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Abstract 

During protein synthesis, many translating ribosomes are bound together with an mRNA 

molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial 

polysomes has been well-studied in vitro, little is known about how they cluster when cellular 

conditions are highly constrained. To better understand this, we used electron tomography, 

template matching, and 3D modeling to analyze the supramolecular network of ribosomes 

after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA 

carrying a polyproline motif known to induce pausing during translation. When working with 

a strain lacking tmRNA, the principle actor in the “ trans-translation” rescuing system, the 

cells survived the hijacking of the translation machinery but this resulted in a sharp 

modification of the ribosomal network. The results of our experiments demonstrate that single 

ribosomes are replaced with large amounts of compacted polysomes. These polysomes are 

highly organized, principally forming hairpins and dimers of hairpins that stack together. We 

propose that these spatial arrangements help to maintain translation efficiency when the 

rescue systems are absent or overwhelmed. 
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Introduction 

In every cell, protein synthesis (namely translation) is mediated by the ribosome, a large 

macromolecular complex that decodes mRNAs into their corresponding sequences of amino-

acids. Each particle is divided into two subunits: a large one that performs the links between 

the amino acids to form a polypeptide, and a small one that ensures the decoding of the 

messenger RNA (mRNA). During translation, ribosomes cluster into polysomes (or 

polyribosomes), in which they are bound together by mRNA. In this way many ribosomes 

simultaneously synthesize the same protein. It has been known for a while that polysomes 

adopt various spatial arrangements in vitro or in vivo. Among these, the most classical forms  

described are linear, spiral and helical 1; 2; 3. In addition, two adjacent strands can assemble 

“back-to-back” or “front-to-back” to form polysomal hairpins or large spirals, respectively 4. 

Interestingly, these spatial orientations are not randomly arranged, probably to deter nascent 

chain interactions between the consecutive ribosomes 3. Though, the spatial organization of 

polysomes in the bacterial cell is far more complicated than previously expected from the 

absence of distinct functional compartments 5. Indeed, the spatial distribution of the DNA and 

ribosomes is influenced by many parameters, including the crowding forces that condense the 

DNA into the nucleoid; the presence of nucleoid-associated proteins that bind and modify the 

DNA segments; the translational activity of the cell that leads to a modification in the 

amounts of ribosomes; and the mobility of translating ribosomes. How the translational 

machinery is organized under high spatial constraints is still poorly understood. The aim of 

our study was to better understand the way ribosomes organize when bacteria are submitted to 

a stress that accumulates multiple polysomes.  

We first decided to work with Escherichia coli cells over-expressing an mRNA carrying a 

cluster of proline codons that are known to induce pausing during translation 6; 7. We 
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presumed that these conditions would saturate the rescue systems and lead to a marked 

accumulation of polysomes. However, despite a slowing-down of growth, the cells survived 

without a real modification in their polysomal profile. Therefore, we then used the same 

conditions but worked with a strain lacking tmRNA, which is the main actor of the “trans-

translation” quality control system and allows for the release of stalled ribosomes. The cells 

again survived the hijacking of the translation machinery by the overexpressed problematic 

mRNAs. However, it resulted in a sharp modification of the organization of the ribosomal 

network. We analyzed this newly-modified organization using electron tomography, template 

matching, and 3D modeling. Our results demonstrate that single ribosomes are replaced with 

large amounts of compacted polysomes. These polysomes are highly organized in most cases, 

principally forming hairpins and dimers of hairpins that stack together in very compacted 

clusters, helping to maintain translation efficiency. 

 

Results 

Overexpression of a protein carrying a stalling motif 

In this study, we first investigated cell growth of E. coli when overexpressing mRNAs 

carrying a run of proline codons. Indeed, the ribosome cannot synthesize all of the protein 

sequences equally well, and a stretch of prolines is likely to strongly inhibit elongation due to 

the perturbed geometry of peptidyl-transfer on proline residues7. We used the plasmid 

pET42a(+) that carries the gene encoding Glutathione S-Transferase (GST) followed by a 

cluster of 107 amino-acids with 7 CCA proline codons and 1 rare (0.32% frequency) CUA 

leucine codon at its C-terminal end. For clarity, we refer to the protein of 7 proline codons as 

“GST7p” (Figure 1A). Our theory was that the stretch of seven prolines followed by one rare 

leucine codon would strongly impair translation and favor the accumulation of ribosomes into 

polysomes. Indeed, stalling of full-length proteins encoded by genes with efficient stop 
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signals has been extensively observed and is particularly increased when the C-terminal 

sequence ends with Asp-Pro, Pro-Pro, or rare codons 6. 

