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Summary
Maternal Embryonic Leucine zipper Kinase (MELK) was

recently shown to be involved in cell division of Xenopus

embryo epithelial cells. The cytokinetic furrow of these cells

ingresses asymmetrically and is developmentally regulated.

Two subpopulations of xMELK, the mMELK (for ‘‘mitotic’’

xMELK) and iMELK (‘‘interphase’’ xMELK), which differ in

their spatial and temporal regulation, are detected in Xenopus

embryo. How cells regulate these two xMELK populations is

unknown. In this study we show that, in epithelial cells,

xMELK is present at a higher concentration at the apical

junctional complex, in contrast to mesenchyme-like cells, which

have uniform distribution of cortical MELK. Interestingly,

mMELK and iMELK also differ by their requirements

towards cell–cell contacts to establish their proper cortical

localization both in epithelial and mesenchyme-like cells.

Receptor for Activated protein Kinase C (RACK1), which we

identified as an xMELK partner, co-localizes with xMELK at

the tight junction. Moreover, a truncated RACK1 construct

interferes with iMELK localization at cell–cell contacts.

Collectively, our results suggest that iMELK and RACK1 are

present in the same complex and that RACK1 is involved in the

specific recruitment of iMELK at the apical junctional

complex in epithelial cells of Xenopus embryos.

� 2013. Published by The Company of Biologists Ltd. This is an

Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/

licenses/by/3.0), which permits unrestricted use, distribution

and reproduction in any medium provided that the original

work is properly attributed.
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Introduction
MELK (Maternal Embryonic Leucine zipper Kinase) is a serine/

threonine protein kinase of evolutionary conserved KIN1/PAR-1/

MARK family. Kinases belonging to this family of proteins are

found from yeast to human and are involved in diverse functions

such as cell polarity and cell cycle control (Tassan and Le Goff,

2004). MELK regulates neural progenitor cell renewal (Nakano

et al., 2005), apoptosis (Jung et al., 2008; Lin et al., 2007),

mRNA splicing (Vulsteke et al., 2004), haematopoiesis (Saito

et al., 2005) and asymmetric cell division (Cordes et al., 2006).

MELK has emerged as a potentially important therapeutic

target in the field of cancer research. Indeed, several studies have

shown that MELK expression is dramatically increased in

cancers of various tissue origins (Gray et al., 2005; Marie et al.,

2008; Nakano et al., 2008). Moreover, a direct correlation

between high MELK expression and malignancy grade has been

reported in melanoma (Ryu et al., 2007), breast cancer (Pickard

et al., 2009) and brain tumors (Marie et al., 2008; Nakano et al.,

2008). This, together with the data showing a decrease in cell

proliferation of some cancer cell lines after MELK knockdown

by siRNA, has led to the hypothesis that the high levels of MELK

activity may provide an advantage to tumor cells. In addition,

MELK involvement in the inhibition of apoptosis may also

promote tumor cell survival (Lin et al., 2007). Increased MELK

expression is associated with poor prognosis in breast cancer

(Pickard et al., 2009). Thus, MELK could also be a potentially

important prognosis marker for some types of cancers.

Interestingly, it has recently been shown that the antibiotic

siomycin A decreased MELK expression and correlatively

inhibited renewal of brain cancer derived stem like cells in

vitro and a glioblastoma tumor growth in vivo (Nakano et al.,

2011). Although MELK appears to be a good candidate for the

development of future diagnosis tools and anticancer drugs, its

precise function remains unclear.

Recently, we have shown that Xenopus MELK (xMELK) is

involved in embryonic cell division (Le Page et al., 2011). MELK

expression is tightly regulated during early embryogenesis in

Xenopus, where it was initially identified under the name of Eg3

(Paris and Philippe, 1990), and in the mouse (Heyer et al., 1997).

In contrast, in adults, the expression of MELK is limited to cells

engaged in cell cycle progression and is undetectable upon cell

differentiation (Badouel et al., 2010). In human cells and
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Xenopus embryos, MELK is phosphorylated during mitosis,

which correlates with the increase in its catalytic activity (Blot

et al., 2002; Davezac et al., 2002). In xMELK, we have identified

multiple sites phosphorylated specifically during mitosis

(Badouel et al., 2006). The two major mitotic kinases, cyclin

B-CDK1 complex and mitogen-activated protein kinase ERK2,

participate in these phosphorylation events and enhance MELK

activity in vitro. Thus, mitosis appears critical in the regulation of

MELK activity, and conversely MELK may regulate mitotic

progression.

Consistent with this specific regulation during mitosis, we

have shown, using xMELK knockdown and overexpression, that

this kinase is involved in the control of cytokinesis in Xenopus

embryos (Le Page et al., 2011). xMELK associates with anillin

which acts as a platform for the assembly of proteins involved in

cytokinesis such as myosin and RhoA small GTPase. In early

embryos, xMELK, as well as other cytokinetic proteins including

anillin, becomes highly concentrated at the division furrow

shortly prior the onset of cytokinesis (Le Page et al., 2011). The

localization of xMELK at the division furrow is a dynamic event,

which correlates with a conformational rearrangement of the

molecule and is regulated during early development. In dividing

cells, from the first embryonic cleavage up to the blastula stage,

the xMELK is concentrated at the cell cortex in an equatorial

band, which ultimately corresponds to the cytokinetic furrow.

However, at the later developmental stage (in gastrula), the

xMELK is neither concentrated in the equatorial band nor at the

cytokinetic furrow. Our previous study showed that in embryonic

epithelial cells xMELK is localized not only at the cytokinetic

furrow but also at the basolateral cell cortex. The basolateral

localization appears to be independent of the cell cycle and

developmental stages. The subpopulation of xMELK present in

the cell cortex during mitosis was previously named mitotic

MELK (mMELK), and the subpopulation remaining at the cell
cortex during interphase was named interphasic MELK (iMELK)

(Tassan, 2011). However, iMELK remains poorly characterized.
Here, we concentrated our interest on the identification of factors

responsible for the differences between mMELK and iMELK.
We then focused on the question of how the cells can

differentially regulate the two xMELK subpopulations, with a
particular emphasis on identification of an xMELK partner
involved in spatial and temporal regulations of specific

localizations of the two subpopulations of xMELK.

Results
Two xMELK subpopulations with different spatio-temporal
regulation coexist in Xenopus embryo cells

To extend our knowledge of xMELK in Xenopus embryonic
cells, a comparative analysis of its localization was undertaken in
external epithelial and internal mesenchyme-like cells at two

early developmental stages, the blastula and gastrula. Using
indirect immunofluorescence staining and confocal microscopy,

we analyzed localization of xMELK in parallel with C-cadherin
because it is a basolateral membrane adhesion marker.

