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Introduction 

The large number of experimental approaches, culture conditions, qualitative and 

quantitative methods, and in vitro and in vivo models employed so far to assess immune 

regulatory properties of multipotent mesenchymal stromal cells (MSCs) has led to an excess 

of literature data that sometimes are poorly comparable, redundant, and even contradictory. 

Thus, quite paradoxically, the risk is that pre-clinical literature data may become eventually 

weak and scarcely useful, in both researchers’ and Regulatory Authorities’ opinion, for 

supporting experimentally specific MSC-based clinical trials aimed at treating autoimmune 

and inflammatory diseases. However, some data in this field appear more solid and 

reproducible and may be generally accepted to suggest reproducible immunological assays 

to quantify the differences in immune modulatory properties of MSCs produced according to 

Good Manufacturing Practice (GMP).  

The MSC Committee of the International Society of Cell Therapy (ISCT) released a 

statement paper in 2005 that established the minimal criteria characterizing human MSCs 

(1), without focusing particularly on their immunological properties. In the 7 years following 

the publication of this statement paper, more than 10,000 manuscripts containing the term 

“mesenchymal stem cell” or “multi-potent mesenchymal stromal cell” in the title or abstract 

have been catalogued in PubMed, and many of them deal with immune regulation. To 

consolidate the scientific research in this field, the MSC Committee of the ISCT is publishing 

a working proposal paper aimed at stimulating the general discussion about the need of 

shared guidelines for the immunological characterization of MSCs for clinical use (Box 1).   
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1. MSCs as immune modulators and the assessment of regulatory properties  

MSCs can be obtained from tissues that originate from distinct development programs and 

that contain distinct pools of endogenous progenitor cells. Therefore, the properties of tissue-

specific MSCs should be carefully evaluated prior to their clinical employment. MSCs or 

MSC-like cells have been identified in bone marrow (2,3), adipose tissue (4), and many other 

tissues and organs (5) including lymphoid tissues (6,7). MSCs have been identified in vivo as 

peri-vascular cells expressing the STRO1, CD146 and 3G5 antigens (8-11). Despite a close 

relationship between these two cell types in terms of surface phenotype and qualitative in 

vitro assays (11,12), MSCs in general lack the contractility of pericytes and may show 

marked differences in gene expression (12), as well as by using more rigorous in vivo assays 

(13). In addition, some Authors have described a neuro-ectodermal origin of MSCs through 

either Sox1+ neuro-epithelial cells (14) or Nestin+ precursors (15). CFU-F–forming cells from 

bone marrow can be obtained through the prospective isolation of CD45-negative MSCs with 

anti-STRO1 (8), -CD271 (16), or -CD146 (17) antibodies, or selection for nestin-expressing 

cells (15). Nevertheless, not enough data concerning purified MSCs are available to assume 

that MSC progenitors/pericytes possess the same immune regulatory properties of ex vivo 

expanded adherent MSCs. Therefore, almost the entire amount of data concerning the 

immunological properties of MSCs refers to as adherent expanded MSCs.    

It is now clear that MSCs of different tissue sources (6,7,18), as well as their stromal progeny 

(19), can interact with, influence and even profoundly affect the in vitro functions of most 

effector cells involved in innate or adaptive immunity (20). These properties have been the 

subject of many excellent reviews (21,22). However, some differences have been described 

amongst MSCs of different tissue origin (7,18); therefore, it cannot be presumed that all 

tissue-derived MSCs display equivalent immunoregulatory properties. We have a better 

appreciation that the in vitro and in vivo molecular mechanisms evoked can be influenced by 

several conceptual and experimental factors, including species and tissue sources of MSCs, 

culture conditions, number of passages determining culture-related senescence, activation 

status of both MSCs and responsive immune effector cells, analytical methods and animal 

models used (21-25). The obvious consequence of this heterogeneity in the scientific 

approach to MSC physiology is that very often in vitro and in vivo data are variable, if not 

contradictory and reciprocally not comparable. This conundrum is far from negligible: the 

assessment of the immune regulatory properties of MSCs is not merely a matter of biological 

speculation but has become the basis for the clinical use of these cells as cellular 
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immunotherapy in different conditions characterized by dysregulated allogeneic or 

autologous immune responses or simply abnormal defensive inflammation (26-32). National 

and international regulatory agencies typically require formal demonstration of the safety and 

effectiveness of the MSC-based treatment strategies in pre-clinical models. There is also an 

expectation that robust potency assays be developed and implemented as part of cell 

manufacturing, which may subsequently be associated with clinical effect and serve as a 

“gold standard” for inter-study analysis.   