We first examined the effect of GST7p induction on the growth of the E. coli wild-type strain 

MG1655. Cells were grown in LB medium until OD600 reached 0.4-0.6 and then the culture 

was split into two equal volumes. The expression of GST7p was induced in half the volume 

by the addition of IPTG (Figure 1B, black arrow) while the other half served as a control. Not 

surprisingly 8, the cell growth dropped dramatically after the induction of protein synthesis 

(Figure 1B, compare dashed and solid lines), but the cell viability of the strain was only 

moderately affected (Figure 1C). Polysome profiling was then performed by centrifuging the 

cell extracts on sucrose gradients after 90 min of IPTG induction. The ribosomal profile is 

very similar before and after induction of the GST7p protein, as mainly 70S monoribosomes 

and almost no polysomes are recovered (Figure 1D). This suggests that such a situation does 

not counter-balance the rescuing systems, which therefore avoid the accumulation of 

polysomes 9. Next we used the same conditions but worked with a strain lacking tmRNA, the 

main actor of the “trans-translation” quality control system that enables the release of stalled 

ribosomes 10; 11. 

 

Overexpression of a protein carrying a stalling motif in the absence of the tmRNA 

rescuing factor 

Since a large network of factors dedicated to ribosome rescue ensure cell survival during 

stresses that induce ribosome stalling 9, we decided to perform the same experiments in ∆ssrA 

cells lacking their first line of defense, the tmRNA-SmpB mediated reaction of trans-

translation 10; 11. Despite the absence of trans-translation, the growth curves and cell viability 

are identical to the ones recovered with the E. coli wild-type strain (compare Figures 2A and 

2B to 1B and 1C, respectively). Therefore, the ∆ssrA cells still survived the hijacking of the 
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translation machinery by the problematic overexpressed mRNAs. Since ArfA (Alternative 

ribosome rescue factor A, formerly YhdL) is undoubtedly the primary tmRNA backup of 

tmRNA 12, we figured that overexpression of the GST7p may be associated with an increase 

in its expression, thus ensuring ribosome rescue and cell growth in the absence of tmRNA. 

ArfA was detected by western blotting, and the variations in protein amounts between non-

induced and induced cells were compared (Figure 2C). In comparison with wild-type E. coli 

cells harboring tmRNA, even before induction of bacterial stress due to overexpression of 

GST7p, the ssrA deletion led to an accumulation of high levels of ArfA (~4-fold more than in 

wt cells) (Figure 2C, line 0). This is in agreement with the known regulation of arfA mRNA 

expression by tmRNA tagging activity. ArfA is synthesized from truncated mRNA; therefore, 

in the absence of tmRNA, high amounts of the protein tend to accumulate 13; 14. The 

comparison of ArfA levels between non-induced and induced cells revealed only an almost 

insignificant increase in the protein levels in the presence of GST7p (~1.3-fold after 1 h 

induction and ~1.1-fold after 2 h induction). These data suggest that cell survival might be 

due to modifications other than a simple recruitment of the rescuing factor ArfA. ArfB 

(Alternative ribosome rescue factor B, formerly YaeJ) is not a good candidate, since it is not 

sufficient for recovering cell viability in the absence of tmRNA and ArfA 15. Another possible 

rescuing mechanism could be supported by the elongation factor EF-P, recently shown to 

facilitate the translation of proline stretches 16; 17. In that case, even in the absence of tmRNA, 

only a small number of polysomes should be recovered after over-expression of GST7p. We 

were thus particularly interested in examining the organization of the ribosomal fraction after 

cell induction, reasoning that an accumulation of polysomes on the problematic mRNAs 

would indicate that Arf systems or EF-P are not consistently recruited and that such an 

organization might participate in cell survival.  
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Polysome profiling in ∆ssrA E. coli cells after GST7p overexpression was then performed. As 

shown in Figure 2D, in the absence of stress mainly 70S monoribosomes were recovered. 