In Xenopus blastula, following the midblastula transition

(MBT), the cell division cycles are no longer synchronous. As a
consequence both mitotic and interphasic cells are present

simultaneously in the post MBT blastula. As previously shown,
in the dividing epithelial cells of these blastulae, xMELK

accumulates within an equatorial band at the cell surface which
ultimately corresponds to the division furrow (Le Page et al.,
2011) (Fig. 1Aa,d, asterisks and open arrowhead in orthogonal

projections). As expected, C-cadherin is localized at the cell
basolateral membrane, but in contrast to xMELK, it does not

accumulate within the equatorial band of dividing cells
(Fig. 1Ab,e and orthogonal projections). However, C-cadherin

Fig. 1. Comparative analysis of xMELK

localization in epithelial and mesenchyme-like

cells in blastula embryos. Indirect
immunofluorescence with anti-xMELK (red) and
anti-C-cadherin (green) antibodies was performed
on fixed Xenopus albino embryos at blastula stage.
(A) Epithelial cells corresponding to the embryonic

external cell layer were analyzed by confocal
microscopy; 3 optical sections are shown.
(B) Internal mesenchyme-like cells facing the
blastocoel were observed after dissection of fixed
embryos; 2 optical sections are shown. Arrows
point to xMELK accumulated at cell–cell contacts.
Diagrams on the left: red lines mark the confocal

planes relative to embryo surface and blastocoel.
Images were merged to visualize co-localization of
xMELK with C-cadherin (merge, panels Ac,f,i and
Bc,f), DNA is shown (blue). Asterisks indicate
cytokinetic cells. White dashed arrows in panels Ac
and Bc symbolize the planes used for orthogonal

projections of confocal planes shown on the right.
Scale bars: 100 mm.
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and xMELK co-localize at the lateral cell cortex of dividing as

well as interphase blastomeres (Fig. 1Ag–i). Internal

mesenchyme-like cells situated underneath epithelial cells are

more rounded and loose than epithelial cells. In mesenchyme-like

cells, similarly to epithelial cells, the xMELK accumulates at the

division furrow during cytokinesis (Fig. 1Ba, open arrowhead in

orthogonal projections) and during interphase this protein is

localized at the cell–cell contacts marked by the presence of C-

cadherin (arrows in Fig. 1Bd).

In gastrula stage embryos, xMELK is no longer present at the

equatorial cortex of dividing cells (Le Page et al., 2011). However,

it is concentrated along cell periphery and notably marks

cytokinetic cells (Fig. 2Aa,c and orthogonal projections;

Fig. 2B). In the epithelial cells of gastrula, the cytokinetic

furrow ingresses asymmetrically, progressing from the

basolateral membrane towards the apical membrane (Le Page

et al., 2011). Accordingly, the apical membranes of the cytokinetic

cells (marked with encircled asterisks in Fig. 2Aa) are already

divided basolaterally (Fig. 2Ag–i, arrowheads) whereas their

apical membranes remain unseparated. Interestingly, at the

division site, the ingressing cell membrane shows a continuous

xMELK labelling whereas the distribution of C-cadherin is weaker

and appears as dots like at the cell periphery or sometimes is even

absent (Fig. 2Ag–i, arrowheads). This localization was observed

for all cytokinetic cells (additional dividing cells are shown in

supplementary material Fig. S1). A basolaterally situated gap

between plasma membrane of daughter cells is usually observed at

this stage of division. In cells advanced in cytokinesis xMELK and

C-cadherin show similar distribution along the cell membrane at

all confocal planes except at the apical membrane (Fig. 2Aa, cells

marked by asterisks). These results suggest that in cytokinetic cells

the xMELK is localized along the newly formed plasma membrane

between daughter cells including the tip of the ingressing cell

membrane. Interestingly, this tip is devoid of C-cadherin (Fig. 2A,

orthogonal projections). In contrast to the mitotic cells, in the

interphase cells the xMELK is not concentrated at the apical

membrane, but is localized at the cell periphery and perfectly co-

localizes with C-cadherin at all confocal planes (Fig. 2A,

orthogonal projections). High levels of xMELK and C-cadherin

are detected throughout the cytoplasm of mesenchyme-like cells.

However, in dividing mesenchyme-like cells xMELK consistently

accumulates along the cell periphery (cells marked by asterisks in

Fig. 2B; supplementary material Fig. S2). Notably, in these cells,

furrowing appears symmetric. Like in epithelial cells, in interphase

mesenchyme-like cells, xMELK accumulates at cell–cell contacts

marked by C-cadherin (Fig. 2B; supplementary material Fig. S3).

Taken together, these results corroborate the previously

introduced notion that two xMELK populations harbouring

distinct localization behaviours exist in Xenopus embryos, the

mitotic xMELK (mMELK) and interphase xMELK (iMELK)

(Tassan, 2011). Indeed, during mitosis, mMELK undergoes

redistribution to the cell cortex in both epithelial and

mesenchyme-like cells indicating that this redistribution is not

related to cell polarity. During interphase, iMELK co-localizes

with C-cadherin at the cell–cell contacts in both cell types. Our

comparative analysis of xMELK localization in epithelial and

mesenchyme-like cells shows that iMELK accumulates at cell–

cell contacts in both cell types, but it is also concentrated at the

Fig. 2. In epithelial cells of gastrula embryos the xMELK and C-cadherin co-localize at the lateral cortex during both interphase and mitosis with the

exception of the tip of the ingressing membrane during cytokinesis. (A) Epithelial cells. xMELK (red) and C-cadherin (green) were detected by indirect
immunofluorescence with specific antibodies in fixed albino embryos. Diagrams on the left: red lines mark the confocal planes relative to embryo surface. Asterisks
indicate cytokinetic cells. Two cells indicated by filled arrow heads (g,h,i) have not yet completed their cytokinesis and two cells indicated by arrows are more
advance in their division (their limits are encircled by dashed lines in panel a). Images were merged to visualize co-localization of xMELK with C-cadherin (merge,

c,f,i,l), DNA is blue. White dashed arrow in panel c symbolizes the plane used for orthogonal projection of confocal planes shown on the right. The empty arrowhead
points to a portion of the ingressing membrane labelled with xMELK antibodies but not with C-cadherin antibodies. (B) As in panel A except that internal,
mesenchyme-like cells were analyzed. Diagrams on the right: red lines mark the confocal planes relative to blastocoel. Asterisk indicates a cytokinetic cell. Arrows
indicate two daughter cells separated at these confocal planes and arrowheads point to the cell–cell contacts between the two daughter cells. Scale bars: 20 mm.