After clarifying the nomenclature for MSCs to avoid misunderstanding in comparing stromal 

cells (33), the field has sufficiently matured for a general discussion to reach shared 

guidelines for in vitro and in vivo methodologies defining the functional immune plasticity of 

MSCs. We have broad consensus that flow-cytometry phenotype analysis of MSC cellular 

products represents a minimum definition of identity. In the specific setting of MSCs used for 

immune modulation, the field has defined functionally relevant markers that merit attention 

and highlighted the importance of in vitro MSC licensing to further deploy a functional 

immune phenotype. 

 

1.1. Resting versus primed MSCs: the role of MSC activation 

In a resting state, MSC are at a default niche, displaying mostly bystander anti-apoptotic and 

immune homeostatic features biased toward suppression. These properties can be greatly 

enhanced when MSCs undergo functional polarization toward the inhibitory phenotype on 

exposure to various pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1α or IL-1β 

(24,25,34-43). A unique paradox of MSCs is their equal ability to behave as antigen-

presenting and cross-presenting cells under similar conditions. Regardless, IFN-γ remains 

the first key licensing agent for MSC suppressor function. There is strong consensus that 

across species IFN-γ augments MSC suppressor function (through distinct effector 

pathways). In vitro MSC inflammatory “licensing” better recapitulates what likely happens in 

vivo once MSCs are transfused into patients with dysregulated immune responses or with 

systemic inflammation, including sepsis (25-32). In this context, Toll-like receptor (TLR) 

activation could strongly and variably modify MSC immune properties depending on the 

ligand, kinetics and strength of the stimulation (25). In fact, all measurable immunological 

features of MSCs, both at phenotypic and functional levels, depend on their activation status 

at the time of interaction with effector cells, although variability may be observed among 

different donors (36) and between fresh and thawed MSCs (38). Thus, if these functional 

assays aim at assessing the immune regulatory functions of MSCs for clinical purposes, 

comparing the results with both resting and licensed MSCs would be most informative, 

regardless of the species and tissue origin. Different protocols of MSC licensing are available 
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from the literature. IFN-γ is sufficient for licensing and should be used to deploy a functional 

phenotype; however, its effect is amplified by TNF-α. For instance, the addition of 100 IU/mL 

(10 ng/mL) IFN-γ and 15 ng/mL TNF-α for 40 hours of culture is adequate to obtain MSC 

activation before their challenge with immune effector cells (25,44); however, other licensing 

protocols may be suggested to trigger MSCs and make them become efficient 

immunomodulatory cells.   

We suggest that standard immune plasticity assay be  based on IFN- γγγγ + TNF-αααα used as 

a model in vitro priming agent. The issue then arises about how MSC s are investigated 

after licensing.  

1.2. MSC immunophenotyping as part of the immune plasticity response 

Flow cytometry may be used to investigate the expression of cell-surface markers for 

characterizing MSC immunological properties.  A traditional definition of a quiescent MSC is 

that of an MHCI-expressing cell lacking MHCII or co-stimulatory molecule expression 

(45,46). However, IFN-γ–primed MSCs robustly upregulate markers such as MHCI and 

MHCII molecules, immune modulatory molecules (CD200, CD274/PD-L1/B7-H1), 

cytokine/chemokine receptors (CXCR3, CXCR4, CXCR5, CCR7, CD119/IFN-γ receptor), 

adhesion molecules (CD54, CD106), DNAM ligands (CD112, CD155), NKG2D ligands 

(macrophage inflammatory complex [MIC] A/B, UL binding protein 1,2,3), and Notch 

receptors (Jagged-1) (21,22,24). Intriguingly, human MSCs do not upregulate co-stimulatory 

molecules (CD80, CD86) in response to IFN-γ, and immune modulators such as TGF-β can 

markedly blunt MHCII upregulation in response to inflammatory stimuli. MSCs express TLR-3 

and TLR-4 and will respond to their respective agonists, double-stranded RNA (dsRNA) and 

lipopolysaccharide (LPS), which may also help in examining MSC immunomodulatory 

properties (24,47). MSC culture conditions and its impact on immune plasticity could be 

assessed as part of product characterization since the expression of many of these markers 

and implied immune plasticity may change as a result of culture conditions, post-

cryopreservation and inflammatory priming (25,39).   