Therefore, despite the absence of tmRNA, the alternative rescuing factors unquestionably take 

over the problematic mRNAs that accumulate in normal conditions. On the other hand, the 

translation of GST7p mRNA results in characteristic profiles including short and long 

polysomes (designated with ‘s’ and ‘l’, respectively), while 70S monoribosomes can no 

longer be detected (Figure 2D). It must be noted that endogenous SmpB protein, tmRNA’s 

usual partner, was mainly recovered linked to the ribosomal fractions in the presence or 

absence of tmRNA (data not shown and 18), but it is not sufficient to cause the polysomal 

accumulation by itself as 70S monoribosomes are predominant in non-induced ∆SsrA cells 

(figure 2D, left). these results confirm that polysomes accumulate upon translation of the 

GST7p protein, and that neither alternative rescue factors (e.g., ArfA or ArfB) nor translation 

facilitators (e.g., EF-P) efficiently counterbalance their accumulation.  

 

Electron microscopy analysis of the polysomes 

We followed by using transmission electron microscopy (TEM) after negative staining to 

analyze the two main ‘s’ and ‘l’ polysomal fractions recovered on the sucrose gradients 

(Figure 2D). Both fractions contained mostly polysomes, with very scarce and isolated 

monoribosomes (Figure 3). The first zone contained the shortest polysomes, with several 

arranged in compacted clusters (Figure 3A, insets). Such short forms have already been 

described as being the initial step in polysome formation 19. As expected, the longest 

polysomes were recovered on a higher density sucrose gradient fraction. Among these 

polysomes, most of the arrangements observed were classical linear strings with an average 

number of 4 to 6 ribosomes (Figure 3B, insets). Based on the size of the open reading frame 

of the mRNA encoding the GST7p protein (918 nts in the absence of any cleavage), and 
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considering that the distance between two codon recognition sites in densely-packed 

neighboring ribosomes is estimated at 72 nts 20, this means that up to 12 ribosomes can 

accumulate on a fully-extended GST7p mRNA. Therefore, although the polysomes observed 

after purification were shorter than the maximally-expected size, they imply an ongoing 

translation of the overproduced mRNA. To determine the presence of the mRNA carrying the 

run of proline codons in the polysomal fraction, we then performed RT-PCR analysis. We 

found that only the long polysomes harbored the mRNA (Figure 3C). These data are 

consistent with the distribution of non-stop mRNAs in a ∆ssrA E. coli strain 21. Other than 

linear strings, no other characteristic arrangements accumulated in these isolated polysomal 

fractions. This can be explained by a partial collapse of supramolecular arrangements during 

the TEM preparation so we next explored the polysomal organization in situ, using conditions 

as close as possible to the native state. 

 

Ultrastructure of E. coli cells when overexpressing the stalling motif 

To further explore the overall changes in cellular organization in conditions as close as 

possible to their native state, cells were subjected to high-pressure freezing and then freeze-

substitution. This approach retains macromolecular structures with low artifacts, and enables 

ultrastructural observation of cytoplasmic domains such as polysomes while guarding their 

integrity 22. The bacteria were frozen after 90 min of induction and compared with non-

induced cells (Figure 4). The overexpression of GST7p obviously impacts the cellular 

organization, leading to an increase in the number of ribosomes (see also Figure 2D). The 

ribosomal over-crowding in the bacterial cytoplasm is associated with a much more restricted 

space occupied by the nucleoid (Figures 4A, B). The distribution of the GST7p protein within 

the cells was analyzed by immunogold labeling, with the protein marked with anti-GST 

(Figure 4C). The gold labeling appears uniformly-distributed throughout the cell, but in some 
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places gold particles form small chains of 3-5 units that represent overlapping groups of 

consecutive ribosomes which could be interpreted as ongoing polysomal formation (Figure 

4C, arrows). Accordingly, a strong production of GST7p proteins was detected by western 

blotting after induction by IPTG (Figure 4D). This confirms that the compaction of polysomes 

does not impair protein synthesis. 

 

Electron tomography and 3D organization of the polysomes 

For tomography analysis, tilt-series from -60 to +60 with an angular increment of 1° were 

recorded. Figure 5A presents the 0° tilt image of the series. Densities corresponding to the 

70S ribosome can already be observed forming compacted clusters. To characterize the 3D 

organization of the ribosomes, we then reconstructed the tomograms (Figure 5B). Considering 

that no independent ribosomes and only polysomes were recovered within the activated cells 

(see Figure 2C), we measured the spacing between the particles to distinguish one polysome 

from another. However, due to their very high level of compaction, the mean distances 

recovered between adjacent ribosomes were rather uniform and very often below 25 nm. 