MELK and RACK1 in Xenopus embryo 3

B
io

lo
g
y

O
p
e
n

http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.20136080/-/DC1
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.20136080/-/DC1
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.20136080/-/DC1


apical tip of the lateral membrane of epithelial cells, which seems
to be related to their polar organization.

iMELK is localized at the cell–cell contacts and is highly
concentrated at the tight junction

To better characterize iMELK localization in the gastrula
epithelium, we compared xMELK localization with that of ZO-

1, a component of tight junctions in epithelial cells (in this
experiment the anti-xMELK antibody was used more diluted; see

Materials and Methods). As shown above, the mMELK is present
at the apical surface of cytokinetic cells (Fig. 3, marked by
asterisks) and iMELK at the lateral cortex in interphase cells. The

fluorescence of iMELK signal decreases rapidly from apical to
basal confocal planes but the signal, although faint, persists

basally (compare Fig. 3a,d and Fig. 3g). This is especially clear
on orthogonal projections in which iMELK appears as a bright

fluorescent dot with labelling extending slightly below. As
expected for a constituent of the tight junctions, ZO-1 is

concentrated at the apical edge of both mitotic and interphase
epithelial cells and therefore on orthogonal projections, appears
almost exclusively concentrated in dots (Fig. 3b,e and Fig. 3h).

Interestingly, iMELK dots perfectly co-localize with ZO-1 (open
arrowheads in orthogonal projections) indicating that iMELK is

concentrated at the tight junction.

mMELK relocalization is cell–cell contacts independent in both
blastula and gastrula embryos, whereas iMELK localization is
dependent on cell–cell contacts in gastrula, but not in blastula

To test the hypothesis that iMELK localization at the cell
periphery correlates with the presence of cell–cell interactions,
the contacts between cells were disrupted by dissociating the

embryos. First, embryos were incubated in medium deprived of

calcium and magnesium ions from the two-cell stage until

untreated embryos reached stage 7. In these conditions,

embryonic cells lose their contacts and isolated cells can be

recovered. Epithelial cells keep their apical–basal polarity after

dissociation (Müller and Hausen, 1995) and can be easily

discriminated from other cell types by higher content of pigments

concentrated in the apical hemisphere. In these cells, C-cadherin

is detected at the baso-lateral membrane (the hemisphere devoid

of pigment) and is also more concentrated at the border with the

apical area in which pigment is concentrated (Fig. 4b, compare

with control embryos shown in Fig. 4q–t where only the

secondary antibodies were used). However, xMELK is almost

exclusively concentrated within a narrow ring which co-localizes

with C-cadherin. In cytokinetic epithelial cells, xMELK is

detected both as a ring below pigment and as a larger and

diffuse band which corresponds to the cytokinetic furrow

(Fig. 4e). In the isolated cells, similarly to the cells in intact

Fig. 3. In epithelial cells xMELK accumulates at the tight junctions.

Confocal microscopy of indirect immunofluorescence with anti-xMELK
(green) and anti-ZO-1 (red) antibodies of epithelial cells from fixed albino
embryos at gastrula stage. Three single optical sections spaced by 1 mm are
shown. Asterisks indicate cytokinetic cells. Diagrams on the left: red lines mark
the confocal planes relative to embryo surface and yellow rectangles symbolize

tight junctions. Images were merged to visualize co-localization of xMELK
with ZO-1 (merge, c,f,i). DNA is blue (j), dividing cells are indicated by dashed
lines. White dashed arrow in panel c symbolizes the plane used for orthogonal
projection of confocal planes shown on the right. Arrowheads point to the
xMELK which co-localizes with ZO-1 at the tight junctions. Scale bar: 20 mm.

Fig. 4. xMELK localization in interphase and dividing cells of dissociated

blastula embryos. Pigmented embryos were dissociated by incubation in
calcium and magnesium devoid medium. Isolated cells were fixed and
immunofluorescence was performed with anti-xMELK (red, a,e,i,m) and anti-

C-cadherin (green, b,f,j,n) antibodies. Control cells (q–x) were processed for
indirect immunofluorescence like others except that the primary antibody was
omitted. Bright field microscopy (BF, grey, c,g,k,o,s,w) shows pigmented
epithelial cells (a–h,q–t) and mesenchyme-like cells devoid of pigments (i–p,u–
x). Images were obtained by projection of 10 single confocal sections. Images
were merged to visualize co-localization of xMELK with C-cadherin (merge,

d,h,l,p,t,x). Interphase (a–d,i–l,q–x) and dividing (e–h,m–p) cells are shown.
Scale bar: 100 mm.
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embryo, C-cadherin is not concentrated at the division site. In

mesenchyme-like cells, which are not pigmented, both xMELK

and C-cadherin show a disperse distribution (Fig. 4i,j, for the

specificity of localization compare with negative control embryos

shown in Fig. 4u,x). During cytokinesis, xMELK but not C-

cadherin become exclusively detected in a large and diffuse

equatorial band (Fig. 4m,n).

Because we have previously shown that xMELK localization

depends of the developmental stage, we also analyzed xMELK

localization in dissociated cells of post-MBT embryos. At this

developmental stage, cell cohesion in the epithelium appears too

strong to be disrupted by divalent ions deprivation. Therefore,

animal cap explants of blastula embryos were manually dissected

and dissociated by trypsin treatment. Dissociated epithelial
(pigmented, Fig. 5d,h,t) and mesenchyme-like (devoid of

pigment, Fig. 5l,p,x) cells were sorted manually using a
micropipette and either cultured at low density on an agarose
layer to avoid cell–cell re-adhesion or placed into agarose wells
to favour cell–cell re-adhesion. We found that in dissociated

epithelial cells the distribution of the pigment is no longer
asymmetrical contrary to isolated blastula epithelial cells, which
suggests that the cells lost their apical–basal polarity. Confocal

microscopy of epithelia and mesenchymal-like isolated cells
shows that during interphase, the C-cadherin and xMELK are
evenly distributed (Fig. 5a–d and Fig. 5i–l, respectively) in

contrast to their cortical distribution in cells of the intact
embryo. This result indicates that xMELK as well as C-cadherin
do not concentrate at the cortex if the cell–cell contacts are
disrupted. Interestingly, in both epithelial and mesenchyme-like

cytokinetic cells, the xMELK, but not C-cadherin is localized at
the cell periphery (Fig. 5). This indicates that the cortical
localization of xMELK during cytokinesis is independent of

cell–cell contacts. In cells that were allowed to re-aggregate, new
cell–cell contacts formed (as indicated by the focused distribution
of C-cadherin) and xMELK was found concentrated at the newly

formed cell–cell contacts. Altogether, these results indicate that
iMELK and mMELK not only differ in their spatio-temporal
localization, but, also, in their requirement for the presence of

cell–cell contacts (Fig. 5q–t and Fig. 5u–x, respectively).
Altogether, our results show that iMELK localization is
dependent on cell–cell contacts and that mMELK relocalizes at
the cell cortex during cytokinesis independently of cell–cell

contacts.