As an aggregate suggestion, immunophenotypic analys is of an expanded cell product 

immediately before banking (if relevant), as well a s at the time of transfusion to human 

subjects, may provide mechanistic insights into int ra- and interstudy variation in 

clinical response among patients. 

1.3. Culture modalities and in vitro  cell responder assays 

During in vitro MSC expansion, cell culture variables should be documented because of 

possible impact on immune plasticity response.  Variables of interest are cell density at the 

time of passage, number of population doublings (in complementarity to number of 
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“passages”), culture medium (fetal bovine serum, platelet lysates, “defined” medium) and 

growth factors used.  For co-culture experiments, especially with mixed lymphocyte reaction 

(MLR), MSCs can be used as either adherent cell monolayer or in suspension; in both cases 

different MSC/immune effector cell ratios should be tested to assess MSC veto functions on 

MLR. Both unselected peripheral blood mononuclear cells (PBMCs) or purified immune 

effector cells can be used, but the latter usually provide more reproducible results because of 

the lack of confounding third-party cells (monocytes in particular). A high viability of immune-

responding cells is a crucial factor, given the anti-apoptotic activity of MSCs. Monocyte 

content of PBMCs from different normal donors may vary dramatically and this may lead to 

biased results due to different degrees of in vitro licensing process mediated by variable 

monocyte concentrations. Consequently, the use of purified immune cell subsets would 

minimize group variability in assays aimed at studying MSC immune regulation, unless a 

precise quantification of monocyte content, as a fraction of PBMCs, is provided. Concerning 

selection methods, immunomagnetic positive selection may lead to non-specific triggering of 

the target molecules, so indirect negative selection leading to highly purified samples (>95%) 

would be preferable (36). The technique used to activate responder cells may also have an 

impact on the measured potency of MSCs. Different types of stimuli have been used to 

trigger activation of immune effector cells in the presence of MSCs and range from MLR to 

specific antigens (21,41,42). For T cells, common stimuli are phytohaemagglutinin (PHA), a 

polyclonal stimulus leading to robust activation (20), and monoclonal antibodies against CD2, 

CD3 and CD28, which induce a more “physiologic” responder cell activation (43). This 

complexity, coupled with the use of unfractionated PBMCs versus purified T-cell responders, 

may add to the challenge in meta-analyzing intergroup results. In the human setting, a large 

number of MSC:immune effector cell ratios has been tested to assess the best coculture 

conditions to unravel immune regulatory effects, thus showing that the modulation of immune 

functions in vitro requires the presence of adequate numbers of MSCs. A ratio of MSCs to T 

cells of 1:5-10 is generally suitable to obtain a measurable effect (36,44), but a ratio of 1:1 or 

1:5 would be preferable when MSCs are co-cultured with B cells (6,36,40,44) or natural killer 

cells (25,36,44,48,49).  

For NK cells, allogeneic stimulation with irradiated target cell lines (i.e. K562) is 

commonly used, but is not always reproducible. Alternatively, IL-2 priming leads to strong NK 

cell activation and seems to give more reproducible results, although fresh or activated NK 

cells may have different efficiency in recognizing and lysing allogeneic MSCs (48,49). 

MSCs can suppress immunoglobulin production by B cells (6,40,50). Cytofluorimetric 

evaluation of CD38/CD138 upregulation and parallel downregulation of CD20 seems to be a 

good approach to study the differentiation of memory B cells to plasma cells. ELISA or 

ELISpot can be used to monitor whole or specific immunoglobulin secretion by MSCs (51).  
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Different groups have studied a possible role of regulatory T cells (Tregs) in 

immunomodulation, with contrasting results (36,41,52). However, suitable assays to 

demonstrate the ability of MSCs to maintain or induce Treg expansion seem to be 

cytofluorimetric quantification of the proportion of CD4+/CD25+/FoxP3+/CD127- cells after 

co-culture with MSCs, and western blot and real-time PCR assay of FoxP3 expression, with 

functional evaluation of the regulatory potential of resulting T cells to fully confirm the results 

(52). 

