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Abstract 

Globally, grassland soils, if managed properly, are important for the sake of carbon 

sequestration. The quality and quantity of soil organic carbon is probably influenced by 

vegetation traits such as composition and plant species. We determined the influence of 

vegetation composition and co-dominant species on soil organic carbon in two Prangus 

uloptera stands. The stands situated at close proximity were identified in a Prangos uloptera 

community in north-western Iran. Both stands shared similar dominant plant species with the 

same physiographical and climatological characteristics, but differed in their co-dominant 

plant species. To compare soil organic matter (SOM) parameters, soil samples from each 

stand were collected from depths of 0-15cm and 15-30cm. The results showed that SOM had 

spatial variation which was probably affected by the plant species. The highest values of total 

C, Total N, POM-C, POM-N, microaggregates, C in macroaggregates and C in 

microaggregates in the upper soil layer occurred in the stand with the highest cover of 

Astragalus microcephalus and Acanthophyllum microcephalum. It is suggested that, in 

conservation projects based on higher carbon sequestration, the plant species with more 

incorporation of carbon content into soil should be identified and used more widely. . 

Key words: Carbon sequestration, Plant species, Soil organic carbon, Vegetation type, 

Prangus uloptera stands. 
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1. Introduction 

Soil organic matter (SOM), a key component of soil-plant ecosystems, is closely associated 

with soil features and processes (Chen et al., 2004). SOM can be divided into labile, slow and 

recalcitrant organic matter according to its turnover rate (Six et al., 2002). Labile SOM, with a 

shorter turnover time, can respond sensitively to changes in vegetation compared to total 

SOM in world ecosystems (Laik et al., 2009). However, previous studies showed that 

vegetation composition is likely to influence some soil parameters. For instance, Wardle and 

Van der Putten (2002) and Wardle and Zackrisson (2005) claimed that plant species could 

affect the number and activity of soil biota. In addition, the quality and quantity of  SOM 

might depend on the nature and composition of the plant community. The quality and quantity 

of SOC (soil organic carbon) are also affected by vegetation traits such as composition and 

plant species. Studies investigating the effects of environmental conditions on soil ecosystems 

have mainly concerned forest ecosystems (e.g. Ashagrie et al., 2007; Christenson et al., 2009; 

Wang and Wang, 2011), shrubland (e.g. An et al., 2010), cultivated stands ( e.g. Gartzia-

Bengoetxea et al., 2009), crop production (e.g., Haynes, 1999; Huang et al., 2010; Beedy et 

al., 2010), land use (e.g. Bettina et al., 2005; Leifeld and Kögel, 2005) and overgrazed 

pastures (Fallahzade and Hajabbasi, 2011), but none of these studies focused on the effect of 

co-dominant species on total and labile SOM. In addition, the physical location (e.g. 

aggregates) of the organic matter in soil and how this will be influenced by vegetation 

composition in a single habitat is not well understood.  

Rangeland ecosystems are very diverse (i.e. grassland, shrubland, savannas, hot and cold 

deserts, and tundra), and play an important role in storing carbon both above and below 

ground. In 1993, carbon (C) stored in the world's rangeland soils was estimated to be 591.6 

Gt, or 44% of the world's total soil carbon (Solomon et al., 1993). Grassland soils are known 

for their high levels of organic matter and high structural stability (van Veen and Paul, 1981), 
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although they vary among habitats and vegetation types (Solomon et al., 1993). Preindustrial 

levels of soil C (to depths of 20 cm) in grassland alone have been estimated to be 

approximately 96 Gt (Ojima et al., 1993b). Soil C stocks for these grasslands are around 81-

164 Gt, based on land cover estimates of Bailey (1989). As a result, grassland soils, if 

managed properly, are important for carbon sequestration and a small increase in SOC may 

decrease the atmospheric CO2 concentration and alter the global climate positively (Bu et al., 

2012).  