RACK1 is an xMELK partner

The accumulation of xMELK at the apical junctional complex
and the fact that its localization depends on cell–cell contacts
suggested that it should interact with putative partners localized

at the cell–cell contacts. To test this hypothesis we sought to
identify such putative xMELK partner(s). To this end, a synthetic
mRNA encoding FLAG-tagged xMELK (FLAG-xMELK) was
microinjected into two-cell stage embryos, which were allowed

to develop until the gastrula stage. Proteins were
immunoprecipitated with anti-FLAG antibodies, separated by
SDS-PAGE and analyzed by mass spectrometry. One protein

with a molecular weight of 35 kDa was specifically and
reproducibly co-immunoprecipitated with FLAG-xMELK, but
was not immunoprecipitated from uninjected embryos (Fig. 6A).

This protein was submitted to mass-spectrometry analysis. This
allowed identification of two peptides matching with the RACK1
(Receptor for Activated Protein Kinase C 1) amino acid sequence
(solid lines in Fig. 6A). In the second set of experiments, proteins

precipitated with the anti-FLAG antibodies were eluted by the
FLAG peptide and directly submitted to mass-spectrometry
analysis without prior separation by SDS-PAGE. This allowed

identification of two further peptides matching with the RACK1
sequence (dashed lines in Fig. 6A). These results suggested that
xMELK and RACK1 are indeed present in the same complex.

Because RACK1 is an adaptor molecule that has been previously
shown to localize at cell–cell contacts to promote cell–cell
adhesion (Mourton et al., 2001) and to regulate membrane

localization of diverse partners (Adams et al., 2011), we further
investigated the xMELK and RACK1 relationship. To validate
mass spectrometry results we used co-immunoprecipitation

Fig. 5. Two xMELK subpopulations have distinct requirement for cell–cell

contacts for their localization at the cell cortex. Animal caps of pigmented
embryos were dissected and cells were dissociated with trypsin treatment. Cells
were left isolated (a–p) or sorted according to their pigmentation and allowed to
re-associate for 3 hours (q–x). Cells were fixed, processed for indirect
immunofluorescence with anti-xMELK (red) anti-C-cadherin (green)
antibodies and observed by confocal microscopy. Single optical sections are
shown. Bright field (BF, grey) show pigmented epithelial cells (a–h,q–t) and

mesenchyme-like cells devoid of pigment (i–p,u–x). Images were merged
together with images of DNA (blue) at the same confocal plane to visualize co-
localization of xMELK with C-cadherin (merge, c,g,k,o,s,w). Scale bars:
20 mm.
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method. Proteins from FLAG-xMELK expressing embryos were

immunoprecipitated using anti-FLAG antibodies and uninjected

embryos were used as controls. Precipitated proteins were then

analyzed by Western blots using anti-xMELK and anti-RACK1

specific antibodies. Anti-FLAG antibodies immunoprecipitated

FLAG-xMELK and a substantial amount of endogenous RACK1

(Fig. 6B). This result shows that RACK1 is specifically present in

the FLAG-xMELK immunoprecipitate. To confirm this result, an

in vitro transcribed mRNA coding FLAG tagged RACK1 (FLAG-

RACK1) was co-injected together with myc-tagged xMELK (myc-

xMELK) or myc-tagged GFP (Green Fluorescent Protein, m-GFP)

mRNAs to Xenopus embryos. Immunoprecipitations were

performed using anti-FLAG antibodies and proteins were

analyzed by Western blots with anti-FLAG or anti-myc

antibodies. FLAG-RACK1 but not the endogenous RACK1 was

detected in FLAG precipitates using anti-FLAG antibodies

showing that FLAG-RACK1 are co-precipitated (Fig. 6C). Anti-

myc antibodies detected myc-xMELK in the FLAG

immunoprecipitate but not myc-GFP demonstrating that myc-

xMELK is specifically co-immunoprecipitated with FLAG-

RACK1. RACK1 consists of the repetition of 7 WD40 domains

(scheme in Fig. 6D), each repeat potentially constituting an

interaction domain for RACK1 partners. To test if xMELK

preferentially interacts with N or C terminal WD40 RACK1

domains, the interaction of myc-xMELK with two FLAG-RACK1

truncated constructs was compared with full length FLAG-

RACK1 (FLAG-RACK1 FL). Embryos were co-injected with

mRNAs coding for myc-xMELK and FLAG-RACK1 FL or

FLAG-RACK1 WD1–4 (in which WD40 domains 5 to 7 have

been deleted) or FLAG-RACK1 WD5–7 (in which WD40

domains 1 to 4 have been deleted), FLAG-tagged protein were

immunoprecipitated with anti-FLAG antibodies and analyzed

by Western blots with anti-FLAG and anti-myc antibodies.

As shown in Fig. 6D, myc-xMELK co-immunoprecipitated with

the 3 FLAG-RACK1 constructs, but with different affinities.

Substantially more of myc-xMELK co-immunoprecipitated with

FLAG-RACK1 WD1–4 (2.1 times), and slightly less with FLAG-

RACK1 WD5–7 (0.7 times) when compared to full length FLAG-

RACK1. Taken together, our results show that xMELK and

RACK1 are present in the same protein complex and that xMELK

Fig. 6. xMELK and RACK1 are in the same

complex. (A) Identification of RACK1 as a potential
xMELK partner. Proteins extracted from FLAG-
xMELK expressing or uninjected control (U.) embryos
were immunoprecipitated with anti-FLAG antibodies,

separated by SDS-PAGE and silver stained. The 35 kDa
band present in the FLAG-xMELK but not in the control
immunoprecipitate was cut out from the gel and
analyzed by mass spectrometry. Two peptides matching
RACK1 protein sequence (underlined) were identified.
Two additional peptides were identified in an
independent experiment (dashed underline). Ig HC and

