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ABSTRACT 

The application of the concept of the representative strain is often used in the stress-strain 
curve determination from indentation test because it can significantly simplify the analysis of 
the indentation response. A new methodology for determining the representative strain for 
Vickers indentation is presented in this article. Following a procedure based on finite element 
simulations of indentation of elastoplastic materials, two representative strains are defined: 
the representative strain characteristic of the mean pressure and the representative strain 
characteristic of the Martens hardness or the indentation loading curvature. The results 
obtained from this methodology show that there is no universal value of representative strain 
independent of the mechanical parameters of materials indented by Vickers indentation. It is 
also shown that the representative strain, obtained by Vickers indentation is much lower when 
it is obtained from the relationship between the applied force and the penetration depth, F-h, 
rather than from the relationship between the applied force and the contact radius, F-a.  The 
values of the calculated representative strains show that simultaneous measurement of 
relationships F-a and F-h make it possible to characterize the hardening law with two 
unknown parameters by Vickers indentation.  
 
Key words: Mechanical properties determination; Vickers Indentation; representative strain; Constraint Factor; 

Hardness, Indentation curve. 

 
1. Introduction 
 
Indentation tests can be used not only for the evaluation of hardness, but also in the 
determination of other mechanical properties such as Young’s modulus and stress–strain 
curves. The application of the concept of the representative strain can significantly simplify 
the analysis of the indentation response and was often used in the stress-strain curve 
determination from indentation test (Tabor, 1951; Giannakopoulos and Suresh, 1999; 
Venkatesh et al., 2000; Dao et al., 2001; Chollacoop et al.,2003; Bucaille et al., 2003; 
Kermouche et al., 2005; Ogasawara et al., 2005; Cao and Huber, 2006; Antunes et al., 2007; 
Kermouche et al., 2008). In the case of conical indentation, the representative strain, εR, is 
independent of the size of the indentation and depends on the half apex angle of the indenter, 
θ, which is equal to 70.3° for a conical indenter equivalent to the Vickers indenter. The 
studies performed on the representative strain in Vickers indentation can be divided into two 
groups, a first group which is based on the Mean Pressure (Tabor, 1951; Samuels and 
Mulhearn, 1957; Giannakopoulos et al., 1994; Chaudhri, 1998; Giannakopoulos and Suresh, 
1999; Venkatesh et al., 2000; Mata et al., 2002; Kermouche et al., 2005; Kermouche et al., 
2008; Branch et al., 2010) and a second group which is based on the Martens hardness (Dao et 



al., 2001; Bucaille et al., 2003; Chollacoop et al.,2003; Ogasawara et al., 2005; Cao and 
Huber, 2006; Antunes et al., 2007). The first group of studies concerns the definitions of the 
representative strain, which can lead to a relationship between a constant, CF , called “the 
constraint factor”, the Hardness, H, and the flow stress, Rσ , at a representative value of the 

plastic strain, εR,  i.e. : 
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In this relationship, H corresponds to the mean contact pressure, which is calculated from the 
diameter of the contact circle at full load (assumed to be equal to the diameter of the residual 
impression in the surface). 
The second group of studies concerns the definitions of the representative strain, which can 
lead to a relationship between the reduced Young’s modulus, *E , the indentation loading 
curvature, LC , and the representative stress,Rσ , i.e. (Dao et al., 2001): 
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In this relationship, the determination of the loading curvature, LC  leads to the determination 

of the “Martens” hardness, HM , which is equal to the following expression in the case of 
Vickers indentation: 
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The concept of representative strain was first introduced by Tabor (1951) to relate its 
corresponding representative stress to the Mean Pressure value. Tabor proposed, from 
experiments on essentially two materials, mild steel and copper, that the representative strain 
is equal to 0.08 in the case of Vickers indentation. This value is obtained so that the ratio of 
the Mean Pressure, H, to the corresponding representative stress, σR is equal to 3.3 (value 
previously determined from experiments performed on work-hardened metals) (Tabor, 1951). 
The value of 0.08 proposed by Tabor is similar to the value of 0.07 reported by Samuels and 
Mulhearn (1957) in the case of Vickers indentations in annealed 70:30 brass. This proposition 
is also close of the numerical results obtained by Mata et al. (2002) for conical indentation of 
elastic plastic materials with various Young modulus, E, Yield stress, σy, and hardening 
exponent n, i.e. εR=0.1. With this value of representative strain, the ratio of the hardness, H to 
the corresponding representative stress, σR, was found equal to 2.7. For Mata et al. (2002), the 
accuracy of Tabor’s equation is limited to the fully plastic contact regime. As long as this 
regime prevails, Tabor’s equation, i.e. H/σ(ε=0.08)=3.3, is found to be extremely accurate as 
hardness values estimated by this equation. 
From an experimental investigation of the surface and subsurface strain hardening around 
Vickers indentations in annealed copper, it was determined that the maximum plastic strain 
occurs in a subsurface region close to the indentation tip where the estimated plastic natural 
strain is in the range from 0.25 to 0.36 (Chaudhri, 1998). Srikant et al. (2006) found similar 
values of maximum strain for similar experimental conditions (maximum plastic strain in the 
range between 0.22 and 0.31). Chaudhri (1998) suggest that the equivalent strain associated 
with a relatively large Vickers indentation should be 0.25-0.36 for annealed metals having a 
power law uniaxial stress vs strain relationship. Moreover, finite element computations using 
a conical indenter equivalent to the Vickers indenter (θ=70.3°) show that the equivalent 



