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abstract 
A phenomenological study of parabolic and spherical indentation of elastic ideally plastic 
materials was carried out by using precise results of finite elements calculations. The study 
shows that no “pseudo-Hertzian” regime occurs during spherical indentation. As soon as the 
yield stress of the indented material is exceeded, a deviation from the,purely elastic Hertzian 
contact behaviour is found. Two elastic-plastic regimes and two plastic regimes are observed 
for materials of very large Young modulus to Yield stress ratio, E/σy. The first elastic-plastic 
regime corresponds to a strong evolution of the indented plastic zone. The first plastic regime 
corresponds to the commonly called “fully plastic regime”, in which the average indentation 
pressure is constant and equal to about three times the yield stress of the indented material. In 
this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. 
hc/h=1.47. hc/h is only constant for very low values of yield strain (σy/E lower than 5.10-6) 
when aE*/Rσy is higher than 10,000. The second plastic regime corresponds to a decrease in 
the average indentation pressure and to a steeper increase in the pile-up. For materials with 
very large E/σy ratio, the second plastic regime appears when the value of the non-
dimensional contact radius a/R is lower than 0.01. In the case of spherical and parabolic 
indentation, results show that the first plastic regime exists only for elastic-ideally plastic 
materials having an E/σy ratio higher than approximately 2.000. 
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1. Introduction 
A characteristic feature of the spherical indention is that different regimes can occur during 
the deformation of metals. So far, elastic, elastic-plastic with elastically-dominated and 
plastically dominated parts, fully plastic and finite deformation regimes were observed for 
spherical indentation (Hertz, 1881; Tabor, 1951; Johnson, 1985; Mesarovic and Fleck, 1999; 
Park and Pharr, 2004, Pane and Blank, 2006). The deformation process produced during 
spherical indentation is well described if the regime is elastic, but this is more complex when 
plasticity occurs. Many experimental and numerical studies have been performed in order to 
understand the phenomena which occur during spherical indentation. Following the early 
work of Tabor (1951), Johnson (1985) suggested that the spherical indentation process can be 
divided into three distinct regimes: elastic, elastic-plastic and fully plastic. When the yield 
point is first exceeded the plastic zone is small and fully contained by material which remains 



elastic so that the plastic strains are of the same order of magnitude as the surrounding elastic 
strains. In these circumstances the material displaced by the indenter is accommodated by an 
elastic expansion of the surrounding solid. As the indentation becomes more severe, either by 
increasing the load, an increasing pressure is required beneath the indenter to produce the 
necessary expansion. Eventually the plastic zone reaches the free surface and the material is 
free to move by plastic flow to the sides of the indenter. This is the “uncontained” mode of 
deformation analysed by the theory of rigid-plastic solids proposed by Ishlinsky (1944) which 
used the slip-line method, as well as Hill et al (1989) and Biwa and Storåkers (1995) which 
used deformation and flow theory, respectively. It is assumed that the two ranges of loading, 
ie elastic-plastic and fully plastic, correspond respectively to the “contained” and 
“uncontained” modes. For the “uncontained” mode, the elasticity is considered as negligible. 
According to the similarity solution proposed for the “uncontained mode” (Biwa and 
Storåkers, 1995), the upper limit of the mean contact pressure, which is usually interpreted as 
the material hardness, is equal to three times the yield strength of an elastic ideally plastic 
material. In the elastic-plastic regime, the mean contact pressure starts from a value equal to 
1.07σy and reaches the value of the similarity solution. The ratio between the mean contact 
pressure, Pm, and the yield stress corresponds to the “constraint factor” called ψ, which is 
commonly used to study the transition between elastic-plastic and “fully” plastic regime. On 
the basis of results of different experimental and numerical indentation tests using spheres, 
Johnson (1985) showed that fully plastic deformation is reached at a value Λ=E*a/(σyR) ≈ 40. 
For elastic-ideally plastic solids, ψ increases until the ratio E*a/(σyR) is equal to 40–50 
(Mesarovic and Fleck, 1999). More recently, for a range of E*/σy ratio, which includes most 
metals, Park and Pharr (2004) showed that full plasticity is achieved when the value of the 
ratio E*a/(σyR) is equal to 50-200. For elastic– ideally plastic materials of E/σy ratio in the 
range 20-1500, which covers most metals, ceramics, and glasses, the results suggest that fully 
developed plasticity, as conventionally defined by the point at which the constraint factor 
levels off at a value of about 3, starts at the much higher value E*a/(σyR) = 110 (Taljat and 
Pharr, 2004). Lastly, in a study of the role of plasticity in spherical indentation for different 
kinematic and isotropic materials, the limit between the elastic-plastic regime and the fully 
plastic regime was fixed at E*a/(σyR) = 80 by Pane and Blank (2006). 
Another parameter, c2, and equal to a2/(2hR), is also used in order to study the deformation 
regimes. This parameter was proposed in order to quantify the degree of piling-up and 
sinking-in during the indentation test. c2 >1 indicates piling-up, whereas c2 <1 accounts for 
sinking-in (Matthews, 1980; Hill et al, 1989; Taljat et al., 1998; Alcala et al., 2000; Kucharski 
and Mröz, 2001). In the case of material elastically deformed by indentation, c2 is constant 
and equal to 0.5. When the stress under the indenter is higher than the yield stress of the 
indented material, this parameter increases with the indent depth during a stage called 
“elastic-plastic indentation regime” (Mesarovic and Fleck, 1999). For higher indent depths, 
the c2 parameter is again considered constant during the stage called “fully plastic regime” 
((Matthews, 1980; Hill et al, 1989; Taljat et al., 1998; Alcala et al., 2000). For indentation by 
a sphere, Bower et al (1993) and Mesarovic and Fleck (1999) show that the fully plastic 
regime can be subdivided into two regimes. For relatively small contact sizes, a similarity 
solution applies while for large contact sizes, a finite deformation mode dominates. Mesarovic 
and Fleck (1999) define the first regime: “plastic similarity regime”, in which ψ and c2 are 
constant. By observing the results of Mesarovic and Fleck (1999), we can notice a difference 
between the lower limit of the “fully plastic regime“ determined by c2 and the lower limit of 
the “plastic similarity regime” determined by ψ and c2. For example, in the case of E*/σy ratio 
equal to 10000, ψ is constant when E*a/(σyR) is equal to about 40-50 and c2 is constant when 
E*a/(σyR) reaches the value of 1000. The second regime inside the “fully plastic regime”, 