Therefore, this value cannot be used as an index to identify polysomes. Several characteristic 

supramolecular topologies are more frequently observed among this overcrowded population 

of polysomes that form very well-organized structures 4; 19. Examples of these arrangements 

are shown in Figures 5A and 5B. Parallel double rows of ribosomes and tetramers are 

abundant, as clearly seen from our electron tomograms (Figure 5 and 6). To our knowledge, 

this is the first time that such compacted arrangements have been observed in living cells. 

From these tomograms, we used a template-matching approach with a 70S ribosome to 

generate 3D models of the ribosomal arrangements (Figure 6, B, D, and E). Double rows of 

polysomes correspond to folded long polysomes forming hairpin-like structures (Figure 6B). 

These structures tend to pack together, yielding an overall topology of ribosomal tetramers 
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(Figure 5B and 6C). These tetramers correspond to orthogonal views of two compacted 

polysome hairpins (Figure 6D and E). 

 

Discussion  

Electron tomography and template matching are state of the art tools for describing the three-

dimensional organization of large macromolecular complexes such as polysomes 20; 23. Here 

for the first time we describe the formation of a very compacted population of polysomes. The 

formation of double-row polysomes has been described in eukaryotes as a long process 

requiring several rounds of translation. Double row polysomes also favor the reinitiation of 

translation, as do circular polysomes 19. We assume that such a high concentration of 

polysome-rich regions will not favor the pairing of translation with transcription 24, but that 

instead completed messages will accumulate in these regions for optimal protein synthesis 

through slow translation. This polysomal compaction would promote multiple rounds of 

translation of the same mRNA and help to avoid mRNA degradation by ribonucleases. This 

argues in favor of a non-random cellular reorganization of translation when actively-growing 

bacterial cells have to accommodate thousands of polysomes. The structures we observed are 

in agreement with the polysomal arrangements previously described by Baumeister’s group 

20. Although we could not determine the exact configurations of neighboring orientations, it is 

interesting to note that even in this overcrowded environment the space available between the 

two rows of a tetramer is large enough (>25 nm) to minimize contacts between nascent chains 

in close proximity. This lack of contact may allow molecular chaperones to access the nascent 

chains. 

Such an organization was obtained in the absence of trans-translation, the primary rescue 

system taking charge of stalled ribosomes.Several quality control mechanisms continuously 

ensure the accuracy of the process, particularly when the ribosomes are paused during mRNA 
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translation. Much has been unraveled during recent years about the structure and functions of 

these bacterial rescuing systems, and we now have a better understanding of the processes that 

take place at the molecular level 15; 25; 26; 27. However, at the ultrastructural level, little is 

known about how bacteria cope with protein synthesis when these rescuing systems are 

overwhelmed by the accumulation of problematic mRNAs. Our current findings strongly 

support the idea that when rescue factors (e.g, tmRNA-SmpB, ArfA, or ArfB) and translation 

facilitators (e.g., EF-P or EF4) 28 cannot counterbalance the accumulation of polysomes, 

bacterial survival depends on the formation of a supramolecular network of polysomes in 

dedicated regions. The cellular organization in bacteria is more controlled and less random 

than previously thought 29, and can successfully cope with a sudden accumulation of 

polysomes when facing translational stress that might otherwise rapidly overwhelm its quality 

control systems. 

 

 
Materials and Methods 

Strains and plasmids 

Escherichia coli wild-type strain MG1655 or W3110 �ssrA (which lacks the tmRNA gene), 30 

were used in this study. The pET42a plasmid was obtained from Novagen (Merck Millipore, 

Nottingham, UK). It was co-transformed with the pACYC184 plasmid encoding the T7 RNA 

polymerase gene under the lac-promoter sequence into the E. coli strains. ∆ssrA E. coli cells 

harboring pET42a plasmid driven by the T7 promoter were used for the high-level production 

of non-stop mRNAs. Bacteria were grown in LB medium at 37°C in the presence of 

kanamycin and chloramphenicol antibiotics until OD600 reached 0.4-0.6 and the expression 

of GST7p was induced by the addition of 1.0mM IPTG for 90 min. The bacterial viability of 

the cultures was assayed by spotting LB agar plates with 5 µl of ten-fold dilutions of cultures 

adjusted at OD600=0.5. The plates were incubated at 37°C for 24 h. 

