularity of the eigenvectors of the

Floquet operators Lξ, cf. Theorem 3.1.

Theorem 5.6. Let the magnetic permeability µ = µ0 be constant and let the electric permit-

tivity be piecewise constant periodic over a polyhedral partition P of the periodicity cell

Q (5.1). Let ξ belong to the first Brillouin zone B. Then any eigenvector U ∈H1(Q) of the

operator Lξ (cf. Theorem 3.1) satisfies

U ∈ PHs(Q,P) for any s < σε +1

with σε the number introduced in Definition 5.1.
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Proof. The eigenvector U is periodic and satisfies the equation LξU = κ2U for some real κ ,

where we recall

Lξ := ∇ξ× ( 1
n2 ∇ξ×·) with ∇ξ := ( ∂

∂x
, ∂

∂y
, ∂

∂ z
)+ iξ

Setting (cf. (3.3))

H(x) = U(x)eiξ·x

we obtain that H is a Blochwave belonging to the space

H
1
ξ(R

3) := {F ∈H
1
loc(R

3) : F(x+k) = eiξ·kF(x) ∀x ∈ R
3, ∀k ∈ K }

and satisfying the equations (1.2). Setting

E = i
ωε ∇×H

we obtain a solution of equations (1.1) and may apply Corollary 5.5. �

6. Translationally invariant, piecewise constant and periodic electric
permittivity on a polygonal transverse partition

This section is devoted to deriving a bespoke regularity result for PCFs. Here the results

in [7] can be improved since we have the special situation where the magnetic permeability

µ = µ0 is constant and the electric permittivity ε = n2ε0 is invariant with respect to z, as

well as bi-periodic in the xy-plane.

Our aim now is to further refine Theorem 5.3 under these additional assumptions. Our new

result will focus on the x and y components of the magnetic field since these will actually

have more regularity and are often sufficient for photonic crystal fibre modelling, see e.g.

[30, 29]. The other components of the magnetic and electric field can then be recovered

in an easy and more accurate way in a post-processing procedure (see [27] for details). It

also complements the regularity theory for the z-components of E and H, developed under

a supplementary assumption in [12]. We will come back to this in the next section.

In addition to assumptions (5.1) (ε periodic and piecewise constant on a polyhedral parti-

tion), let us also assume that ε is translationally invariant with respect to z so that

ε(x) = ε(x′), for all x = (x,y,z) ∈ R3, with x′ = (x,y).

Then, the sets Pj of the polyhedral partition are translationally invariant too, so they have

the form

Pj = P′
j ×R, with P′

j polygonal in R2.

We denote by P ′ the partition {P′
j}

J
j=1 and by PHs(·,P ′) the corresponding piecewise

Sobolev spaces:

PHs
loc(R

2,P ′) := {u ∈ L2
loc(R

2) : u|P′
j
∈ Hs

loc(P
′
j)}, s ≥ 0,

PHs(Q′,P ′) := {u ∈ L2(Q′) : u|Q′
j
∈ Hs(Q′

j)}, s ≥ 0.

Here Q′ is the two-dimensional torus R2/K ′ and Q′
j = P′

j/K
′.
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As we have seen in §4, in the translationally invariant case we may reduce problem (1.2) to

a simpler problem by using the Ansatz (4.1) with fixed β ∈ R,

H(x) = h(x′)eiβ z.

Then, avoiding again to enter into the details of the Floquet-Bloch transform, we may further

simplify the problem by setting

h(x′) = u(x′)eiξ′·x′, for some ξ′ ∈ B
′,

where u is periodic and an eigenvector of the Floquet operator

L ′
(ξ′,β ) := ∇ ′

(ξ′,β )×
(

1
n2 ∇ ′

(ξ′,β )× ·
)

with ∇ ′
(ξ′,β ) := ( ∂

∂x
, ∂

∂y
,0)+ i(ξ′,β )

and satisfies thus the equation L ′
(ξ′,β )u = κ2u, for some real κ (cf. Theorem 3.1). Recalling

from Theorem 4.1 that u ∈H1(Q′) we obtain that h belongs to the space

H
1
ξ′(R

2) := {f ∈H
1
loc(R

2) : f(x′+k′) = eiξ′·k′
f(x′) ∀x′ ∈ R

2, ∀k′ ∈ K
′}

and satisfies the following equations in R2:

∇′
(0,0,β )× ( 1

n2 ∇′
(0,0,β )×h) = κ2h,(6.1a)

∇′
(0,0,β ) ·h = 0.(6.1b)

Note that ε = ε0n2 so that n2 is piecewise constant on the same partition P ′ as ε .

Now recall that ∇′
(0,0,β ) = ( ∂

∂x
, ∂

∂y
,0)+ i(0,0,β ) and expand (6.1) to get

∂y
1
n2 (∂xhy −∂yhx)− iβ 1

n2 (iβhx−∂xhz) = κ2hx,(6.2a)

−∂x
1
n2 (∂xhy −∂yhx)+ iβ 1

n2 (∂yhz − iβhy) = κ2hy,(6.2b)

∂x
1
n2 (iβhx−∂xhz)−∂y

1
n2 (∂yhz − iβhy) = κ2hz,(6.2c)

∂xhx +∂yhy + iβhz = 0.(6.2d)

Using the H1 regularity of h, it follows from (6.2a), (6.2b) and (6.2d) that

∂y
1
n2 (∂xhy −∂yhx) ∈ L2

loc(R
2),

∂x
1
n2 (∂xhy −∂yhx) ∈ L2

loc(R
2),

∂xhx +∂yhy ∈ H1
loc(R

2).

Let us define f ′ = ( fx, fy) ∈ L2
loc(R

2)2 by the formulas

fx = κ2hx + iβ 1
n2 (iβhx −∂xhz)+ iβ∂xhz,(6.3a)

fy = κ2hy − iβ 1
n2 (∂yhz − iβhy)+ iβ∂yhz.(6.3b)

Hence, h′ = (hx,hy) satisfies the elliptic system,

∂y
1
n2 (∂xhy −∂yhx)−∂x(∂xhx +∂yhy) = fx,

−∂x
1
n2 (∂xhy −∂yhx)−∂y(∂xhx +∂yhy) = fy,
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or in terms of two-dimensional curl , curl, grad and div operators

curl 1
n2 curlh′−grad divh′ = f ′.

We have thus reduced the regularity analysis for the eigenproblem (1.2) to the regularity

analysis of the following problem

(6.4) h′ ∈ H1
loc(R

2)2 such that Mh′ = f ′ for some f ′ ∈ L2
loc(R

2)2

where M is the 2×2 operator

(6.5) M := curl 1
n2 curl−grad div,

acting on all of R2 and the refractive index n is translationally invariant (in z) and piecewise

constant periodic over a polygonal partition P ′ of the periodicity cell Q′.

The operator M defines an elliptic system and the bottleneck for optimal regularity comes

from the corners of the subdomains Q′
j. Outside any neighbourhood of the corners we have

optimal piecewise regularity, i.e. PH2, but the norm may blow up near the corners. We now

investigate the strength of the corner singularities. Our approach is to analyse the operator

M using the Kondrat’ev method [21] near the corners. We need some notation. Let C be the

set of corners c of all subdomains Q′
j.

Let us choose a corner c. It suffices to prove PH2−η regularity in a neighbourhood of this

corner. After a possible reordering of the subdomains, let us denote by Q′
ℓ, ℓ = 1, . . . ,L ,

the subdomains containing c in their boundaries. In polar coordinates (r,θ) centred at c, we

may assume that, for r0 small enough

(6.6a) Q′
ℓ∩B(c,r0) = {x ∈ R

2 : θ ∈ Ωℓ = (ωℓ−1,ωℓ), r ∈ (0,r0)}

with

(6.6b) 0 = ω0 < ω1 < .. . < ωL = 2π .