plastic strain within a 7075-T651 aluminium exceed 15% in the majority of the volume 
directly beneath the indenter. Giannakopoulos et al. (1994), Giannakopoulos and Suresh 
(1999) and Venkatesh et al. (2000) used a “characteristic strain” of 29–30% within the context 
of their formulation. Giannakopoulos and Suresh (1999) suggested that the region of material 
experiencing strains beyond 29% under the indenter exhibits plastic “cutting” characteristics 
and may be modelled using slip line theory. These values are considerably higher than the 
value of 0.08 proposed by Tabor (1951) almost 60 years ago. Tabor's proposal was based on a 
fundamental assumption according to which the ratio of Vickers hardness to uniaxial Flow 
stress, corresponding to any prior strain plus an additional strain introduced by the indentation 
process, should be universally constant and equal to 3.3. This original definition does not 
represent any apparent physical transition in mechanical response. Moreover, this assumption 
has not been fully justified so far, experimentally or theoretically. Chaudhri (1998) also shows 
that there is very little difference between choosing εr =0.08 and εr = 0.2 as far as the ratio of 
the Vickers hardness to the flow stress is concerned. For Chaudhri (1998), εR =0.08 is not a 
unique value of the equivalent strain introduced by a Vickers indentation. He suggests that a 
better choice of the equivalent strain should be related to the maximum strain produced in the 
deformed zone. For Branch et al. (2010), the best choice is rather the volume average plastic 
strain within the plastic zone of Vickers indentation.  Some authors have concluded that the 
Mean Pressure does not depend on a unique representative strain. Dugdale (1958), who 
investigated the stress-strain curves and Vickers hardness of a number of metals, alloys and 
nylon, has proposed that the stress-strain curves up to a strain of 0.15, and not just the stress 
corresponding to a single value of strain, are relevant in predicting their Vickers hardness 
values. For Larsson (2001), at indentation of rigid-plastic power-law materials, the hardness is 
well-described by a single representative strain level in the spirit of Tabor. In this case, the 
Vickers Hardness calculated with the constant values CF= 2.55 and εR=0.18 or CF= 2.8 and 
εR=0.15 are in fairly good agreement with the numerical results. In a general situation, i.e. at 
indentation of materials with more irregular stress-strain relations, Larsson (2001) found that 
the concept of a single representative strain is no longer valid. For this general situation, an 
alternative two-parameter description of the Mean Pressure is suggested with the two 
parameters corresponding to the stress levels at 2 and 35% plastic strain. To conclude, the 
different studies on a material-dependent representative plastic strain valid in the conversion 
of flow stress to Mean Pressure suggest that there may not be a universal value for the 
equivalent strain introduced by a Vickers indentation. 
In the case of “Martens” hardness, Dao et al. (2001) shows that the value of the 
“representative” strain depends on the choice of functional definitions that is used to relate 
certain indentation parameters to certain mechanical properties. Using dimensional analysis, a 
set of new universal dimensionless functions was constructed to characterize instrumented 
sharp indentation. Based on this dimensional analysis, a representative plastic strain εR = 
0.033 was identified as a strain level which allows for the construction of a dimensionless 
description of the indentation loading response, independent of strain hardening exponent n 
(Eq. (2)). In their work, Dao et al (2001) discuss about the underlying connections between 
the different functional definitions given for conical indentation (Tabor, 1951; 
Giannakopoulos et al., 1994; Giannakopoulos and Suresh, 1999; Dao et al., 2001) and the 
corresponding representative strain levels. It was shown that the differences in the magnitude 
of the strain came from their different functional definitions. For example, the work 
performed by Dao et al. (2001) demonstrates clearly that the representative strain is not the 
same if we consider the “Martens” hardness (3.3%) or the Mean Pressure (8%). 
Cao and Huber (2006) show that different definitions of the representative strain, can lead to a 
one-to-one relationship with high level of accuracy between the reduced Young’s modulus, 
the indentation loading curvature and the representative stress. 



For methods using the energy-based representative strain and methods using a stress-state-
based definition of the representative strain, Cao and Huber (2006) reported εr values in the 
range 0.023–0.095. Lastly, Antunes et al. (2007) reported material-dependent representative 
plastic strain values ranging between 0.034 and 0.042.  
Clearly, the values for representative plastic strain vary over a broad range. These values 
depend on the choice of the functional parameters that were used to describe the indentation 
process (Martens hardness or mean pressure) and were obtained from curve fitting the 
indentation responses of a certain range of material properties. It seems that, as for the Mean 
Pressure, the “Martens” hardness can not be determined from Eqs. (2) and (3) if a universal 
value for the equivalent strain introduced by a Vickers indentation is used. 
 