Ig LC: immunoglobulins heavy and light chains,
respectively. (B,C) Validation of xMELK and RACK1
interaction. (B) Proteins were extracted from FLAG-
xMELK (F-MELK) expressing or uninjected (U.)
embryos (inputs). Proteins were immunoprecipitated
with anti-FLAG antibodies (IP FLAG) and Western

blots were incubated with anti-xMELK and anti-RACK1
antibodies. (C) Protein extracts (inputs) were prepared
from embryos co-expressing FLAG-RACK1 (F-
RACK1) and myc-GFP (m-GFP), FLAG-RACK1 and
myc-xMELK (m-MELK) or uninjected control embryos.
Proteins were immunoprecipitated with anti-FLAG
antibodies (IP FLAG) and Western blots were incubated

with anti-myc and anti-RACK1 antibodies. (D) xMELK
preferentially associates with RACK1 N-terminal
domain. Protein extracts (inputs) were prepared from
embryos co-expressing myc-xMELK with full length
FLAG-RACK1 (F-RACK1 FL), FLAG-RACK1 WD1–4
(F-WD1–4), and FLAG-RACK1 WD5–7 (F-WD5–7) or

uninjected (U.) embryos. Proteins were
immunoprecipitated with anti-Flag antibodies (IP
FLAG) and Western blots were incubated with anti-
FLAG and anti-myc antibodies. The histogram on the
right represents quantifications of the myc signal
obtained in 3 independent immunoprecipitation
experiments normalized with the corresponding FLAG

signals (myc/FLAG ratio). Error bars denote s.e.m., a t-
test was performed and p values are indicated above
bars. Schematic representation of the RACK1 constructs
is shown. The grey box indicates the FLAG tag.
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interacts to different degree with the N and C terminal RACK1

domains; preferentially with the N terminal (WD1–4) and less with

the C terminal domain (WD5–7).

RACK1 and iMELK co-localize with ZO-1 at the tight junction in
embryo epithelial cells

Because the results of co-immunoprecipitation indicated that

xMELK and RACK1 are present in the same complex, it was

important to determine in which cellular compartment these two

proteins could potentially interact, and if RACK1 interaction is

specific to one of the two xMELK subpopulations. To answer

these questions, we examined endogenous RACK1 localization

in fixed Xenopus embryos. We show that in the interphase and

mitotic epithelial cells the RACK1 localizes at the cell–cell

contacts and co-localizes with ZO-1 (Fig. 7A and orthogonal

projections). We also compared endogenous xMELK and

endogenous RACK1 localizations and found that RACK1 does

not re-localize to the cell cortex in cytokinetic cells (Fig. 7Ba–c).

This result was further supported by the fact that in living blastula

and gastrula embryos (supplementary material Fig. S4A,B,

respectively), the GFP-tagged RACK1 does not accumulate at

the division furrow or redistribute to the cell cortex during

cytokinesis. This suggests that xMELK and RACK1 do not

interact at these cellular locations during cytokinesis. In contrast,

the two proteins co-localize at the tight junctions (Fig. 7B,

open arrowheads in orthogonal projections). Interestingly, in

mesenchyme-like cells, RACK1 is diffusely distributed and only

low levels are present at the cell cortex during both mitosis and

interphase (Fig. 7C). Taken together, these results show that

RACK1 does not follow the characteristic relocalization

behaviour of mMELK. However, RACK1 localization follows

the localization pattern of iMELK suggesting that in the epithelial

cells it may specifically interact with iMELK at the tight

junctions.

RACK1 regulates iMELK localization at the cell cortex

To explore if RACK1 could contribute to iMELK localization at

the cell cortex, we tried to knockdown RACK1 in embryos using

Morpholinos. Although we microinjected increasing amounts of

Morpholinos and we harvested embryos at diverse stages of

development, the level of endogenous RACK1 was not

detectably affected (supplementary material Fig. S5). Thus, this

approach failed; however, we showed (Fig. 6) that iMELK

preferentially interacts with the RACK1 WD1–4 domains and to

a lesser degree with the WD5–7 domains. Therefore, as an

alternative approach to RACK1 knockdown, we tested if, and to

Fig. 7. In epithelial cells, RACK1 co-localizes with xMELK at the tight junctions. (A) In gastrula epithelial cells, RACK1 co-localizes with ZO-1 at the tight
junctions. Endogenous RACK1 (green, a,d) and ZO-1 (red, b,e) were detected with specific antibodies. Two single optical sections spaced by 2 mm are shown; their
positions relative to the embryo surface are symbolized by red lines (diagrams on the left). Yellow rectangles symbolize tight junctions. Images were merged to

visualize co-localization of RACK1 with ZO-1 (merge, c,f). DNA is blue (g). Asterisks indicate cytokinetic cell. White dashed arrow in panel c indicates the plane
used for orthogonal projection of confocal planes shown on the right. Arrowheads point to the RACK1 which co-localizes with ZO-1 at the tight junctions.
(B) RACK1 colocalizes with xMELK at the tight junctions. In epithelial cells, xMELK (green, a,d,g) and RACK1 (red, b,e,h) detected by specific antibodies co-
localize at the tight junctions. Diagrams on the left: confocal planes relative to embryo surface are marked by red lines. Yellow rectangles symbolize tight junctions.
The asterisk indicates cytokinetic cell. Orthogonal projections of confocal planes are shown on the right. The plane of orthogonal projection is indicated by a white
dashed line in panel c. Arrowheads point to the RACK1 which co-localizes with xMELK at the tight junctions. (C) xMELK (red) and RACK1 (green) were detected
by indirect immunofluorescence with specific antibodies in mesenchymal-like cells. Confocal plane relative to the blastocoel is indicated by a red line on the diagram

on the left. Asterisk indicates cytokinetic cell. Images were merged together with images of DNA (blue) at the same confocal planes to visualize co-localization of
xMELK with RACK1 (merge). Scale bars: 20 mm.
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what extent, the overexpression of these RACK1 truncated

constructs could interfere with the localization of endogenous

iMELK. FLAG-RACK1 FL, FLAG-RACK1 WD1–4 and FLAG-

RACK1 WD5–7 were expressed in embryos and their subcellular

localizations were analyzed. Similarly to the endogenous

RACK1, the FLAG-RACK1 FL is concentrated at cell–cell

contacts in epithelial cells (Fig. 8Aa,c). In contrast, the FLAG-

RACK1 WD1–4 is distributed, in the form of dots, throughout the

cytoplasm (Fig. 8Ad,f). This result indicates that WD1–4 domain

does not localize at the cell–cell contacts. However, FLAG-

RACK1 WD5–7 is concentrated at the apical junctional complex

of epithelial cells similarly to FLAG-RACK1 FL (Fig. 8Ag,i). In

addition, FLAG-RACK1 WD5–7 is also localized within the

cytoplasm on the network resembling microtubules (Fig. 8Ag,

the large central cell, Fig. 8Aj–l; supplementary material Fig. S6)