The Kondrat’ev method is very general and also applies to transmission problems, see

[24, 25]. To obtain our desired regularity, we must prove that the Mellin symbol of M

at the corner c is invertible in a certain strip of the complex plane. This method was further

developed in [9] where equivalent, or more adapted, conditions are exhibited. This method

was applied to Maxwell equations in [6, 7]. Let us explain the latter method in the case of

the operator M.

For λ ∈ C, we need a space of quasi-homogeneous functions of degree λ and angular reg-

ularity m ∈ N∪{0}

(6.7) Sλ
[m] :=

{

Φ(r,θ) =
Q

∑
q=0

rλ logq r φq(θ) : Q ∈ N, φq ∈ Hm(R/2πZ)
}

.

The integer Q plays the role of a polynomial degree. It is problem specific and cannot be

specified in the general Ansatz. Denote by Sλ
[m] the product Sλ

[m]×Sλ
[m].
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We note that for m = 1, functions Φ ∈ Sλ
[1]

belong to H1(B(c,r0))
2 for Reλ > 0, but, even

when m ≥ 2, do not belong to PH2(B(c,r0),P
′)2 if Reλ < 1. The singularities of problem

(6.4) are now sought in the space Sλ
[1], with 0 < Reλ < 1. Define the space Zλ

M to be

(6.8) Zλ
M := {Φ ∈ Sλ

[1] : MΦ= 0} with 0 < Reλ < 1.

The ellipticity of M implies that Zλ
M is reduced to {0} for all but a finite set of λ and that

for each of these values of λ , Zλ
M is finite dimensional. Then [21, §1] adapted to Sobolev

spaces with real exponents as in [9] implies that the solution h′ of (6.4) expands2 around the

corner c as

(6.9) h′ = ∑
0<Reλ<1

Φ
λ +h′

0

with Φ
λ ∈Zλ

M and h′
0 ∈ PH2−η(B(c,r0),P

′)2 ∀η > 0.

However, we will now show that for the operator M in (6.5) the set Zλ
M is reduced to {0},

for all λ ∈ C in the strip 0 < Reλ < 1, which immediately implies the following regularity

result.

Theorem 6.1. Let β ∈ R and let ξ′ belong to the first Brillouin zone B′. Assume that the

refractive index n is translationally invariant (in z) and piecewise constant periodic over a

polygonal partition P ′ of the periodicity cell Q′. Now, consider the solution h′ ∈ H1
loc(R

2)2

of (6.4) with M as defined in (6.5), or equivalently the x and y components h′ = (hx,hy) of

the solution h ∈H1
loc(R

2) of (6.1). Then

h′ ∈ PH
2−η
loc (R2,P ′)2 for any η > 0.

To prove this theorem we will need to also introduce the spaces of quasi-homogeneous

functions associated with the scalar Laplace operator: For µ ∈ C let

(6.10) S
µ
∆ := {Φ ∈ S

µ
[0]

: ∆Φ = 0 in R
2 \{0}}.

Again, the ellipticity of ∆ implies that S
µ
∆ is finite dimensional, and reduced to {0} for all

but a finite set of µ . Each µ such that S
µ
∆ is not trivial is associated with a maximal value

Q
µ
max of the degree Q. Moreover, still by elliptic regularity, S

µ
∆ is contained in S

µ
[m] for any

m ∈ N. These spaces are analytically known3:

2The introduction of a non-optimal regularity for the regular part “h′
0 in PH2−η for all η > 0” allows a

simplification of the statement. A sharp regularity “h′
0 in PH2” would require a condition of invertibility of

the Mellin symbol on the line Reλ = 1, or, more precisely, the condition of injectivity modulo polynomials as

introduced in [9]. As we will see in the next section, the latter condition is not satisfied, whence the interest of

the weak regularity statement for the regular part.
3Though Lemma 6.2 would be difficult to find in this form in the literature, its proof is very classical and

relies on the separation of variables in polar coordinates, exactly like for the Dirichlet or Neumann problem

in a plane sector [21, §5], see also [10, §2-3]. Note also that the appearance of integers (and polynomial

functions) here is due to the fact that the equation ∆Φ = 0 in R2 \ {0} implies that it is satisfied on the whole

plane R2 as soon as Reλ > 0.
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Lemma 6.2. (1) If µ is not an integer, then S
µ
∆ = {0},

(2) If µ ∈ N, then Q
µ
max = 0 and S

µ
∆ is the space of harmonic polynomials that are

homogeneous of degree µ .