The present work is conducted with the objective of studying the concept of universal value 
for the representative strain introduced by a conical indentation equivalent to the Vickers 
indentation. A finite element study on elasto-plastic materials with a Hollomon hardening 
behaviour is presented in order to define news values of representative strain. Two 
representative strains will be define: the representative strain characteristic of the mean 
pressure and the representative strain characteristic of the Martens hardness or the indentation 
loading curvature.  
 
 
2. Numerical method and new definition of the representative deformation 
 
2.1. F.E. model 

The finite element analysis presented here assumes a conical perfectly rigid indenter in 
frictionless contact with the flat surface of the specimen (Fig. 1). The simulations were 
performed in axisymmetric mode using the large strain elastic-plastic feature of the Abaqus 
finite element code. 
The included half apex angle, θ, of the rigid conical indenter was 70.3° (see Fig. 1). This 
value of apex angle gives an identical relationship of contact area–depth of penetration as the 
Vickers indenter.  
12516 four-noded axisymmetric quadrilateral elements made up the FE models, with the 
finest mesh in the region of the indented material. There were 300 elements in contact with 
the indenter during maximum indent depth, which provided sufficient resolution (Fig. 1). The 
maximum depth of penetration was chosen so that, in all cases, the contact radius be 4920 
times smaller than the total length of the mesh. 
The constitutive model of the elastic-plastic indented material was taken to follow the well 
known J2-associated flow theory with rate-independent deformation. The isotropic hardening 
is described by the Hollomon power law, expressed by Eq. (4). 
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where E is the Young modulus, �y the yield stress and n the hardening coefficient. 

The finite element simulations were performed for materials with Poisson’s values v= 0.3. 
In the simulation, 272 different combinations of elastic plastic properties listed in Table 1 
were investigated to determine the Mean Pressure and the Martens hardness and 
corresponding representative strains.  
 
 



E (MPa) 

210000 

σy (MPa) 

10 16 25 40 63 100 

160 250 400 630 1000 1600 

2500 4000 6300 10000   

n 

0 0.0125 0.025 0.05 0.075 0.1 

0.125 0.15 0.2 0.25 0.3 0.35 

0.4 0.45 0.5 0.55 0.6  

 
Table 1: Material properties used in the present computations, Poisson ratio v =0.3. 

 
 
 
 

 
 
Fig. 1 : Typical finite-element mesh, composed of four-noded axisymmetric elements and the 

rigid indenter with an equivalent half cone angle of 70.3°: overall mesh and detail in the 
region of contact. 

 
 
 
 
2.2. Relationships between representative strain and Mean Pressure or “Martens” 
hardness 
 
In the various studies on the stress-strain curve determination from indentation test, the 
representative stress was calculated from a plastic equivalent strain, RPε  (Tabor, 1951; 

Giannakopoulos et al., 1994; Chaudhri, 1998; Giannakopoulos and Suresh, 1999; Venkatesh 
et al., 2000; Larsson, 2001; Cao and Huber, 2006; Branch, 2010), from a total equivalent 
strain, Rε  (Mata et al., 2002), or from a “characteristic” strain corresponding to the nonlinear 

part of the total effective strain accumulated beyond the yield strain, 0Rε  (Dao et al., 2001; 

Cao and Huber, 2006). 



In this work, it is considered in a first step that the representative strain, Rε , corresponds to the 

total strain “characteristic” of the Vickers indentation. 
 
2.2.1  Mean Pressure 
 
Fig. 2 shows the values of the /H E dimensionless Mean Pressure obtained for the studied 
materials.  
 

 
 
Fig. 2 : Values of the /H E  dimensionless Mean Pressure in function of /y Eσ  (in linear and 

logarithmic scale) and n. 
 
Fig. 2 shows that the increase in Mean Pressure with /y Eσ (in linear and logarithmic scale) 

and n is non linear. 
When the Yield stress is exceeded, Eqs. (1) and (4) give: 
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With the assumption that the representative deformation, Rε , is constant, Eq. (6) shows that a 

linear relationship is obtained between n and K for materials of same ( )FH C E  ratio. Fig. 3 

represents the values of ( )ln H E  obtained by F.E.M. in the n-K diagram. In this figure, it is 

seen that ( )ln H E  is about constant following a straight line in the n-k diagram.  The 

deviation from the constancy of ( )ln H E  following a straight line in the (n-K) 2 dimensions 

space is due to the variations of the representative strain, Rε  and constraint factor, FC . 



H/E= 
1/105 

 

0.6 

0.4 

0.2 

0.0 
-4 -8 -2 

n 

ln (H/E) 

H/E= 
1/105 

H/E=
1/47 

H/E= 
1/21 

H/E= 
1/9.4 

H/E=1/235 

-6 

H/E=1/525 

H/E=1/1174 

H/E=1/2625 

H/E= 
1/5870 

K 

 

 
Fig. 3:  H E  ratio values obtained for the various values of n and K parameters studied in 

this work. 
 