and is more concentrated at the apical cortex. Taken together,

these results suggest that WD5–7 domain regulates RACK1

localization at the junctional complex, and that WD1–4 may be

involved in the specificity of RACK1 subcellular localization by

restricting its localization to specific structures or areas within the

cell (e.g. along the microtubules). To analyze if the expression of

truncated RACK1 constructs could influence xMELK localiza-

tion, the endogenous xMELK localization was detected with

specific anti-xMELK antibodies. In FLAG-RACK1 WD1–4

expressing embryos, the xMELK localization appears similar to

that in FLAG-RACK1 FL embryos (Fig. 8Ab,e). In contrast,

xMELK accumulation at the cell–cell contacts was clearly

reduced in FLAG-RACK1 WD5–7 expressing embryos

(Fig. 8Ah). Indeed, quantification of the fluorescent signal

showed that xMELK cortical localization was about 40% lower

in FLAG-RACK1 WD5–7 expressing embryos than in FLAG-

RACK1 FL and FLAG-RACK1 WD1–4 expressing embryos

(Fig. 8A, histogram on the left side, interphase). Importantly, this

diminution was observed for interphase cells but not for mitotic

cells (Fig. 8A, histogram on the right side, mitosis), indicating

that this effect is specific for iMELK. A similar effect on iMELK

localization was observed in living embryos co-expressing GFP-

xMELK KR, an inactive xMELK mutant unable to induce

cytokinesis defects (Le Page et al., 2011) in combination with

FLAG-RACK1 FL, FLAG-RACK1 WD1–4 or FLAG-RACK1

WD5–7 (Fig. 8B). Similar to the endogenous xMELK, the

accumulation of GFP-xMELK KR at the cell–cell contacts was

substantially reduced when co-expressed with FLAG-RACK1

WD5–7 (Fig. 8B, arrowheads, left). Quantification of the

fluorescent signal showed that GFP-xMELK KR was about

40% lower in FLAG-RACK1 WD5–7 than in FLAG-RACK1 FL

and FLAG-RACK1 WD1–4 (Fig. 8B, histogram on the left side,

GFP-xMELK KR interphase). As for the endogenous protein, this

diminution was observed for interphase cells but not for mitotic

cells (Fig. 8B, histogram in the middle, GFP-xMELK KR

mitosis). This reduction in GFP-xMELK KR level was specific

for this protein accumulation at cell cortex because no reduction

was observed for the plasma membrane protein marker GFP-gpi

(Fig. 8B, histogram on the right side, GFP-gpi). Altogether, these

results suggest that the expression of FLAG-RACK1 WD5–7,

which localizes to cell–cell contacts, reduces accumulation of

iMELK at the cell–cell junctions. Taken together, our results are

consistent with a model in which iMELK is localized at the

lateral cell cortex and the apical junctional complex where it

associates with RACK1.

Discussion
Two xMELK subpopulations are differently regulated

According to their spatial and temporal regulations, two xMELK
subpopulations can be distinguished in Xenopus embryonic cells.

The mitotic xMELK subpopulation, mMELK, shows a highly
dynamic subcellular relocalization at the cell cortex specifically
during mitosis (Le Page et al., 2011). This localization is
subjected to developmental regulation in Xenopus embryos. In

the early embryos, shortly before the onset of cytokinesis, the
mMELK concentrates, together with other cytokinetic proteins,
in an equatorial band, which ultimately corresponds to the cell

division furrow. However, later in development, in the gastrula,
the mMELK is no longer concentrated in the equatorial band.
Herein, we show that in the dividing cells of gastrula embryos,

the mMELK is redistributed to the cell cortex. The cortical
localization was observed in both epithelial and mesenchyme-
like cells, which suggests that the cortical localization of MELK

may be a common feature shared by diverse cell types. This is in
agreement with our previous results showing that in the HeLa
human cell line, starting from anaphase until mitotic exit, the
MELK is also distributed at the cell cortex (Chartrain et al.,

2006).

The interphase xMELK subpopulation, iMELK, is localized at

the lateral cell cortex independently of the cell-cycle phase and
developmental stage (Le Page et al., 2011). In the present study,
we show that iMELK has a lateral localization in both epithelial
and mesenchyme-like cells and that it is concentrated at the

junctional complex of epithelial cells where it co-localizes with
the tight junction protein ZO-1. Interestingly, MELK was
previously identified in a proteomic analysis of purified tight

junction complex from the human epithelial T84 cell line (Tang,
2006). Our results obtained with Xenopus embryonic epithelial
cells are in agreement with the xMELK being associated with the

tight junction complex.

The two subpopulations of xMELK have distinct requirements
for their proper intracellular localizations. Whereas iMELK

depends on cell–cell contacts to be localized at the lateral cortex,
mMELK localizes independently of cell–cell contacts either at
the division site in cells isolated from blastula or along cell

periphery in the cells isolated from gastrula embryos.
Remarkably, in cells isolated from blastula embryos, which, as
shown by localization of pigment and C-cadherin, remain
polarized, we observed that iMELK remains concentrated at

the lateral cortex. In contrast, in epithelial cells isolated from
gastrula embryos, which lost their polarity, as shown by
redistribution of pigments and C-cadherin throughout the cell,

the xMELK is no longer concentrated at the cell cortex during
interphase. This result suggests that iMELK localization
correlates with the epithelial cell polarity. Further studies are

needed to clarify and characterize the regulation of xMELK by
cell polarity events.

We have previously shown that in the epithelial cells of

gastrula embryos the cytokinesis furrow progresses
asymmetrically from the baso-lateral membrane towards the
cell apex (Le Page et al., 2011). Here, we show that

mesenchyme-like cells do not have an asymmetric furrowing.
This suggests that epithelial cell polarity might play an important
role in regulation of asymmetric furrowing. We also observed

that in the cytokinetic cells of gastrula embryos, the mMELK is
present at the tip of the asymmetric ingressing membrane,
whereas C-cadherin is present in discontinuous pattern along
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Fig. 8. RACK1 regulates localization of iMELK. (A) Gastrula

embryos expressing FLAG-RACK1 FL, FLAG-RACK1 WD1–4 and
FLAG-RACK1 WD5–7 were fixed and processed for indirect
immunofluorescence with anti-FLAG (a,d,g) and anti-xMELK
antibodies (b,e,h). Pictures were merged (merge, c,f,i) together with
pictures of DNA (blue) at the same confocal planes to visualize co-
localization of xMELK (red) with FLAG-RACK1 constructs (green).
Embryos expressing FLAG-RACK1 WD5–7 were incubated with a

rabbit polyclonal anti-FLAG (j) and a mouse monoclonal anti-
tubulin (k) antibody. Pictures were merged together with pictures of
DNA (blue) to visualize FLAG-RACK1 WD5–7 and microtubules.
White dashed arrows in panels c, f and i indicate the plane used for
orthogonal projections of confocal planes shown on the right.
Asterisks indicate cytokinetic cells. Arrowheads point on xMELK

concentrated at the tight junctions. Scale bars: 20 mm (a–i), 10 mm
(j–l). Intensity of the xMELK fluorescent signals at the cell–cell
contacts in embryos expressing FLAG-RACK1 FL, FLAG-RACK1
WD1–4 and FLAG-RACK1 WD5–7 were quantified in interphase
and mitotic cells for each 0.5 mm confocal plane. (B) Embryos were
coinjected with FLAG-RACK1 FL, FLAG-RACK1 WD1–4 and
FLAG-RACK1 WD5–7 mRNAs with GFP-xMELK KR or GFP-gpi

mRNAs. White dashed lines mark the plane used for orthogonal
projections of confocal planes shown in the center. Arrows points to
the apical junctional complex. Black and white arrows points to
GFP-xMELK and GFP-gpi, respectively. Scale bars: 20 mm. The
intensity of the GFP-xMELK KR and GFP-gpi fluorescent signals at
the cell–cell contacts in embryos expressing FLAG-RACK1 FL,

