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Abstract  

Dislocation slip is investigated in a metastable  titanium alloy with the Ti-23Nb-0.7Ta-2Zr-

0.4Si composition (at. %) by in situ straining experiments in a transmission electron 

microscope (TEM). Moving dislocations have a/2<111> Burgers vectors and glide in {110}, 

{112} or {123} planes. The mobility of screw dislocations is lowered by punctual defects and 

the existence of a stable and sessile core configuration that has to recombine in order to allow 

dislocations to glide. 
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In metastable  titanium alloys, the deformation is known to be accommodated by several 

mechanisms such as a stress-induced martensitic transformation, twinning or dislocation slip. 

Because shape memory and superelastic properties can be obtained from this phase 

transformation, stress-induced martensitic transformation is widely studied in metastable  
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titanium alloys [1-4]. Occurrence of two twinning systems was also reported and investigated 

[5-8], but no clear data on dislocation slip and dislocation mobility are available in the 

literature. The only study reporting results on the dislocation mobility in a metastable  

titanium alloy was carried out recently in a TNTZO “Gum Metal” alloy [9,10]. In this letter, 

in situ straining experiments in a transmission electron microscope (TEM) were performed to 

investigate dislocation slip in a Ti-Nb-Zr-Ta based alloy with Si addition (TNTZSi). Results 

are discussed and compared with TNTZO in order to determine the different effects of 

addition of O and Si on the dislocation mobility. 

 

The metastable  titanium alloy with the composition Ti-23Nb-0.7Ta-2Zr-0.4Si (at. %) was 

elaborated by cold crucible levitation melting (CCLM) of pure raw materials. Ingots were 

next homogenized at 1223 K during 16 hours, 90% cold rolled, recrystallized at 1143 K 

during 0.5 hour and water quenched. The as-quenched microstructure consists of equiaxed 

grains of  phase (bcc structure) with an average size of 20 µm.  

In situ straining experiments were performed at room temperature in a JEOL 2010 TEM 

operating at 200 kV and using a Gatan straining holder. In situ observations were recorded 

with a SIS CCD camera for video rate recording. Dimensions of micro tensile specimens are 

9mm  2.3mm  80µm (Fig. 1). They were thinned down in the centre of the reduced section 

using a twin-jet electropolishing system with a solution of 6% perchloric acid, 59% methanol 

and 35% 2-butoxyethanol (vol.%). Burgers vectors of dislocations were determined by 

regular indexation using the invisibility criterion. 

 

During in situ straining, all moving dislocations observed have a/2<111> Burgers vectors.  

Slip planes are determined to be {110}, {112} or {123} planes from slip trace analysis. At 

least two different slip systems are usually activated simultaneously in the same grain. These 
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slip systems are those commonly observed in bcc metals. An example is shown in Fig. 2: a 

dislocation, labelled A, moves and leaves a slip trace at the surface of the specimen (Fig. 2 a 

and b). In Fig. 2c, this dislocation cross-slips. The analysis of the orientation of both traces 

shows that the dislocation first glides in the (321) plane and cross-slip in the (110) plane 

(directions of intersections of both planes with the surface of the specimen are indicated in 

Fig. 2d). The preferential slip plane is (110), indeed all dislocations observed cross-slip in this 

plane and do not cross-slip back to the (321) plane. Several dislocations cross-slip in the same 

way but all these dislocations were first present in the grain before straining as the dislocation 

labelled B. During straining, they glide first in this (321) plane because they lie in this plane 

before and cross-slip next in the (110) plane. It is also worth noting that all dislocations of the 

Fig. 2 have the same Burgers vector and that moving dislocations have a screw character (the 

projection of the Burgers vector direction is indicated as b in Fig. 2a). However, some 

dislocations have not a screw character (as the one labelled B). Some moving dislocations, 

like the dislocation labelled A, have first the same character as the dislocation B before 

straining. But during straining, non-screw segments move quickly out of the specimen and the 

further propagation is thus only due to screw segments. 