 
 
Fig. 3 shows that the constancy of ( )ln H E  following a straight line in the (n-K) 2 

dimensions space is obtained for materials of H E  ratio equal to1 21. This result indicates 

that the representative strain, Rε , and the constraint factor, FC , are almost constants for these 

materials. Fig. 4 confirms that the dimensionless stress-strain curves ( )Eσ ε−  of these 

materials intersect approximately at a same value of strain, Rε . Constant R Eσ  and constant  

H E  ratio has for consequence the constancy of FC  for materials of H E  ratio equal 

to1 21. 
 



 
Fig. 4: Eσ ε− curves for materials with 1 21H E =  in Vickers indentation. 

 
 
On the other hand, Fig. 3 shows that the constancy of ( )ln H E  following a straight line in 

the (n-K) 2 dimensions space is not obtained for materials of H E  ratio equal to 1 105. This 

result indicates that the representative strain, Rε , and the constraint factor, FC , are not 

constants for these materials. Fig. 5 confirms that the dimensionless stress-strain curves 

( )Eσ ε−  of these materials are not intersect at a same value of strain, Rε . Non constant 

R Eσ  ratio and constant  H E  ratio has for consequence the non constancy of FC  for 

materials of H E  ratio equal to1 105. 



 
 

Fig. 5: Eσ ε− curves for materials with 1 105H E =  in Vickers indentation. 

 
 
If it is considered that the constraint factor, FC , is locally constant for materials of same 

H E ratio, the representative strain can be determined for materials of same H E ratio by 
differentiation of Eq. (6). This differentiation gives: 
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  (7) 

 
2.2.2. “Martens” hardness 
 
It can be deduced from Eq. (2) that the representative stress is: 
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Following the same procedure as for the Mean Pressure, Eqs. (3), (4) and (8) give: 
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In the case of conical rigid indenter, Eq. (9) shows that the representative strain can be 
determined for materials of same HM E ratio and same Poisson’s ratio by using Eq. (7). 
 
Fig. 6 represents the values of ( )ln HM E  obtained par F.E.M. in the (n-K) diagram.  

 This figure is similar to Fig. 3, i.e., ( )ln HM E  is about constant following a straight line in 

the (n-K) diagram.  The deviation from the linear variation of ( )ln HM E  in the (n-K) 2 

dimensions space is due to the variations of the representative strain, Rε  . 
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Fig. 6: HM E  ratio values obtained for the various values of n and K parameters studied in 

this work. 
 

 
 
2.3 Representative strain determination from F.E.M. results 
 
The values of representative strain were obtained from Eq. (7) and from the numerical results 
of Mean Pressure, H, and “Martens” hardness, HM by using the following procedure.  
Figs. 3 and 6 show that the natural logarithm of Mean Pressure, H, and “Martens” hardness 
follow locally a straight line in the (n-K) diagram. It can be deduced from these figures that, 
locally: 

ln
H or HM

n K
E

α β χ� � = + +� �
� �

 (10) 

In order to determine the values of α, β and χ of this equation, the (n-K) diagram was divided 
in small trapezoids with vertices defined by the four closest numerical values of (n-K). For 
each trapezoid, the values of α, β and χ are obtained by the minimisation of the following 
system of equations with the least square method: 



24

1

ln i i
i i

i

H or HM
n K

E
α β χ

=

� �� �− − −� �� �
� �� �

�  (11) 

Where Hi and HMi are respectively the Mean Pressure and “Martens” hardness at the four 
vertices of each trapezoid. With the assumption that the constraint factor, FC , and that the 

dimensionless parameter, ( )*
3 HM EΠ , are constant in each trapezoid respectively for 

materials of same H E ratio and sameHM E , the representative strain can be deduced for 
each trapezoid from Eq. (7) with: 
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3. Results and discussion 
 
3.1 Mean Pressure 
 
3.1.1 Representative strain 
 
Fig. 7 shows the values of the representative strain calculated from the Mean Pressure by 
using Eqs. (7) and (12).  

 

 
Fig. 7: Representative strain calculated from the Mean Pressure (total equivalent strain). 



 
From Fig. 7, it is clearly shown that the universal value for the equivalent strain introduced by 
a Vickers indentation doesn’t exist if we consider the Mean Pressure. Fig. 7 confirms that the 
representative strain is about constant for material with 1 21H E =  and 0. 0.45n≤ ≤ . This 
figure also confirms that the representative strain vary depending on the hardening exponent 
for material of H E  ratio equal to 1 105. Moreover, Fig. 7 shows that the representative 

strain is not constant for the materials studied by Mata et al (2002). εR=0.1 proposed by Mata 
et al corresponds to an average value of the representative strain obtained for the different 
materials studied by these authors. More generally, the representative strain is in the range 
from 0.2 to 0.25 for materials of small hardening exponent and small /y Eσ  ratio. For 

materials of large hardening exponent and large /y Eσ  ratio the representative strain is about 

equal to 0.1.  
In order to compare with the Tabor’s value (1951), i.e. 0.08, the representative plastic strain 
obtained with our procedure is shown Fig. 8. 
 

 

 
Fig. 8: Representative plastic strain calculated from the Mean Pressure. 