(3) If µ = 0, then Q
µ
max = 1 and S

µ
∆ is generated by 1 and logr.

(4) If µ < 0 and is an integer, then Q
µ
max = 0 and r−2µΦ is an harmonic polynomial.

of Theorem 6.1. If we can show that Zλ
M = {0}, for all λ ∈C in the strip 0 < Reλ < 1, then

the result follows immediately from (6.9).

Let 0 < Reλ < 1 and suppose Φ ∈Zλ
M. Then MΦ= 0. Define Ψ = curlΦ and Π = divΦ.

Then Ψ and Π are quasi-homogeneous of degree λ −1 and satisfy

(6.11) curl 1
n2 Ψ−grad Π = 0.

Taking the curl and div of (6.11), we find

∆( 1
n2 Ψ) = 0 and ∆(Π) = 0

and so 1
n2 Ψ and Π belong both to Sλ−1

∆ .

Since 0 < Reλ < 1, we have Sλ−1
∆ = {0} and so 1

n2 Ψ = Π = 0. Therefore we have proved

that curlΦ = 0 and divΦ = 0. These equations are valid on R2. The equation curlΦ = 0

implies that Φ is a gradient: Φ= grad ϕ with ϕ quasi-homogeneous of degree λ +1. The

equation divΦ = 0 implies that ∆ϕ = 0. Thus ϕ belongs to Sλ+1
∆ . Since λ + 1 is not an

integer, Sλ+1
∆ is reduced to {0}, ϕ = 0, and finally Φ = 0. Hence Zλ

M = {0} and the proof

is complete. �

The following result on the regularity of the eigenvectors of the related Floquet operators

L ′
(ξ′,β ) is a simple corollary to Theorem 6.1.

Corollary 6.3. Let the magnetic permeability µ = µ0 be constant and let the electric per-

mittivity ε be translation invariant (in z) and piecewise constant periodic over a polygonal

partition P ′ of the periodicity cell Q′. Let β ∈R and let ξ′ belong to the first Brillouin zone

B′. Then any eigenvector u = (ux,uy,uz) ∈H1(Q′) of the operator L ′
(ξ′,β ) (cf. Theorem 4.1)

satisfies

u′ = (ux,uy) ∈ PH2−η (Q′,P ′)2 for any η > 0.

The following corollary of Theorem 6.1 about the global regularity of h′ is a consequence

of Grisvard [18] and Petzoldt [31, Lemma 2.1].

Corollary 6.4. Under the same assumptions as in Theorem 6.1 we have

h′ = (hx,hy) ∈ H
3/2−η
loc (R2)2 for any η > 0.
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7. Case of simple interface edges between two materials

We consider finally a particular case of the framework studied in the previous section. In

addition to the assumptions of the previous section (µ is constant and ε = n2ε0 is transla-

tionally invariant in z and piecewise constant periodic on a polygonal partition P ′ in the

xy-plane), we also assume that, at each corner c, only two sectorial regions are touching the

corner. This means that in (6.6) we have L = 2 and

0 = ω0 < ω1 = ωc < ω2 = 2π with ωc 6= π ,

and distinct permittivities ε1 in Ω1 = (ω0,ω1) and ε2 in Ω2 = (ω1,ω2).

Since the material is translationally invariant in the z coordinate let us come back for a while

to the primitive equations (1.1) with the Ansatz

E(x) = e(x′)eiβ z and H(x) = h(x′)eiβ z.