FLAG-RACK1 WD1–4 and FLAG-RACK1 WD5–7 was quantified
in interphase and mitotic cells for each 0.5 mm confocal plane.
Statistical analysis was performed. *GFP-xMELK KR+ FLAG-
RACK1 WD5–7 is significantly different from GFP-xMELK KR+
FLAG-RACK1 FL at p,0.005, **p,0.002, ***p,0.0003. Note
that asterisks are oriented vertically on the figure. For other points

0.5.p.0.005.
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the ingressing membrane (Fig. 2). This indicates that mMELK
is present at the newly formed membrane between the two

daughter cells. In the cytokinetic cells of whole blastula embryos,
mMELK was highly concentrated at the equatorial cortex
whereas C-cadherin was not. This is consistent with the notion
that mMELK localization is cell–cell contact independent.

At present, it is not known how the xMELK becomes localized
at the newly formed membrane between daughter cells when they
exit mitosis. The mMELK could be either converted or replaced

by iMELK. This event may be linked to the formation of newly
formed junctional complexes between the two daughter cells.
These new junctions would allow recruitment of iMELK.

Available information on mechanisms regulating xMELK
localization from other species may shed some light on this
issue. Our studies on human cultured cells showed that a part of
the MELK kinase regulatory domain, (the C-terminal domain,

which includes the KA1 domain, Kinase Associated domain 1), is
involved in MELK localization at the cell cortex during mitosis
(Chartrain et al., 2006). In agreement with our finding, it has been

recently shown that in various kinases, including MELK, the
KA1 domain is responsible for their association with cellular
membranes (Moravcevic et al., 2010). However, the higher

concentration of iMELK at the cell–cell contacts in epithelial
cells led us to hypothesize that iMELK may interact with a
putative partner present in this particular subcellular location.

Identification of RACK1-xMELK complex

In this study, we identified RACK1 as a new xMELK partner. We
show that RACK1 is localized at the cell–cell contacts in

Xenopus embryonic mesenchyme-like cells. This result is in
agreement with previous reports showing that RACK1 is
localized at cell–cell junctions in HT-29 human colon cancer

cell line and mink Mv 1 Lu cells (Swaminathan and Cartwright,
2012; Mourton et al., 2001). We also show that in polarized
Xenopus embryonic epithelial cells RACK1 co-localizes with

ZO-1 at the apical cell–cell junction. Interestingly, RACK1
localization varies depending on the cell type. This is reminiscent
of ZO-1 localization. Indeed, in epithelial cells, ZO-1 is
concentrated in tight junctions, where it interacts with integral

transmembrane proteins including occludin, claudins and JAMs
(junctional adhesion molecules), which are specifically enriched
at this type of junctions. However, in non-epithelial cells, ZO-1 is

localized at cadherin based intercellular junctions where it
interacts with alpha-catenin (Itoh et al., 1997). It was already
shown that RACK1 associates with several transmembrane

receptors such as b1 integrins (Liliental and Chang, 1998;
Besson et al., 2002), RPTPmu (Receptor Protein Tyrosine
Phosphatase) (Mourton et al., 2001) and PTK7 (Protein
Tyrosine kinase) (Wehner et al., 2011). It was also shown that

RPTPmu recruits RACK1. However, at present it is unknown
how RACK1 is recruited to the tight junction complexes in
epithelial cells. Our results obtained from living and fixed

embryos show that, during cytokinesis, in contrast to mMELK,
RACK1 does not relocalize to the division furrow in blastula or
along the cell cortex in gastrula. This absence of co-localization

between mMELK and RACK1 indicates that during cytokinesis
RACK1 does not associate with mMELK. In contrast, in
epithelial cells, we show that xMELK and endogenous RACK1

co-localize at cell–cell contacts and the two of them concentrate
together with ZO-1 at the tight junctions. This result indicates
that the iMELK localized at the apical junction, but not at the

lateral membrane, can interact with RACK1. Therefore, only a

part of iMELK may be associated with RACK1. We also show

that the RACK1 WD5–7 domain is involved in RACK1

localization at the cell–cell contacts in the embryo epithelium.

Though RACK1 WD1–4 does not direct RACK1 to cell–cell

contacts, our results suggest that it may regulate its localization

by restricting its diffusion within the cell. As shown in fixed and

living embryos, the expression of RACK1 WD5–7 inhibits

localization of the endogenous xMELK as well as GFP-xMELK

KR to the cell–cell contacts. Our data show that RACK1 WD5–7

localizes to the apical cell–cell contacts. Therefore, we

hypothesize that this construct could compete with the

endogenous RACK1 for its localization at the apical junctional

complex. Because RACK1 WD5–7 concomitantly shows reduced

association with xMELK, it could exert a negative dominant

effect resulting in the decrease in iMELK localization at the

apical junctional complex. Importantly, in cytokinetic cells,

RACK1 WD5–7 expression does not appear to affect mMELK

localization. This result is in agreement with our previous

observations indicating that RACK1 does not follow mMELK

localization during cytokinesis. Taken together, our results

suggest that RACK1 and iMELK specifically interact at the

apical junctional complexes. Further studies will be needed to

determine if the iMELK subpopulation localized at the lateral

membrane can ultimately localize at the tight junction or if the

association of iMELK with the lateral membrane is a prerequisite

to its association with the apical junctional complex.

We have recently shown that xMELK is involved in

cytokinesis in Xenopus embryos (Le Page et al., 2011).

Whether iMELK, although not regulated during mitosis, also

participates in cytokinesis will need further studies. Our present

study reveals that the two xMELK subpopulations, mMELK and

iMELK, show not only distinct spatial and temporal regulation

but also have distinct cell–cell contact requirements for their

subcellular localizations. In addition, they also differ in their

ability to form a complex with RACK1.

Materials and Methods
Preparation and microinjection of Xenopus embryos
Xenopus laevis albino and wild-type adults were obtained from the Biological
Resources Centre (CRB, Rennes, France). Embryos were prepared and
microinjected as described previously (Le Page et al., 2011).