 
Fig. 8 shows that εRP=0.08 is in fairly good agreement with the numerical results for materials 
with large work-hardening exponent. The comparison between our results and those obtained 
by Chaudhri (1998) also shows that the representative strain value which corresponds to the 
maximum plastic strain in the indented plastic zone, i.e. plastic natural strain in the range 
from 0.25 to 0.36, is very higher that the represented plastic strain value obtained from our 
procedure.  This indicates that the choice of the maximum plastic strain as a representative 



deformation is not correct in order to determine the stress-strain curve of materials from the 
Mean Pressure measurement. Concerning the representative plastic strain of Larsson (2001), 
i.e. εRP=0.15-0.18 , this one corresponds to the average of those obtained from our procedure 
which are in the range between 0.09 and 0.26 (see Fig. 8). 
For materials with low work-hardening exponent, the represented plastic strain values 
obtained from our procedure are higher than the Tabor’s value, i.e. εRP=0.08. It is useful to 
remind that Tabor's proposal was based on a fundamental assumption according to which the 
ratio of mean contact pressure to uniaxial flow stress, corresponding to any prior strain plus 
an additional strain introduced by the indentation process, should be universally constant and 
equal to 3.3. For material of low work hardening exponent, there is very little difference 
between choosing εRP=0.08 and the representative strain obtained from our procedure as far as 
the ratio of the mean contact pressure to the flow stress is concerned. 
 
 
3.1.2. Constraint Factor 
 
The values of constraint factor obtained from Eq. (1) and the values of representative strain 
shown Fig. 7 are given in Fig. 9.  
 
 

 
   

Fig. 9: Values of the Constraint Factor, FC ,  obtained from Eq. (1) and the values of 

representative strain. 
 

 



As for the case of the representative strain, Fig. 9 confirms that the constraint factor is about 
constant for material with 1 21H E =  and 0. 0.45n≤ ≤ . This figure also confirms that the 

constraint factor vary depending on the hardening exponent for material of H E  ratio equal 

to 1 105. From Fig. 9, it is clearly shown that the universal value for the constraint factor 

introduced by a Vickers indentation doesn’t exist if we consider the Mean Pressure. 2.7fC =  

was obtained by Mata et al. (2002) under frictionless condition and with the assumption that  
0.1Rε = . Fig. 9 shows that this value is close to the different values of constraint factor 

obtained from our procedure for the materials studied by Mata et al. (2002). Fig. 9 also shows 
that CF= 2.8 obtained by Larsson (2001) for indentation of rigid-plastic power-law materials 
under frictionless condition corresponds to the average of those obtained from our procedure 
which are in the range between 2.6 and 2.9. By using the Tabor approximation (i.e. 

0.08Rε = ), the ratio of the Mean Pressure to flow stress, Rσ , was found to be about equal to 

3.3 in the case of Vickers indentation of work-hardened steel, cooper or aluminium (Tabor, 
1951). In the case of work-hardened Copper, Chaudhri (1998) found that the ratio of the Mean 
Pressure to Rσ  is approximately constant at 3.0-3.5 depending on the value of the 

representative strain. Fig. 9 shows that the numerical values of CF determined from our 
procedure are lower than the experimental values of CF proposed by Tabor and Chaudhri. 
Compared to our results, the larger values of CF found by Tabor and Chaudhri from 
experimental test can be due to the effect of the friction coefficient, µ , on the indentation 
response of the studied materials. The effect of friction on the indentation response will be 
studied in the following section. 
 
 
3.1.3 Effect of friction on the representative strain and constraint factor values 
 
From numerical and experimental investigations of conical indentation with half angle greater 
than 60 °, it was concluded that adhesion and friction between the indenter and the substrate 
were found to have only a small effect on the hardness and the P-h curve (Li et al., 1993; 
Giannakopoulos et al., 1994; Larsson et al., 1996; Giannakopoulos and Larsson, 1997; Mata 
and Alcala, 2004; Antunes et al., 2006).  Only a small increase in hardness occurs for friction 
contacts as compared to frictionless ones (Li et al., 1993; Mata and Alcala, 2004; Antunes et 
al., 2006). For example, Antunes et al. (2006) found no variation of hardness between three-
dimensional numerical simulations of Vickers indentation performed with 0.08µ =  and 

0.24µ =  and Giannakopoulos et al. (1994) and Mata et al (2002) found that friction increases 
by less than 8% the average contact pressure obtained for frictionless indentation. The small 
effect of the friction on the hardness can be explain by the fact that the tangential 
displacements at the contact region were very small compared to the vertical ones, except 
very close to the tip of the indenter (Giannakopoulos et al., 1994; Larsson et al., 1996). 
Despite that only a small effect of friction on the hardness was observed, friction between 
indenter and half space reduces the amount of pile-up at the edge of the indenter and 
influences considerably the stress and strain fields in the proximity of the contact region 
(Mata and Alcala, 2004; Antunes et al., 2006). From three-dimensional numerical simulations 
of Vickers indentation of AISI steel and Nickel, Antunes et al. found that the distribution of 
the equivalent plastic strain under the indenter is quite dependent on the value of the friction 
coefficient. For low values of the friction coefficient ( 0.04µ = ), the maximum value of the 
equivalent plastic strain is quite high (1.27≈ ), and it is located on a small area at the surface 
of the indentation. In the case of a high friction coefficient ( 0.24µ = ), the maximum value of 