The Maxwell equations become

∇(0,0,β )× e− iωµh = 0,(7.1a)

∇(0,0,β )×h+ iωεe = 0.(7.1b)

The regularity and the first singularities of the longitudinal components ez and hz are studied

in [12] by application of the Kondrat’ev method. As before, singularity exponents λ are

searched for in the strip 0 < Reλ < 1. It was proved in [12, Lem 4.2] that for each corner c,

there exists a unique singularity exponent λc in this strip, and that λc is the unique solution

of the transcendental equation

(7.2)
sin((π −ωc)λc)

sin(πλc)
=±

ε1 + ε2

ε1 − ε2
with 0 < Reλc < 1 .

We notice that this equation is the same for the scalar transmission problem ∆ε = ∇ · (ε∇·)
[8] and the common optimal regularity exponent for ∆ε and for the problem for the couple

(ez,hz) is

(7.3) σε = min
c∈C

λc.

Theorem 7.1 (Elschner, Hinder, Penzel & Schmidt [12]). Suppose that (e,h) belongs to

L
2
loc(R

2)×L
2
loc(R

2) and satisfies (7.1). Then,

ez ∈ PH
1+σε−η
loc (R2,P ′) and hz ∈ PH

1+σε−η
loc (R2,P ′) for any η > 0,

and in the neighbourhood of each corner c ∈ C there exist a constant γc and generic scalar

functions φ(θ) and ψ(θ) that are smooth on [0,ωc] and [ωc,2π ] such that

ez = γcrλcφ(θ)+ ez,0 with ez,0 ∈ PH2−η(B(c,r0),P
′) ∀η > 0,

hz = γcrλcψ(θ)+hz,0 with hz,0 ∈ PH2−η (B(c,r0),P
′) ∀η > 0.

Remark 7.2. In the neighbourhood of the corner c ∈ C , the regularity of ez and hz is limited

by λc:

ez, hz ∈ PH1+λc−η(B(c,r0),P
′) for any η > 0.



16 MONIQUE DAUGE, RICHARD A. NORTON, AND ROBERT SCHEICHL

Remark 7.3. According to [7, Theorem 8.1], λc > 1
2 . Therefore, ez and hz have global

regularity (similarly to Corollary 6.4)

ez, hz ∈ H
3/2−η
loc (R2) for any η > 0.

Now, relying on Theorem 7.1, we are in a position to further improve our regularity result

of Theorem 6.1 on the transverse components of the magnetic field h.

Theorem 7.4. Suppose that (e,h) ∈ L2
loc(R

2)×L2
loc(R

2) satisfies (7.1). Let a corner c ∈ C

be chosen. Then there exist a constant γc and generic two-component functions φ0(θ) and

φ1(θ) that are smooth on [0,ωc] and [ωc,2π ], such that the transverse components h′ =
(hx,hy) of the magnetic field can be expanded as

h′ = γcr
{

φ0(θ)+ logrφ1(θ)
}

+h′
0 with h′

0 ∈ PH2+λc−η(B(c,r0),P
′)2 ∀η > 0.

Here λc is the singularity exponent defined in (7.2).

Proof. Recall from Theorem 6.1 that h′ ∈ PH
2−η
loc (R2,P ′)2 for any η > 0 and that Mh′ = f ′

with M defined in (6.5) and f ′ given in (6.3). Let us choose a corner c ∈ C . Relying on

Theorem 7.1 (and Remark 7.2), we see that f ′ is more regular than just L2. In fact,

f ′ ∈ PHλc−η(B(c,r0),P
′)2 for any η > 0.

Now, we have an expansion for h′ like (6.9) for λ in the strip 0 < Reλ < 1+λc. Since this

strip contains also the integer 1, we have to consider a more general definition for the space

Zλ
M, like in [9, 7, 6]: Let P λ be the space of two-component polynomial functions in x′ that

are homogeneous of degree λ , then

(7.4) Zλ
M := {Φ ∈ Sλ

[1]/P
λ : MΦ ∈ P λ−2}.