Dissociation of embryos
For the early embryos studies, the isolated cells were obtained as described
previously (Müller and Hausen, 1995). Briefly, after the first cell division,
embryos were extensively washed in calcium and magnesium free medium
(CMFM, 88 mM NaCl, 1 mM KCl, 2.5 mM NaHCO3, 5 mM HEPES pH 7.8)
and allowed to develop in the same medium. When control embryos (incubated
in calcium and magnesium containing medium) reached stage 7 (Nieuwkoop
and Faber, 1994), their vitelline envelope was removed manually, and cells
were fixed in 2% TCA in CMFM and used for indirect immunofluorescence
staining.

To dissociate post-MBT embryos, the animal caps from ten stage 9 blastulae
were dissected, washed in CMFM medium and incubated at room temperature in
0.5% trypsin–EDTA solution (GIBCO). Cells were dissociated by gentle pipetting
up and down with a siliconized tip. Dissociation was carefully monitored under a
stereoscope. After dissociation, cells were washed in MBS medium (88 mM NaCl,
1 mM KCl, 1 mM MgSO4, 7 mM CaCl2, 2.5 mM NaHCO3, 5 mM HEPES
pH 7.8). Using a 140-mm diameter micropipette, pigmented (epithelial) cells and
cells devoid of pigment (mesenchyme-like) were sorted manually. Both types of
cell were cultured separately either on a flat layer of agarose to avoid cell–cell re-
adhesion or inside of agarose wells to favour cell–cell re-adhesion. After 3 hours at
21 C̊, cells in agarose wells have adhered to each other and formed compact
aggregates. Both isolated and aggregated cells were fixed in 2% TCA and
processed for indirect immunofluorescence staining.
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Plasmids construction and in vitro transcription
pT7T-FLAG-xMELK, pT7T-myc-xMELK, pT7T-myc-GFP, pT7T-RACK1 FL,
pT7T-RACK1 WD1–4 and pT7T-RACK1 WD5–7 were obtained by PCR
amplification of xMELK, GFP and human RACK1 cDNAs, respectively. Primer
sequences included sites for restriction enzymes and the FLAG and myc sequences.
PCR products were cloned at EcoR V and Spe I sites in pT7T. Constructs were
verified by sequencing. In vitro transcription was performed with mMessage
mMachine transcription kit according to the manufacturer’s instructions (Ambion).

Extraction of proteins, immunoprecipitation and Western blot
Uninjected and FLAG-xMELK injected embryos (50 of each) were homogenized in
EB buffer (10 mM Hepes, pH 7.7, 100 mM KCl, 2 mM MgCl2, 5 mM, EGTA, 5 mM
DTT, 1% IGEPAL CA-630, 5% glycerol) supplemented with pepstatine, leupeptine,
chymostatin, PMSF at 10 mM each, 40 mM NaF, 40 mM b-glycerophosphate, and
2.5 mM okadaic acid. Extracts were clarified by centrifugation at 14,000g for 15 min
at 4 C̊. Supernatants containing proteins were incubated for 1 h at 4 C̊ with anti-FLAG
immunoglobulins pre-adsorbed on protein A magnetic beads (Dynabeads,
Invitrogen). Beads were then extensively washed with EB buffer and eluted
proteins were boiled in sample buffer. Alternatively, elution was performed with
5 mg/ml FLAG peptide (Sigma) and eluted proteins were boiled in sample buffer.

Western blots were performed as described previously (Le Page et al., 2011).
Following antibodies were used: affinity purified anti-xMELK (L2, 0.2 mg/ml)
(Blot et al., 2002), anti-RACK1 (BD Transduction Laboratories, 1:1000),
monoclonal anti-FLAG (M2, Sigma, 0.5 mg/ml) and monoclonal anti-myc (clone
9E10, 1:10). Secondary anti-rabbit and anti-mouse peroxidase-coupled antibodies
were from Jackson.

Mass spectrometry
Protein digestion was performed as described previously (Shevchenko et al., 1996)
and peptides were desalted and concentrated using miniaturized micro-extraction
tips (Rappsilber et al., 2003). Subsequently, tryptic peptides were analyzed by
nanoLC-MS/MS using a nanoACQUITY ultra performance liquid chromatography
system (Waters, UK) coupled to a LTQ-Orbitrap (Thermo, Germany) mass
spectrometer. Samples were injected onto a silica reversed-phase capillary column
(New Objective, USA) packed with 3-mm ReproSil-Pur C18-AQ (Dr Maisch
GmbH, Germany). Peptides were separated by a stepwise 75-min gradient of 0–
100% between buffer A (0.2% formic acid in water) and buffer B (0.2% formic
acid in acetonitrile) at a flow rate of 200 nL/min. The mass spectrometer was
operated in data dependent MS/MS mode to automatically switch between MS
survey and MS/MS fragmentation scans of the five most abundant precursor ions.
Peak lists were generated using DTA supercharge (Schulze and Mann, 2004) and
searched using the Mascot (Matrix Science, UK) software package with
carbamidomethyl cysteine as a fixed modification and oxidized methionine and
phosphorylation as variable modifications. Searches were performed with a
precursor mass tolerance of 5 ppm and fragment ion tolerance of 0.7 Dalton.

Indirect immunofluorescence
Whole embryos and dissected animal caps were fixed with TCA and treated for
indirect immunofluorescence as described previously (Le Page et al., 2011). The
following antibodies were used: affinity-purified anti-xMELK (Blot et al., 2002)
(final concentration 1 mg/ml, except in Fig. 3, final concentration 300 ng/ml); anti-
C-cadherin (clone 6B6 Developmental Studies Hybridoma Bank, 1:200); anti-
RACK1 (BD Transduction Laboratories, 1:500), anti-ZO-1 (Zymed, 1:200), anti-
tubulin (TUB 2.1, Sigma, 1:200), anti-FLAG (mouse monoclonal, M2, Sigma,
1:500) and anti-FLAG (rabbit polyclonal, Sigma, 1:200). Secondary antibodies
were anti-rabbit-alexa-488 or anti-mouse-alexa-555 (Molecular Probes, 1:200).
DNA was stained with TO-PRO-3 (Invitrogen, 0.5 mg/ml). Fixed embryos were
mounted in Vectashield (Vector) for observations.

Imaging
Imaging was performed using a Leica SP5 confocal microscope with a 406 HC
Plan-APO- ON 1.25 and 636 HCX Plan-APO- ON 1.4 oil immersion objective
lens (Microscopy platform, Biosit) and the ImageJ software (Rasband, W.S., http://
rsb.info.nih.gov/ij). Figures were assembled in Adobe Photoshop and Adobe
Illustrator (Adobe Systems, Inc.).
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