The objective of this study was to determine the influence of vegetation composition and 

especially that of co-dominant species, on total C, total N, particulate organic matter C (POM-

C), particulate organic matter N (POM-N), macro- and micro aggregate distribution and C-

associated with macro- and micro-aggregates in a Prangus uloptera-dominated Iranian 

grassland.  

 

2. Materials and Methods 

2.1. Description of the study area 

This study was carried out in north-western Iran, within the grassland ecosystem of the 

Khanghah watershed, extending over about 2000 ha between latitudes 37º46´18"N and 

37º50´42"N and longitudes 44º57´04"E and 45º00´32"E. Mean annual precipitation, 

temperature and altitude are 393.9 mm, 9.87 ºC and ca. 1725 m a.s.l., respectively. Prangos 

uloptera DC plant communities were selected for the study. The Prangus genus is widespread 

in north-western Iran and consists of 15 species. Prangos uloptera is one of the most 

important species and has medicinal, industrial and foraging uses. The community was 

distinguished according to the dominant plant species (Heady and Child, 1994) (here Prangos 

uloptera), and two adjacent stands were identified in the community. Both stands were 

classified as "good" for rangeland condition and "stable" for rangeland trend according to 
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Holechek’s (1989) method (Motamedi et al. 2009). In both stands, the percentage cover of 

dominant plant species and other physiographical and climatological characteristics were 

similar and the stands mostly differed in the co-dominant plant species. In the first stand 

(hereafter coded Prangos uloptera1), the co-dominant plant species were Pterpyrum aucheri 

and Artemisia aucheri, and in the second stand (hereafter coded Prangos uloptera2), the co-

dominant plant species were Astragalus microcephalus, Acanthophyllum microcephalum and 

Poa bulbosa  (Table 1). 

 

2.2. Soil sampling 

Soil samples from each stand were collected from depths of 0 to 15 cm and 15 to 30 cm 

during spring 2011. Two key areas were selected within each stand to avoid pseudo-

replication, yet the stands were close to each to other to limit co-varying factors other than co-

dominant species (see for instance Oksanen, 2001). This area was considered as the 

representative of the entire habitat in that location (Heady and Child, 1994). In each key area, 

six transects were established: three parallel and three perpendicular to the slope. Three 

4m×4m quadrats were established at the beginning, the middle and the end of each transect. 

In each quadrat, 10 soil cores were collected at random, to a depth of 30cm, with a 5cm 

diameter auger (each core was divided into two sub-cores (0-15 and 15-30cm) and sub-cores 

were then pooled per depth for each quadrat. All of the soil samples were immediately 

transferred to a cooled, insulated container for transport to the laboratory and were stored at 

4ºC until they were processed. The samples were sieved, the roots and coarse gravel (>5mm) 

were removed by sieving, and the <5mm soil was used to examine the effects of vegetation 

composition on soil parameters.  

 

2.3. Soil and data analysis 
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Organic C was determined by the Loss of Ignition method (Lal et al., 2001) and total soil N 

by wet oxidation using the Kjeldahl method (Zagal et al., 2009). The POM was determined by 

physical fractionation (Cambardella and Elliot, 1992). Twenty-five grams of air-dried soil 

samples were dispersed with 100 ml of 5 g/l of sodium hexametaphosphate. The soil solution 

mixture was shaken for 1 h at high speed (=500 rpm) on an end-to-end shaker and poured 

over a 0.053 mm sieve with several deionized water rinses. The soil remaining on the sieve 

was back washed into a pre-weighed aluminium dish and dried at 60ºC for 24 h, then ground 

and analyzed for C and N (see also Handayani et al., 2009).   

Aggregate size distribution was determined using wet sieving with screen diameters of 0.25 

and 0.50 mm. The range of micro-aggregates and macro-aggregates was between 0.053 to 

0.25 mm and 0.25 to 0.50 mm, respectively. Soils samples were submersed in water on the 

largest screen for 5 min before sieving commenced. Soils were sieved under water by gently 

moving the sieve 3 cm vertically through water contained in a shallow pan, 50 times over 

period of 2 min. Material remaining on the sieve was transferred to an aluminium container 

and dried at 60ºC in a forced-air oven then weighed and measured for C (Elliot and 

Cambardella, 1991). 