We note that P λ = {0} if λ is not a natural number. Therefore, as soon as λ /∈ N∪{0} this

definition of Zλ
M reduces to the original one in (6.8). With this extended definition we have

(7.5) h′ = ∑
0<Reλ<1+λc

Φ
λ +h′

0

with Φ
λ ∈Zλ

M and h′
0 ∈ PH2+λc−η(B(c,r0),P

′)2 ∀η > 0.

It remains to find for which values of λ the space Zλ
M is not reduced to {0}. The sole integer

in the strip 0 < Reλ < 1+λc is λ = 1. For any other value of λ , we prove as in the proof

of Theorem 6.1 that Zλ
M = {0}.

Let λ = 1 and suppose Φ ∈ Z1
M. As in the proof of Theorem 6.1 define Ψ = curlΦ and

Π = divΦ. Since P λ−2 = {0}, we deduce as above that

1
n2 Ψ ∈ S0

∆ and Π ∈ S0
∆,

where S0
∆ is defined in (6.10). Since the space S0

∆ is generated by 1 and logr (see Lemma

6.2), there are constants γ0,γ1, γ̃0, γ̃1 ∈ R, such that

(7.6) curlΦ= n2(γ0 + γ1 logr) and divΦ= γ̃0 + γ̃1 logr.
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These conditions are necessary for MΦ= 0 to hold. Calculating MΦ with the Ansatz (7.6),

we find

MΦ= γ1 curl logr− γ̃1 grad logr.

The equation MΦ= 0 implies that γ1 = γ̃1 = 0. Therefore we are left with

(7.7) curlΦ= n2γ0 and divΦ= γ̃0.

It remains to find all solutions to (7.7) in S1
[1]/P

1. Equivalently, we can look for:

all solutions of curlΦ= 0 and divΦ= 0,(7.8a)

a particular solution of curlΦ= 0 and divΦ= 1,(7.8b)

a particular solution of curlΦ= n2 and divΦ= 0.(7.8c)

Case (7.8a). Suppose that Φ ∈ S1
[1]/P

1 satisfies (7.8a). Since curlΦ = 0 there exists a

potential V ∈ S2
[2] such that Φ = grad V . Then ∆V = 0, so V belongs to S2

∆. Hence by

Lemma 6.2, V must be a homogeneous polynomial of degree 2. This implies that Φ is a

homogeneous polynomial of degree 1, and so Φ= 0 in Z1
M.

Case (7.8b). Suppose that Φ ∈ S1
[1]/P

1 satisfies (7.8b). Again there exists a potential

V ∈ S2
[2] such that Φ = grad V and ∆V = 1. A particular solution is V = 1

2x2, hence Φ

is a polynomial of degree 1, and so Φ= 0 in Z1
M again.

Case (7.8c). Suppose that Φ ∈ S1
[1]/P

1 satisfies (7.8c). Since divΦ = 0, there exists W ∈

S2
[2] such that Φ= curl W . Then ∆W = n2. Using [10, Proposition 4.1 and §4.3] an explicit

solution can be found of the form

W (r,θ) = r2w0(θ)+ r2 logr w1(θ),

where w0 and w1 are smooth functions on [0,ωc] and [ωc,2π ]. Calculating Φ = curl W

we obtain an expression for Φ in the form Φ = rφ0(θ)+ r logrφ1(θ). This proves in the

end that Z1
M has dimension 1 and, combined with expansion (7.5), achieves the proof of

Theorem 7.4. �

Remark 7.5. So for the case of simple interface edges between two materials the regularity

provided by Theorem 6.1 is quasi-optimal, since the solution asymptotics contains a singular

function with a r logr term, thus not in PH2 (but still in PH2−η for any positive η). The next

singularity in the expansion of h′ could be determined, too. It originates from the first

singularity of hz as described in Theorem 7.1, via the right hand side f of equation (6.4), cf.