 

Polysome extraction, purification and analysis 
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Cell cultures were centrifuged at 4°C and the pellets resuspended in 5mL of a polysome 

profile buffer (10mM Tris-HCl pH7.5, 50mM NH4Cl, 10mM MgCl2, 1mM DTT, 100 µg/ml 

chloramphenicol) then centrifuged a second time. After discarding the supernatant, the pellets 

were flash-frozen in liquid nitrogen. Lysis buffer (a polysome profile buffer containing 20 mg 

lysozyme in a total volume of 2 ml) was added in the presence of 1 ml of a detergent solution 

(DOC 10%, Brij58 10%, lysis buffer 1X, DNaseI). This mix was left on ice for 20 min before 

being centrifuged at 13,200 rpm for 5 min at 4°C. The supernatants were then filtered on a 

0.45 µm membrane. 10-40% sucrose gradients were prepared under standard conditions and 

used for polysomal fractionation. Ultracentrifugation was performed at 41,600 rpm for 3 h at 

4°C in a SW55 rotor (Beckman-Coulter, Villepinte, France). Then the gradients were 

separated into 20 fractions and analyzed. To perform electron microscopy imaging, the 

polysomes were further purified by ultracentrifugation in 20% sucrose cushions rotating at 

29,000 rpm for 3 h at 4°C in a SW55 rotor (Beckman-Coulter, Villepinte, France). The 

supernatants were then carefully discarded and the pellets resuspended in 100 µl of polysome 

profile buffer. Aliquots of 10 µl were conserved at –80°C before being observed. RT-PCR 

analysis was performed on 2 µl of short or long polysomal fractions using SuperScript™ II 

Reverse Transcriptase (Invitrogen) and GoTaq® (Promega), according to the manufacturers’ 

protocols. Primers used for RT-PCR were as follows: GST RT, 5'-TCCATG 

TGCTGGCGTTCG-3'; GST forward, 5’-ATGTCCCCTATACTAGGT-3’; and GST reverse, 

5'-TGGTGGTGCTCGAGTGCG-3'. Note that aspecific bands could be detected on the short 

polysomal fraction only. Since this ribosomal fraction is highly heterogeneous and does not 

contain the GSTp mRNA, we presume that these bands are 16S and 23S ribosomal RNAs. 

 

 

High pressure freezing / freeze substitution 

Cell slurry was prepared by re-suspending E. coli cells in 20% Bovine Serum Albumin (BSA) 

in LB medium. A 2 µl drop of the pellet was loaded onto a pre-heated 0.5 mm-thick flat 

specimen carrier having a gold-plated surface and a cavity diameter of 1.5 mm and depth of 

0.2 mm (Cat. No 16706898, Leica Microsystems AG, Wetzlar, Germany). These were then 

frozen in a Leica EM PACT2 high-pressure freezer. Frozen samples in the carriers were 

immediately transferred to an automatic freeze substitution system (Leica EM AFS2) 

equipped with an automatic reagent handling system (Leica EM FSP), and were placed in the 

pre-cooled -90°C substitution solution. Cells were freeze-substituted in acetone containing 
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0.1% uranyl acetate at -90°C for 60 h. After that, the temperature was elevated at a rate of 

3°C/h to -50°C, and samples were kept at this temperature for 24h. Then the samples were 

washed once with acetone and three times with 100% ethanol at -50°C. Samples were 

infiltrated with resin/100% ethanol mixtures by raising the volume-to-volume proportion of 

Lowicryl HM20 (25% for 2 h, 50% for 2 h, 75% overnight, and 100% four times for 1h). 

Finally, polymerization was carried out at -50°C for 48 h and at 20°C for 48 h. Ultra-thin (90-

110 nm) sections  were collected on nickel grids (300 mesh). 

 

Electron Tomography 

Tilt-series were recorded on a Tecnai G2 Sphera transmission electron microscope (FEI 

Company, Eindhoven, Netherlands) operating at 200kV with a nominal magnification of 

x25000. Digital images were collected with a 2k x 2k Megascan CCD camera. Tilt-series of 

80- to 100-nm-thick sections were recorded from -60 to +60 with an angular increment of 1°. 