Soil parameters of the two stands were compared using t-tests at the 5% significance level. 

 

3. Results 

3.1. Total organic carbon and nitrogen content in soils 

Total C in the upper layer (0-15 cm soil depth) was significantly higher in the Prangos 

uloptera2 stand compared to Prangos uloptera1 (9.5 g/kg vs. 3.6 g/kg, respectively; t=-25.34, 

p<0.01) (Fig. 1A). At the 15 to 30 cm soil depth, the difference between the two stands was 

significant with 6.4 g/kg and 3.2 g/kg in Prangos uloptera2 and Prangos uloptera1, respectively 

(t=-16.62, p<0.01).  
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Total N content in the upper layer increased from 0.4 g/kg to1.2 g/kg and in lower layer from 

0.4 g/kg to 1.0 g/kg in Prangos uloptera1 and Prangos uloptera2, respectively (t= -21.65, p<0.01; 

t=-19.38, p<0.01) (Fig. 2A). 

  

3.2. Labile SOM fractions 

Soil POM-C and also POM-N were generally higher in the Prangos uloptera2 (Fig. 1B and Fig. 

2B) stand compared to the other treatment. POM-C contents in Prangos uloptera1 and Prangos 

uloptera2 were 0.3 g/kg and 2.9 g/kg in the upper soil layer, respectively (t=-88.33, p<0.01). 

POM-C contents in Prangos uloptera1 and Prangos uloptera2 were 0. 7 g/kg and 1.5 g/kg in the 

deeper soil layer, respectively (t=-23.82, p<0.01). POM-N contents in both depths of the 

Prangos uloptera2 stand were significantly higher than the Prangos uloptera1 stand (0.4 g/kg and 

0.2g/kg vs. 0.1g/kg and 0.1g/kg) (t=-26.84, p<0.01; t=-2.86, p<0.01)(Fig. 2B).  

 

3.3. Aggregate distribution and carbon associated with aggregate size classes 

There was a significantly smaller proportion of soil in macro-aggregates in Prangos uloptera2 

compared to Prangos uloptera1 in both depths (upper layer: t=21.68, p<0.01; lower layer: t= 

35/29, p<0.01) (Fig. 3A). Conversely, there was a significantly smaller proportion of soil in 

micro-aggregates in Prangos uloptera1 compared to Prangos uloptera2 in both depths of the upper 

layer (t=-21.68, p<0.01; lower layer: t= -28/48, p<0.01)(Fig. 3B).  

Carbon content was significantly greater for each aggregate in Prangos uloptera2 than Prangos 

uloptera1 in both depths (Fig. 4A and 4B). The greatest significant difference (t=-14.63, 

P<0.01) in C content between Prangos uloptera1 and Prangos uloptera2 was in the macro-

aggregates at the 0-15cm soil depth (0.26 to 1.13g/kg) compared to the micro-aggregates 

(0.86 to 1.54g/kg) (t=-18.80, p<0.01) (Fig. 4A and 4B).  
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4. Discussion 

Results of this study showed that the total nitrogen, organic carbon and C associated with 

micro- and macro-aggregates were significantly higher in the Prangos uloptera2 than the Prangos 

uloptera1 community. We suggest that the two co-dominant plant species, with the higher 

canopy cover in Prangos uloptera2 compared to the other stand, are responsible for this 

difference. The first species is Acanthophyllum microcephalum with a mean percentage cover 

of 17% in Prangos uloptera2 compared with 4% in Prangos uloptera1. This species is a relatively 

large shrubby plant with high production in the Iranian range lands (Arzani et al., 2005). 