MSCs can also affect differentiation of monocytes to macrophages and dendritic cells, 

as well as their maturation, migration and functions. Monocyte differentiation can be studied 

by showing CD80, CD86 and HLA-DR upregulation and CD14 downregulation with activation 

(53). Maturation of monocyte-derived dendritic cells can be shown by studying the 

upregulation of MHCI and MHCII, CD11c and CD83 (53). Similarly, MSC effects on 

macrophages should be carefully characterized, as macrophages play a major role in many 

diseases, i.e. myocardial infarction, stroke and sepsis, for which MSCs have been suggested 

as possible therapeutic strategy. Assay of cytokine production (IL-10, TNF-α) and expression 

of macrophage 1 and 2 (M1/M2) surface markers, such as CD14, HLA-DR and CD206 may 

be used to evaluate the influence of MSCs on monocyte polarization towards macrophages 

(21,24,25,53-55). The activation protocol that seems to be more useful to discriminate 

between TLR-4-dependent MSC1 phenotype (MSC releasing mostly pro-inflammatory 

cytokines, such as IL-6, IL-8, or TGF-β) and TLR-3-dependent MSC2 phenotype (MSC 

producing immunosuppressive molecules, such as IL-4, IL-1RA, IDO and PGE2) is based on 

the short incubation (1 hour) with LPS (10 ng/mL) or poly(I:C) (1 µg/mL), respectively, 

followed by further 24–48 hour incubation in growth medium (24).  

Only a few studies have investigated MSCs and neutrophil interactions (56,57). 

Human neutrophils, usually obtained from peripheral blood of normal volunteers, can be 

isolated with standard density-gradient separation methods (56) or high-purification 

procedures by positively removing all contaminating cells expressing CD3, CD56, CD19, 

CD36, CD49d, and Gly-A (57). The potential advantage of the latter method is that cell 

preparation is devoid of cells that might release factors influencing MSC and neutrophil 

functions regardless of their reciprocal interaction (57); consequently, high-purification 

procedure would be preferable to obtain more reproducible results. In any case, neutrophils 

should be manipulated under endotoxin-free conditions to avoid activation before co-culture 

with MSCs (56,57). Different stimuli (e.g., lipopolysaccharide, poly(I:C), phorbol esters), 

ratios of neutrophils to MSCs (from 1,000:1 to 10:1, in direct contact or in Transwell® 

conditions) and functional assays (e.g., CD16 and CD11b expression as surrogate markers 

of neutrophil viability and activation, respectively; ELISA for cytokine detection; superoxide 

anion release for respiratory burst quantification) may be used to assess the effects of MSC–
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neutrophil interactions (56,57). The choice of one kind of stimulus rather than others would 

depend on which cell type needs to be activated to assess a specific effect. Poly(I:C) addition 

leads only to MSC activation via TLR3, as this receptor is not expressed by PMN (57), and 

consequently the observed phenomena do not depend on the simultaneous PMN activation. 

By contrast, LPS and phorbol esters activate both PMN and MSCs and the subsequent 

observed phenomena depend on the effects induced on both cell types. 100:1 and 10:1 

PMN:MSC ratios and direct contact determine to the most evident effects on PMN survival, 

CD16 and CD11b expression, cytokine production and respiratory burst; all these 

phenomena may be assessed for a complete characterization of MSC effects on PMN; 

however, CD16 and CD11b expression could be used as surrogate markers of neutrophil 

viability and activation, respectively (56,57). 

In summary, the use of purified responders (as oppo sed to unfractionated PBMCs) 

coupled with a more “physiologic” activation stimul us may be widely practicable and 

provide more generalizable guidance in examining th e relative functional potency of 

MSCs and as a companion to clinical trials. 

1.4. MSC cellular biochemistry 

Activation of IDO and iNOS is a pivotal mechanism in lymphocyte inhibition with MSCs, but 

species-specific differences exist. For example, after inflammatory priming, human MSCs 

express extremely high levels of IDO and low levels of iNOS (23,58), which is opposite to 

that seen with mouse MSCs (59). The in vitro functional relevance of IDO bioactivity can be 

readily shown by use of the specific inhibitor L-1 methyltryptophan (L-1MT), which completely 

abolishes the inhibition of T-cell proliferation mediated by human MSCs (23,58). An array of 

potential complimentary suppressor pathways driven by MSCs includes heme oxygenase-1, 

soluble HLA-G5 and other secreted factors such as TGF-β, PGE2, galectin and tumor 

suppressor gene 6 (TSG-6) (21,25,53). Importantly, the MSC response to IFN-γ leads to 

increased expression of pro-inflammatory cytokines/chemokines such as IL-6, CCL2, CCL7 

and CCL8. It is generally accepted that IDO bioactivity is central to the suppressor function of 

human MSCs and that IFN-γregulation leads to massive transcriptional IDO induction.  

Therefore, investigating the IDO response should be  central to an in vitro regulation  

assay. Analyzing the transcriptional modulation of immune effector genes as part of 

the IFN- γγγγ� response could be further considered. 