A frame-by-frame analysis of the Fig. 2 shows that the dislocation labelled A jumps first 

across a long distance (Fig. 2a to 2b). This jump is as fast as one video frame, i.e. 0.04s. Next, 

from Fig. 2b to 2c and further, the motion seems alternatively steadier or composed of fast 

jumps (see movie1 as supplementary material). In order to analyse more precisely the motion 

of screw dislocations, weak beam dark field conditions were also used during straining. An 

example of the motion of a a/2<111> screw dislocation gliding in a {112} plane is shown in 

Fig.3. Between each frame of the Fig. 3, the dislocation remains immobile and moves during 

a time shorter than a video frame (0.04s) from its previous position, indicated by a dashed 

line, to its new position (see also the movie2 as supplementary material). The motion is also 
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composed of short jumps of small parts of the screw dislocation leading to an apparent 

steadier motion at lower magnification as in Fig. 2. In pure bcc metals, it was commonly 

observed that the whole screw dislocation jumps from a position to another one [11-13] but a 

motion composed of jumps of successive parts was already observed in a TNTZO  titanium 

alloy with similar composition [9,10]. In this previous study, the motion by successive parts 

was attributed to pinning points due to atom clusters containing oxygen but these pinning 

points had not a detrimental effect on the mobility of screw dislocations as dislocations were 

not pinned on each punctual defect they swept and made long jumps. In the present study, the 

motion is quite different because the moving parts of screw dislocations as well as the length 

of the jump are very short. This suggests that dislocations are pinned on each punctual defect 

and that these pinning points have a non-negligible effect on the motion of screw dislocations 

in the TNTZSi investigated alloy. Such pinning points are indicated by dark arrows in Fig. 3 

and are most probably due to Si atoms or clusters. 

In TNTZO titanium alloy, it was shown that the motion of screw dislocations is composed of 

successive fast jumps at room temperature [9,10]. In pure bcc metals, a steady motion was 

observed at room temperature whereas the motion is jerky at lower temperature [11-13]. The 

steady motion is commonly attributed to a kink-pair mechanism [11,12,14] and the jerky 

motion to the transition between two core configurations of screw dislocations from a three-

dimensionally spread and sessile core structure to a glissile core structure [9,13,15,16]. The 

temperature of transition between these two mechanisms is below room temperature in pure 

bcc [11-13]. In the TNTZSi alloy investigated, the jerky motion is observed at room 

temperature indicating that the transition between the two core configurations is the 

mechanism controlling the mobility of screw dislocations. This observation is in agreement 

with previous observations in TNTZO alloy [9,10]. However, in TNTZO the stress needed to 

overcome the barrier between the two core configurations is larger than the stress needed to 
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overcome punctual defects leading to a negligible effect of punctual defects on the mobility of 

dislocations. Contrarily, in the TNTZSi investigated alloy, the stress needed to overcome 

punctual defects seems to have a similar value in comparison with the stress needed to the 

transition between the two core structures. The mobility of screw dislocations is thus 

controlled by their core structure and the presence of punctual defects leading to a jerky 

motion but with very short jumps due to the pinning on punctual defects. Addition of Si 

decreases thus the reduction in energy of screw dislocations due to their core structure and 

increases the strength of punctual defects as obstacles to dislocation motion in comparison 

with O addition. The strengthening effect of Si seems so to be mainly due to punctual defects 

whereas the strengthening effect of O is due to an important decrease in energy of the core 

structure of screw dislocations. It is also worth noting that the motion of non-screw segments 

is not impeded by punctual defects as in TNTZO alloy leading to a deformation carried 

mainly by long screw segments. 

The Fig. 3 shows also the multiplication of another dislocation that is creating a dislocation 

loop (labelled L in Fig. 3) by a well-known mechanism due to multiple cross-slips [10,11,15]. 

This mechanism occurs not as extensively as in TNTZO alloy [10] leading to a slightly more 

homogeneous deformation (Fig. 2).  

 

As a summary, dislocations with a/2<111> Burgers vectors are observed to glide in {110}, 

{112} or {123} planes in a metastable  titanium alloy. The deformation is carried by long 

screw segments because of their lower mobility than non-screw segments. This low mobility 

is due to an in-core rearrangement as well as the presence of punctual defects that both 

impede the motion of screw segments. With addition of Si, the strengthening effect of 

punctual defects as obstacles to dislocation motion appears to be more important in 
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comparison with O addition for which the strengthening effect is due to a decrease in energy 

of core structure of screw dislocations. 

 

The authors acknowledge financial support from the French CNRS and CEA METSA 
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Figure 1. Dimensions of micro tensile specimens for in situ TEM experiments. 

Figure 1



 

 

 

 

Figure 2. Motion of screw dislocations during in situ TEM straining; the dislocation labelled 

A cross-slip from (321) plane to (110) plane; a dashed line indicates the previous position of 

the dislocation A on each frame. 

Figure 2



 

 

 

 

Figure 3. Weak beam dark field micrographs of screw dislocations gliding in a {112} plane 

taken during in situ TEM straining; a dashed line indicates the previous position of the 

moving dislocation on each frame. 

Figure 3



Supplementary Material Movie1

Click here to download Supplementary Material: Movie1.mov



Supplementary Material Movie2

Click here to download Supplementary Material: Movie2.mov