Nutrient accumulation as fertile islands beneath shrubs in grassland is common and provides 

opportunities for carbon and nitrogen sequestration in arid and semi-arid regions (e.g. Jackson 

et al., 2002). Mcclaran et al. (2008) showed that the SOM and total nitrogen accumulation 

was 80-750% greater in the beneath Prosopis velutina than in the open grassland. The second 

species with a high proportion of canopy cover in Prangos uloptera2 was a leguminous species, 

Astragalus microcephalus which is a deciduous shrub growing to 0.5 m. It produces woody 

stems which tend to die back almost to the base each winter. This species has a symbiotic 

relationship with certain soil bacteria, which form nodules on the roots and fix atmospheric 

nitrogen (Huxley and Griffiths, 1992).  Increasing N to the soil via N2 fixation and plant 

organic inputs by this species may increase total N and C in the soils of Prangos uloptera2. 

Moreover, the tiny dense shallow roots of Poa bulbosa (Barnhart, 1895) may increase organic 

carbon in the Prangos uloptera2 community. Previous studies also showed that soil carbon 

additions are governed by the volume of fibrous roots per unit of soil and the rate of growth of 

gramineae. The greater the number of active green leaves and active plant roots, the more 

carbon is captured from the air, and thus translocated through the plant and exuded into the 

soil (Jones, 2006; Kadović, 2012).  

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/176-3522519-4231768?_encoding=UTF8&field-author=Anthony%20Huxley&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/176-3522519-4231768?_encoding=UTF8&field-author=Mark%20Griffiths&ie=UTF8&search-alias=books&sort=relevancerank
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Soil C and N contents play a crucial role in sustaining soil and environmental quality (Su, 

2007). In addition, knowledge of the effects of vegetation type and plant composition on 

SOM status is essential in natural habitats when considering conservation strategies based on 

higher carbon sequestration in these habitats. In this study, SOM had spatial variation in 

natural habitats, driven by the plant composition, and mainly by the difference in co-dominant 

species. Our findings are similar to those obtained by a few other studies. Monokrousos et al. 

(2004) showed that soil samples collected from sites with dimorphic species share common 

soil properties, whereas sites with different evergreen species showed distinct soil properties 

for each species. Roukos et al. (2011) found that SOM is significantly affected by the plant 

community and Bu et al. (2012) observed that the C/N ratio in density fractions were higher 

in coniferous areas than in alpine meadows. Oueslati et al. (2013) found that organic carbon 

was significantly affected by the plant species in the ground vegetation. Contrary to our 

results, Mendham et al. (2004) and Peichl et al. (2012) reported that changing the plant 

community and species by the afforestation of grassland had no significant impact on total 

soil C and N stocks. 

However, studies on the effect of vegetation on SOM are scarce in natural habitats. In 

managed lands and cultivated areas, practices may also have wide-ranging impacts on soil C 

and N (Marcos et al., 2006; Luan et al., 2010; Fallahzade and Hajabbasi, 2010; Beedy et al., 

2010). SOM may also be affected by climate, soil texture, nutrient statuses and time since the 

land management was initiated (Franzluebbers and Arshad, 1997; De Koning et al, 2003). 

Labile fractions of SOM have already been suggested as important indicators of impacts on 

soil resulting from management practices (e.g. Handayani, 2004; Sequeira et al., 2011). This 

study also revealed the sensitivity of labile fractions of soil to natural vegetation changes. The 

differences in vegetation between Prangos uloptera1 and Prangos uloptera2 increased POM-C and 

POM-N, 89.6% and 75.0% in topsoil (0-15cm depth), respectively. While, total C and N in 
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the upper layer were increased 62.1% and 66.6%, respectively by vegetation differences 

between Prangos uloptera1 and Prangos uloptera2. The ranges of quantities of POM-C and POM-

N in the study area were 0.3 to 2.9 g/kg and 0.1 to 0.4 g/kg, respectively. These values are in 

the range reported by Gupta et al., (1994) (POM-N: 0.13 to 0.29 g/kg) and Ordraogo et al., 