1.5. Animal models for in vivo  assays assessing human MSC regulatory properties 

Most in vivo experimental models assessing MSC immunomodulation are based on rodent 

species, with some exceptions involving non-human primates (60). Mouse models have been 

used to test the efficacy of MSC transplantation for the treatment of acute GvHD 
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(21,26,27,61-63), neurological (30,31) and systemic (32) autoimmune diseases, sepsis 

(28,55) and acute renal (29) and lung injury (64), as well as other pathological conditions 

(21). Two main issues should be considered when investigating the activity of MSCs in pre-

clinical models: whether to measure their immunosuppressive potency or elucidate the 

mechanisms underlying the therapeutic activities.  

Regardless of the general concerns about validity of mouse models, murine MSCs 

may have a significant number of differences as compared with human MSCs. Some 

differences involve culture conditions and modalities of their expansion, as mouse MSCs 

require a much longer time to expand under standard culture conditions than human MSCs. 

In terms of the molecular pathways of immunosuppression, human and mouse MSCs are 

relatively similar in the predominant use of the mammalian target of rapamycin pathway. 

However, human MSCs preferentially use IDO and murine MSCs selectively use iNOS in 

immunosuppression (23). IDO and iNOS are modulated by different inflammatory molecules; 

therefore, the murine microenvironment does not necessarily provide conclusive information 

about MSC regulation in patients.  As well, caution should be used in interpreting data 

obtained from animal models related to the administration route. Intravenous injection of 

MSCs in mice is notoriously difficult because of the extremely high incidence of lethal 

pulmonary embolism, even with subtherapeutic doses. Some groups have used the 

intraperitoneal route, with variable outcome, because the trafficking of MSCs from this site 

has yet to be defined. The alternative approach has been to inject human MSCs into mice. 

Although human MSCs can improve a number of mouse models, most murine cytokines with 

MSC “licensing” activity do not cross-react with the corresponding human receptors, which 

may confuse the information able to be obtained.   

The models may have fundamental biases, but the reproducibility of an animal model 

could be a great advantage in comparing different MSC preparations. In several conditions, 

including experimental arthritis and GvHD, the precise time for MSC administration for 

effective therapeutic activity has been defined. Therefore, an animal model would eliminate 

patient variability and facilitate an informative comparison of MSC lots and their potential 

manipulation. Although not applicable to a routine cell therapy laboratory, an initial in vivo 

characterization would set the stage to identify the main criteria for the selection of highly 

effective MSC preparations. Nevertheless, data obtained from in vivo studies in rodents 

should be critically evaluated. 

Considering the substantial difficulties in obtaini ng clear and informative mechanistic 

and potency data from delivery of human MSCs to xen orecipient animal models, 

conclusions on how to conduct clinical trials shoul d be drawn with caution. 
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Conclusions 

Besides having regenerative properties for some tissues, cultured MSCs are mostly used in 

the clinical setting for regulating the immune response. The functional potency of MSCs 

should be quantified by standardized immune assays with purified responders as a scientific 

component of clinical trials. In the same way, immune cell populations could be prospectively 

analyzed in patients receiving MSC therapy. The final aim of methodological standardization 

is to obtain shared, reproducible and consistent data that may validate MSC-based clinical 

approaches as a potentially useful treatment for immunological diseases. The sincere hope 

of this working proposal paper is to contribute to the general discussion in the MSC scientific 

world, thus leading soon to shared guidelines and common protocols for the immunological 

characterization of MSCs for clinical use, in order to achieve comparable and unambiguous 

results on MSC efficacy in human diseases (65). 
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Box 1 

Suggestions for the assessment of regulatory properties of human MSCs 

1. A standard immune plasticity assay should be implemented by using IFN-γ + TNF-α as model in vitro priming 
agent. 

2. Functional analysis of an expanded cell product may provide mechanistic insights on intra- and inter- study 
variance in clinical response amongst patients. 

3. The use of purified responders would be widely practicable and should provide more generalizable guidance 
on relative functional potency of MSCs and as a companion to clinical trials. 

4. Interrogating the IDO response as part of an in vitro licensing assay should be considered central. 

5. Conclusions based on xenorecipient animal models on how to conduct clinical trials should be drawn with 
caution. 

6. The prospective hypothesis-driven analysis of lymphocyte populations in patients groups treated with MSC 
should be encouraged. 

7. Clinical analysis should also include the monitoring of whether injected MSCs are the target of an immune 
response. 

 

 