The eTomo graphical user interface of the IMOD Tomography package 31 was used to 

calculate the 3D reconstruction. Images were pre-processed, binned, and aligned. CTF 

correction and 2D filtering were applied on the tilt-series before reconstruction. The 3D 

reconstructions were performed by weighted back-projection. The tomogram resolution, 

estimated at 38Å, was calculated using the McEwen and Marko formula specially designed 

for resin-embedded samples 32. 

 

Template Matching 

To identify the ribosomes in tomograms, we employed a template-matching approach based 

on the measure of the correlation between the template (density map of a reference particle) 

and the tomogram 33; 34. Using the IMAGIC software, a template was generated from an 

atomic model of the E. coli 70S ribosome (PDB ID: 3IZU and 3IZW) by down-sampling to 

the same pixel size as the tomogram and filtering to a similar resolution. All files were 

converted into EM format using TOM Toolbox 35 in MATLAB. The template-matching 

process was completed using MOLMATCH software 33, with an angular increment of 10°. 

Cross-correlation maxima were extracted with the Av3 Toolbox 36 in MATLAB while using a 

minimum peak radius slightly larger than that of the 70S ribosome. This resulted in a set of 

potential particles that were defined by their coordinates (x,y,z) and relative orientations 

(ϕ, ψ, θ). Cross-correlation values ranged between 0.49 and 0.65. 
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Immuno-electron microscopy 

Lowicryl HM20-embedded thin sections of E. coli cells were first blocked with 1% BSA in 

100mM (pH 7.4) Phosphate buffer saline (PBS) for 2h and 30 min and then reacted for 2 h 

with primary antibody diluted in blocking buffer. Rabbit anti-GST antibodies were diluted at 

1:250. Following four washes with blocking buffer (10 min each time) and one wash in 

100mM Tris-HCl (pH 7.4) containing 1% BSA, we incubated the grids for 1 h with the 

second antibody coupled with 10 nm gold particles (dilution 1:40, Delta Microscopies, 

Ayguesvives, France). After subsequent washes with Tris-HCl (pH 7.4) buffer containing 1% 

BSA, grids were fixed with 2.5% glutaraldehyde and contrasted for 40 min in 5% uranyl 

acetate. 

 

Negative staining 

Following polysome separation, samples were diluted 10 times in polysome profile buffer and 

applied to freshly glow-discharged 300-mesh collodion/carbon coated grids. After three 

washes in this buffer, grids were stained with 2% uranyl acetate for 30 seconds. The grids 

were then observed with a Tecnai G2 Sphera transmission electron microscope operating at 

200kV. Images were recorded with a 4k x 4k Ultrascan CCD camera at a nominal 

magnification of x29000. 

 

Western blotting 

Following IPTG induction, 1 ml of cells were pelleted and resuspended in 50 µl of lysis 

buffer (Tris-EDTA pH=8, 1mM PMSF, 0.15% Sodium Deoxycholate, 0.01% SDS) for 15 

min at 37°C. After centrifugation, SDS was added to the supernatant for a final concentration 

of 1%, and sample concentrations were measured by Bradford Assay. 10 µg of protein extract 

was loaded on a 15% SDS-PAGE and transferred onto a PVDF membrane (Biorad 

Laboratories, USA). Western blot analysis was performed using anti-ArfA antibodies 

(provided by Pr T. Abo) at 1:1000 or anti-GST antibodies (Bethyl Laboratory, Montgomery, 

USA) at 1:1000. 
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Figures and Legends 
 

 
 