(2006) (POM-N: 0.11 to 0.27 g/kg) but lower than those observed by Handayani et al. (2009) 

(POM-C: 1.92 to 4.02 g/kg and POM-N: 0.28 to 0.96 g/kg). Generally, the composition of 

POM consists mainly of root fragments (Cambardella and Elliot, 1992). Thus, significantly 

different levels of POM-C and POM-N between the two stands in this research would suggest 

differences in root biomass. It can be concluded that the leguminous species (Astragalus 

microcephalus) in Prangos uloptera2 probably promotes more decomposition and root 

regeneration due to additional N, which may increase root contributions to POM (see also 

Tisdall, 1991, Braakhekke et al. 2013).  

Here, the significant difference in macro-aggregates and micro-aggregates between the two 

stands may be due to the effect of the dense micro-roots of the leguminosae (Astragalus 

microcephalus) and the gramineae (Poa bulbosa) in Prangos uloptera2. Poaceae generally have 

a system of extensive tiny roots (Barnhart, 1895) that enfolds the soil ingredients like a trap 

and increases permanent aggregates in water. Prangos uloptera2 probably had fewer strong roots 

than Prangos uloptera1, thus decreasing the number of macro-aggregates. In accordance with 

our results, Liao et al. (2006) showed that, compared to herbaceous species (e.g. Eragrostis 

sp.), a woody species (Prosopis glandulosa) increased the relative proportions of the free light 

fraction and macro-aggregates and decreased the micro-aggregate size fraction. The reduction 

of macro-aggregates in soils under human activity has already been documented by previous 

works in which long-term cultivation has decreased the length and mass of fine roots and 

SOM, resulting in a reduction of macro-aggregates (Tisdall and Oades, 1980). 
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5. Conclusion 

This study reveals that changes in the co-dominance of plant species can have significant 

adverse effects on the proportion of SOC in natural grasslands. In conservation projects based 

on higher carbon sequestration, the manager should consequently identify the plant species 

which can absorb and add carbon into soil at a higher rate and try to improve their spatial 

extent.  
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Figure captions 

 

Fig. 1. Physical fractionation of soil organic matter for C (A) under two Prangos uloptera 

stands. POM-C is particulate organic matter C (B). Different successive letter indicate 

significant differences (at α=0.05) between the two stands. Co-dominant species in Prangos 

ulopteral1 were Pterpyrum aucheri and Artemisia aucheri, and in Prangos uloptera2 were 

Astragalus microcephalus, Acanthophyllum microcephalum and Poa bulbosa. 

 

Fig. 2. Physical fractionation of soil organic matter for N (A) under two Prangos uloptera 

stands. POM-N is particulate organic matter N (B). Different successive letter indicate 

significant differences (at α=0.05) between the two stands. Co-dominant species in Prangos 

ulopteral1 were Pterpyrum aucheri and Artemisia aucheri, and in Prangos uloptera2 were 

Astragalus microcephalus, Acanthophyllum microcephalum and Poa bulbosa. 

 

Fig. 3. Aggregate size distribution (macro- and micro-aggregates: A and B, respectively) 

under two Prangos uloptera stands. Different successive letter indicate significant differences 

(at α=0.05) between the two stands. Co-dominant species in Prangos ulopteral1 were 

Pterpyrum aucheri and Artemisia aucheri, and in Prangos uloptera2 were Astragalus 

microcephalus, Acanthophyllum microcephalum and Poa bulbosa. 

 

Fig. 4. Soil C fractions associated with aggregate size under two Prangos uloptera stands. 

Different successive letter indicate significant differences (at α=0.05) between the two stands. 

Co-dominant species in Prangos ulopteral1 were Pterpyrum aucheri and Artemisia aucheri, 

and in Prangos uloptera2 were Astragalus microcephalus, Acanthophyllum microcephalum 

and Poa bulbosa. 
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Figure 2 
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Figure 3 
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