the equivalent plastic strain (0.38≈ ) is lower and it is located not only at the surface but also 
at a certain depth value under the indentation surface. Moreover, the deepness of the plastic 
deformed region increases with the value of the friction coefficient (Mata and Alcala, 2004; 
Antunes et al., 2006). 
Additional calculations were performed in order to study the friction effect on the values of 
constraint factor and representative strain of the Vickers indentation of the annealed mild steel 
studied by Tabor ( 21000 / 23 ; 0.198yE nσ = = ). It is assumed that the value of the friction 

coefficient between well polished metallic surfaces and diamond lies within 0.1 and 0.15 
(Tabor, 1951; Giannakopoulos and Larsson, 1997). For the calculations, µ  was fixed at 0.15. 

1540H MPa=  and 1651H MPa=  were found for the frictionless case and for Vickers 
indentation performed with 0.15µ = , respectively. This results shows that friction increases 
the hardness by 7%, which is in agreement with the previous results obtained for Vickers 
indentation (Giannakopoulos et al., 1994; Mata and Alcala, 2004). The procedure given 
paragraph 2.3 was performed from a trapezoid with vertices defined by the following 
combinations of elasto-plastic properties: 210000 ; 160, 250 ; 0.15, 0.2yE nσ= = = . With the 

proposed procedure, 0.0693RPε =  was obtained for Vickers indentation with 0.15µ = . 

Compared with the frictionless case, for which  0.0948RPε =  was obtained, it can be 

concluded than friction has for consequence the decrease in the value of representative strain. 
This result is in agreement with the decrease in the maximum plastic strain with the increase 
in the friction coefficient observed by Antunes et al. (Antunes et al., 2006). These values of 
hardness and representative strain lead to 2.755fC =  and 3.135fC =  for the frictionless case 

and for Vickers indentation performed with 0.15µ = , respectively. The values of constraint 
Factor obtained in the case of contact with friction are close to the experimental values 
obtained by Tabor (1951) and Chaudhri (1998). It is shown that the increase in constraint 
factor occurs for friction contacts as compared to frictionless ones because of the increase in 
hardness and decrease in representative strain. 
 
 
3.2. Martens hardness 
 
3.2.1. Representative strain 
 
It is useful to remind that the representative strain presented in this section is characteristic of 
the “Martens” hardness in the case of a conical indenter equivalent to the Vickers indenter. 
This representative strain is thus characteristic of the relationship between the applied load, F 
and the penetration depth, h, or relationships between the combinations of these parameters, 
as for example, the total work-applied load relationship or the total work-penetration depth 
relationship. 
Fig. 10 shows the values of the representative strain calculated from the “Martens” hardness 
by using Eqs. (7) and  (12).  



 
 

Fig. 10: Representative strain obtained from the Martens Hardness (Totale representative 
strain) 

 
As for the case of the Mean Pressure, Fig. 10 shows that no universal value for the equivalent 
strain introduced by a Vickers indentation exists if we consider the “Martens” hardness. For 
the studied materials, the values of the representative strain obtained from the “Martens” 
hardness, lie between 0.025 and 0.095 which are very smaller than the values of 
representative strain obtained from the Mean Pressure which are in the range between 0.09 
and 0.26. Chollacop et al. (2003) proposed reverse algorithms using dual sharp indenters  to 
determine stresses for two representative strains and thus stress-strain curves of power law 
strain hardening materials. The proposed methodology is based on the measurement of a F–h 
curve (or Martens hardness). From this methodology, representative strains in the range 
between 1.7% and 8.2% were identified for conical indenters of semi-apex angles ranging 
between 50° and 80°. The comparison between the values of representative strain given in 
Figs. 8 and 10 shows that a similar procedure based on the measurement of the F-a 
relationship (or mean pressure) should lead to a better prediction of stress-strain curves for 
large values of plastic deformation. 
In order comparing our results to the representative strains proposed by Dao et al. (2001) and 
Cao and Huber (2006),  the “characteristic” strain, 0Rε , corresponding to the nonlinear part of 

the total effective strain accumulated beyond the yield strain was calculated from the total 



strain Rε . Fig. 11 shows the values of 0Rε obtained from our procedure for the various studied 

materials. 
 

 

 
Fig. 11: Representative strain obtained from the Martens Hardness (Representative strain 

corresponding to the nonlinear part of the total effective strain accumulated beyond the yield 
strain). 