(6.3). This next singularity has the form

γ̃c r1+λcφ̃(θ)

leading to a new regular part belonging to PH3−η (B(c,r0),P
′)2 for all η > 0.
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8. Conclusions and consequences for numerical methods

The almost optimal piecewise regularity results in the previous two sections for the trans-

verse components of the magnetic field in translationally invariant, periodic media are some-

what unexpected. When one is used to the scalar transmission problem ∆ε = ∇ · (ε∇·) or

studies the general Maxwell regularity theory in [7, 6], one would expect in general only

piecewise H1+s regularity for some possibly “small” s> 0 (as outlined above). This is partic-

ularly pronounced in the case of a cross point, where four regions Q′
ℓ with ε1 = ε3 ≪ ε2 = ε4

meet in a point. In that case the solution to the scalar transmission problem is only in PH1+s

with s < σε ≪ 1 (cf. [7, Th.8.1]), whereas the transverse components of the magnetic field

h′ are in PH2−η , for all η > 0. In the case of PCFs, where we only have simple interfaces

between two materials, there is also no significant loss of regularity near reentrant corners

in any of the subregions Q′
ℓ, as in the scalar elliptic transmission problem.

The results also carry over to piecewise C2 cross sections without cusps. This follows im-

mediately from the above when the interfaces are straight near the corners, but the analysis

can also be extended to the general case where there exists a smooth, local diffeomorphism

that straightens the interfaces abutting to the same corner. We do not give any details here

but refer to [21, §2-3] instead.

The improved regularity results are of interest in the design and analysis of more efficient

finite element methods for PCFs. The convergence of finite element methods depends only

on the piecewise regularity of the solution (cf. [2, 4, 3]), and so the results in this paper

suggest the following conclusions:

(1) Since the regularity of H is better than E when µ = µ0 is constant (Corollary 5.5),

it is better to apply a numerical method to a formulation of Maxwell equations

based on (1.2) instead of (1.1). It is also definitely better to work with the transverse

components of the magnetic field rather than with the transverse components of

the electric field. The results in Section 7 (see also [7]) imply that ex and ey have

significantly lower regularity and are only in PHσε−η , for any η > 0. (Recall that

σε < 1.) Most papers in the numerical modelling of PCFs do in fact choose the

magnetic field, but some of them state that one could equally choose the electric

field (e.g. [34]). Our results imply that this would lead to a significantly worse

convergence (at least for materials with constant magnetic permeability).

(2) The reduction in §4 to a family of two-dimensional eigenproblems with bilinear

forms a ′
(ξ′,β )(u,v) provides an obvious advantage for computations over the original

three-dimensional eigenproblem in §3. Moreover, our regularity theory shows that

h′ has better regularity than hz (see Thoerem 6.1 vs. Theorem 7.1) and this suggests

that it may be advantageous (in terms of convergence rates) to also eliminate hz from

the reduced eigenproblem in §4 and to solve a problem where h′ is the unknown

eigenfunction (as in [29]). Even without eliminating hz it may be possible to develop

bespoke convergence results that show quasi-optimal convergence for h′ given its
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improved regularity. For PCFs this also seems to be a better approach than that

advocated in [12] which reduces (1.1) to a problem in hz and ez only.

(3) The convergence rate of spectral methods, such as the planewave expansion me-

thod (cf.[32, 19, 29]), depends on the global regularity of the solution (see [28, 29]),

whereas finite element methods (with their local basis functions) are able to exploit

any piecewise regularity (cf. [2, 4, 3]). Globally the regularity of h′ is restricted to

H3/2−η (cf. Corollary 6.4) while locally within each material h′ is H2−η (cf. The-

orem 6.1). Therefore, we would expect that finite element methods applied to a

reduced eigenproblem in h′ only, such as described in [29], will converge faster with

respect to the number of degrees of freedom than the planewave methods that were

employed there. With an adapted mesh the performance of the finite element method

will be even better.
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