Figure 1. Growth curve analysis of E. coli wild-type strain expressing GST7p.  
A) Schematic diagram of the construct used. The cluster of proline codons is underlined. B) 
Growth of E. coli strains was conducted at 37°C. Samples are: Solid line: non-induced 
MG1655/pET42a E. coli; dashed line: same strain, induced by IPTG at OD600=0.5 (black 
arrow). Triplicate cultures were conducted for each experiment. C) Spots (5 µl) of 10-fold 
dilutions of induced cultures (IPTG) versus non-induced cultures (-) incubated at 37°C for 24 
h. D) Sucrose gradient sedimentation profiles of ribosomes upon overexpression of GST7p. 
Ribosome analysis was performed by centrifugation of the cell extracts on linear 10-40% 
sucrose density gradients (see experimental procedures), and the absorption profiles measured 
at 260 nm. The zones containing monosomes (70S) and polysomes are indicated. Left: 
Ribosome profiles in non-induced cells. Right: Ribosome profiles in cells after 90 min IPTG 
induction.   
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Figure 2. Growth curve analysis of E. coli �ssrA strain expressing GST7p. 
A) Growth of E. coli strains was conducted at 37°C. Samples are: Solid line: non-induced 
W3110 �ssrA/pET42a E. coli; dashed line: same strain, induced by IPTG at OD600=0.5 
(black arrow). Triplicate cultures were conducted for each experiment. B) Spots (5 µl) of 10-
fold dilutions of induced cultures (IPTG) versus non-induced cultures (-) incubated at 37°C 
for 24h. C) Representative membrane of several independent western blots of the total E. coli 
extracts for ArfA protein. Cells were submitted to WB analysis either 1 or 2 hours after the 
time of induction in non-induced (-) or induced (IPTG) cells, respectively. Key: Ct, control 
corresponding to E. coli DH5α; 0, ∆SSrA E. coli before induction. A non-specific band 
(lower panel) detected with the same antibodies was used as loading control. D) Sucrose 
gradient sedimentation profiles of ribosomes upon overexpression of GST7p. Ribosome 
analysis was performed by centrifugation of the cell extracts on linear 10-40% sucrose density 
gradients (see experimental procedures), and the absorption profiles measured at 260 nm. The 
zones containing monosomes (70S) and polysomes of short (s) and long (l) sizes are 
indicated. Left: ribosome profiles in non-induced cells. Right: ribosome profiles in cells after 
90-minute IPTG induction. 
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Figure 3. EM micrographs of monosomes and polysomes negatively stained with 2% 
uranyl acetate. A) Gradient fraction corresponding to short polysomes (s). B) Gradient 
fraction corresponding to long polysomes (l). Linear strings of 6-8 ribosomes and single 
ribosomes are observed. The presence of such monosomes in the fraction must result from a 
partial collapse of polysomes during TEM preparation. Scale bars, 100 nm. C) Detection of 
the GST7p mRNA in the polysomal fractions by RT-PCR analysis. Key: M, DNA marker 
(base pairs); (-), negative control (PCR without reverse transcription); (+) RT-PCR product;  
arrow, band corresponding to GST7p mRNA; *: aspecific bands. 
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Figure 4. Thin sections of E. coli �ssrA cells expressing GST7p. A) In control experiments, 
bacteria possess an evenly-distributed cytoplasm packed with ribosomes and a scattered 
nucleoid (n). B) After IPTG induction, bacteria have a compacted nucleoid (n) and a 
cytoplasm over-crowded with ribosomes, some of which form linear arrangements. C) 
Immunogold labeling with anti-GST on IPTG-induced cells. Most of the gold labeling is 
uniformly-distributed throughout the cell, however small gold chains overlap groups of 
consecutive ribosomes and should correspond to synthesizing polyribosomes (arrows). Scale 
bars, 100 nm. D) Representative membrane of several independent western blots of the total 
E. coli extracts for GST protein. Cells were submitted to WB analysis either 1 or 2 hours after 
the time of induction in non-induced (-) or induced (IPTG) cells, respectively. Key: Ct, 
control corresponding to E. coli DH5α; 0, E. coli ∆SSrA strain without induction 
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Figure 5. Electron tomography on 100 nm-thick sections of E. coli �ssrA cells expressing 
GST7p. A) Image of the 0° tilt series. Chains of compacted polysomes are clearly observed. 
B) Central section of the reconstructed tomogram. Polysomes form double row units or 
assemble as tetramers. Scale bar, 100 nm. 
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Figure 6. Electron tomography on E. coli �ssrA cells expressing GST7p and 70S 
template matching. A) and C) represent the central section of 2 tomograms. B), D) and E) 
are the whole volumes corresponding to the insets in A) and C). B) and D) represent views 
perpendicular to the tomographic Z axis, while E) is the same as D) but viewed from an axis 
parallel to the Z axis. The 70S ribosomal templates highlight the spatial arrangement of 
polysomes. One double-row polysome corresponds to a folded long polysome forming a 
hairpin-like structure (B, E). Tetramers (D) are orthogonal views of two compacted hairpins 
(E). Scale bars, 100 nm. 
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