 
 
Using dimensional analysis, a representative strain εR0 = 0.033 was identified by Dao et al. 
(2001). This value lies within the range of representative strains determined from our 
procedure for the materials studied by Dao et al (2001). The representative strain defined by 
Dao et al. becomes very different from our results for materials of large /y Eσ  ratio, for 

which εR0 is about equal to 0.065. Our results are in accordance with those obtained by 
Ogasawara et al. (2005) and Cao and Huber (2006). Indeed, in their paper, Ogasawara et al. 
(2005) argued that the constant representative strain defined by Dao et al. (2001) only works 
well for a limited range of materials. 
In the work of Cao and Huber (2006),  it is also found that the representative strain defined by 
Dao and al. (2001) cannot lead to a one-to-one relationship between the representative stress, 
indentation loading curvature, and reduced Young’s modulus. In order to obtain a one-to-one 
relationship with good level of accuracy between R LCσ  and *

LC E  for the studied 

materials, Cao and Huber (2006) proposed to define the representative strain as a function of 
C/E* instead of a constant (Eq. (17) in Ref. (Cao and Huber, 2006)). Fig. 11 shows that the 
values of the representative strain obtained by Eq. (17) in Ref. (Cao and Huber, 2006) are 
very close to those obtained from our procedure.  



 
 
3.2.2. Constraint Factor 
 
The values of the RHM σ  ratio obtained from Eqs. (2) and (3) and the values of 

representative strain shown Fig. 10 are given in Fig. 12. The meaning of the RHM σ  ratio is 

similar to that of the constraint factor calculated from the mean pressure ( RH σ ). 

As for the case of the constraint factor, Fig. 12 shows that the RHM σ  ratio varies 

significantly depending on the values of n and  /y Eσ . Fig. 12.a shows that the values of the 

RHM σ  ratio obtained from Eqs. (11) and (17) in the work of Cao and Huber (2006) are in 

fairly good agreement with those obtained from our procedure. Despite the difference 
between the representative deformation identified by Dao et al. and those determined in the 
presented work, the RHM σ  ratios proposed by Dao et al. (2001) are also close to our results 

(Fig. 12.b).  
 
 

 
 



 
Fig. 12: Values of the RHM σ  ratio obtained from Eqs. (2) and (3) and the values of 

representative strain. (a): comparison with the values of Dao et al. (2001); (b): comparison 
with the values of Cao and Huber (2006). 

 
 
3.3 Discussion about the definition of the representative strain 
 
As mentioned in introduction, the representative strain, εR, is a key input parameter for any 
methodology that attempts to extract plastic properties from Martens hardness or mean 
pressure. Concerning the methodologies based on the Martens hardness, Dao et al. (2001) 
have used a dimensional analysis to estimate εR, for Vickers indentation as 3.3%. Chollacoop 
et al. (2003) extended this analysis for conical indenters of different semi-apex angles, θ, and 
show that εR linearly decreases with increasing θ. The experiments of Chollacop and 
Ramamurty (2005) show that the developed algorithms to assess properties of materials based 
on the use of these representative strains predict the stress-strain curve with good accuracy. 
The accuracy of the εR values estimated by Dao et al. (2001) and Chollacoop et al. (2003) on 
one side and by Atkins and Tabor (1965) on the other was compared by Chollacop and 
Ramamurty (2005). From the experimental values of mean pressure and using the constraint 
factor, CF, and εR values given by Atkins and Tabor (1965) for different conical indenters, 
they show that the estimated flow stresses are generally significantly larger than the 
corresponding flow stresses obtained from uniaxial tensile tests. An examination of Fig. 10 in 
Atkins and Tabor (1965) also shows that the estimated flow stresses is always larger than the 



corresponding flow stresses obtained from uniaxial tensile tests. For Chollacop and 
Ramamurty (2005), this result demonstrates that the εR values estimated by Chollacoop et al. 
(2003) from Martens hardness are relatively more accurate than those proposed by Atkins and 
Tabor (1965). As it was mentioned by Chollacop and Ramamurty (2005), the choice of the 
representative strain is not the only reason of the overestimation of the flow stress. They 
indicate that this overestimation is probably due to the implicit assumption by Atkins and 
Tabor (1965) that the constraint factor CF for a given cone angle is independent of prior 
plastic strain. Indeed, Fig. 9 shows that CF varies depending on the hardening exponent and 
the yield stress of the indented material. For the materials studied by Atkins and Tabor (1965), 
Fig. 9 shows that the constraint factor is in the range between 2.8 and 2.9. These values 
obtained under frictionless conditions are higher that the CF values obtained by Atkins and 
Tabor (1965) from experiments, i.e. 2.54 < CF < 2.7. From the results shown by Chollacop 
and Ramamurty (2005) and Atkins and Tabor (see Fig. 10 in Atkins and Tabor (1965)), we 
can conclude that the overestimation of the flow stress found by Atkins and Tabor (1965) is 
mainly due to the underestimation of the constraint factor rather than the accuracy of the 
representative strain. 
Several studies were conducted to find a physical meaning of the representative strain and 
connect this representative strain with the quantity of plastic strain induced by conical 
indenters (Branch et al., 2010; Prasad et al.,2011). Prasad et al. (2011) show that the εR values 
given by Chollacoop et al. (2003) and Bucaille et al. (2003) obtained using dimensional 
analysis are in excellent agreement with those computed as the volume-average strain within 
the elastic–plastic boundary. Branch et al. (2010) shows that a method based on this average 
plastic strain accurately predicts the increase in indentation hardness within the plastic zones 
of both Vickers and Rockwell C indents for both linear and power law strain hardening 
materials. Some aspects about the connection between the representative strain and the plastic 
volume-average strain are to be discussed. 
In the study of Branch et al. (2010), the prediction of the micro-vickers hardness profile is 
based on the assumption that the constraint factor is constant independently the degree of the 
work hardening of the material. Figure 9 shows that this assumption is not true. It can be also 
noticed that Branch et al. (2010) found that the representative strain depends on the material, 
i.e.  εR of 0.052 and 0.035 for a power law strain hardening material (P675 SS) and a linear 
law strain hardening material (303 SS), respectively. In contradiction with this result, they 
consider that the representative strain does not depend on the degree of work-hardening of 
each material. The work hardening of a material which follows a power law model leads 
however to a “new” material which can be sometimes modelled better as a linear hardening 
material.  
On the other hand, only plastic strains above 0.002 are included in the determination of εR in 
the analysis of Branch et al. (2010) and Prasad et al. (2011). Branch et al. (2010) justify this 
value because it is consistent with the common definition of the 0.002 offset yield strength. 
However, FEM results show that a little difference in the value of the offset yield strength has 
as a consequence a strong difference in the plastic zone size and thus a strong difference in the 
value of the volume-average plastic strain (Fig. 13). In consequence, the determination of the 
values of representative strain is subjective if it is obtained from the values of volume-average 
strain calculated within the plastic zone of the indentation. The representative strain defined 
as the volume-averaged plastic strain within the plastic zone of the indentation was validated 
by Branch et al. (2010) from the measurement of the increase in indentation hardness within 
the plastic zones obtained with both Vickers and Rockwell C. However, because of the high 
values of plastic strain at locations nearest to the surface, a noticeable variation in the value of 
the representative strain has only for consequence a small variation in the hardness profile. 
Therefore, the good agreement between the predicted micro-indentation hardness values and 



the experimentally measured hardness values cannot validate the representative plastic strain 
proposed by Branch et al (2010). Lastly, Prasad et al. (2011) show that, contrary to the εR 
values given by Chollacoop et al. (2003), the experimental values of Atkins and Tabor (1965) 
are considerably higher than those computed as the volume-average strain within the elastic–
plastic boundary. From this result, they concluded that the universal definition of 
representative strain given by Atkins and Tabor (1965) is not valid for conical indentation. In 
our opinion, the fact that the volume-average strain is closer to the representative strain given 
by Chollacoop et al. (2003) than to the representative strain given by Atkins and Tabor (1965) 
does not mean that the representative strain obtained from F-h curves (or Martens hardness) is 
valid and that the representative strain based on the mean pressure is not valid. 
As mentioned by Dao et al (2001), the value of the representative strain depends on the choice 
of functional parameters that were used to describe the indentation process (the Martens 
hardness or the mean pressure). We demonstrate in this paper that the representative strain 
also depends on the mechanical properties of the indented material. Further investigations 
must be performed to better understand the connection between representative strain and 
physical quantities.  

 
 

Fig 13: Plastic strain distribution induced by conical indenter equivalent to the Vickers 
indenter obtained for a material with E=120000 MPa, σY= 3 MPa and n=0.466 (material 

similar to that studied by Prasad et al. (2011)). 
 
Conclusion 
 
In the present work, an investigation on the definition of the representative strain in conical 
indentation was carried out. Following a procedure based on finite element simulations of 
indentation of elasto-plastic materials, news values of representative strain were determined.  
Contrary to all previous studies, the proposed procedure is based on no assumption. This 
procedure leads to the determination of values of representative strains valid for power law 



strain hardening materials. Two representative strains were defined: the representative strain 
characteristic of the mean pressure and the representative strain characteristic of the Martens 
hardness or the indentation loading curvature. The results obtained following our procedure 
clearly demonstrates that the representative strain, Rε , is not the same if we consider the 

Martens hardness, HM,  or Mean pressure, H. For the studied materials which include 
engineering materials, the values of the representative strain obtained from the “Martens” 
hardness, lie between 0.025 and 0.095 depending on the material. If the Mean pressure is 
considered, the values of the representative strain lie between 0.08 and 0.25, depending on the 
material. These results show that the mean pressure-based representative strain is higher than 
the Martens hardness-based representative strain. This result means that reverse algorithms 
using dual sharp indenters based on the measurement of the F-a relationship (or mean 
pressure) should lead to a better prediction of stress-strain curves for large values of plastic 
deformation. As for the case of representative strain, no constant values of constraint factor 

RH σ and of RHM σ  ratio were found for the studied materials. 

The concept of representative strain and constraint factor, CF,  or Π dimensionless functions 
was introduced with the objective converting the hardness-strain to the stress-strain curve of 
the studied material. The ideal situation prevails if these parameters are independent of 
material being indented. The presented results show that the concept of universal value for the 
representative strain or the constraint factor introduced by a Vickers indentation doesn’t exist. 
The representative strain induced by a conical indenter equivalent to the Vickers indenter 
depends on both studied material and measured quantities (Martens hardness or mean 
pressure). 
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