called “finite deformation regime” by Mesarovic and Fleck (1999), occurs for large contact 
sizes and corresponds to a drop of ψ and c2. ”For smaller E*/σy ratios, Mesarovic and Fleck 
(1999) showed that the plastic similarity regime is never reached since c2 increases in the 
elastic-plastic regime and immediately falls with increasing contact size in the stage called 
“finite deformation regime”. For Bower et al. (1993) and Mesarovic and Fleck (1999), the 
drop in c2 value for large contact sizes represents the failure of the assumptions involved in 
the similarity solution, especially the assumption of infinitesimal strain kinematics (Bower et 
al., 1993; Mesarovic and Fleck,1999)) and the boundary condition of uniform normal velocity 
(Mesarovic and Fleck, 1999)). We can notice that the similarity solution was also determined 
with the assumption that the geometric profile of the indenter can be represented by a power-
law relationship. This assumption includes indentation by a rigid sphere, since, for small 
contact sizes, the profile of a sphere can be approximated by a paraboloïd of revolution. For 
large contact sizes, the failure of this assumption in the case of spherical indentation can also 
explain the drop in the a2/2hR ratio. Indeed, in a recent study, Hernot et al. (2006) showed 
that the use of the c2 parameter has for consequence a noticeable underestimation of the 
contact radius for large values of penetration depth because the spherical indenter cannot be 
considered as similar to the parabolic indenter. 
The aim of this work is to study the different indentation regimes during parabolic and 
spherical indentation of elastic-ideally plastic materials on the basis of precise numerical 
simulations. For our study, we propose to analyse the evolution of the constraint factor ψ, the  
contact depth-penetration depth ratio (hc/h), the c2 parameter and two non-dimensional 
expressions (dF/da).(a/F) and (da/dh).(h/a) during the indentation test. The expansion of the 
plastic deformation in the indented zone and the location of the maximum plastic deformation 
will be also studied in this work. In a first step, the analysis is carried out by using the results 
of numerical simulations of the indentation of an elastic–plastic half-space by a frictionless 
rigid paraboloïd of revolution. This type of indenter is used for the same reason as mentioned 
before in a previous study (Hernot et al. (2006)). In a second step, some numerical 
simulations are performed in the case of a rigid spherical indenter in order to study the 
influence of the shape of the indenter on the indentation regimes for high contact radius 
values. Another goal of the proposed paper is to validate the use of the non dimensional 
expressions (dF/da).(a/F) and (da/dh).(h/a) for the study the indentation of elastic-ideally 
plastic materials. This work is the first step before studying the indentation regimes during 
spherical indentation of work hardened materials by using the non-dimensional expressions 
(dF/da).(a/F) and (da/dh).(h/a). The proposed paper is a contribution to the study of material 
elastoplastic properties evaluation by spherical indentation. Tabor’s relation or plastic 
similarity solution are used in various methodologies for mechanical property extractions 
through indentation experiment (Tabor 1951, Field and Swain 1995, Taljat et al. 1998, Ahn 
and Kwon 2001, Kucharski and Mroz 2001, 2004, 2007, Huber and E. Tyulyukovskiy 2003, 
Mulford et al. 2004, Weiler et al. 2005, Herbert et al. 2006, Jeon et al. 2006, Kim et al. 2006, 
Jiang et al. 2009, Zhang et al. 2009). Ψ and c2 parameters are used in Tabor’s relation and 
plastic similarity solution. Most of these methods were used with the assumption that the 
indentation regime is fully plastic. The results of the proposed work allow the validity of these 
methods in the case of weak strain hardened material to be determined. 
 
 
2. Numerical procedure 
Numerical simulations were principally performed with rigid parabolic indenter geometry, 
defined by the equation z= r2/(2R), where r and z are respectively the radial and the vertical 
coordinates and R is the radius of the osculatory circle. Several numerical simulations of 
spherical indentation were performed in order to examine the difference between the results 



obtained for spherical indentation and parabolic indentation. These simulations were 
performed in axisymetric mode and under frictionless contact conditions (µ=0) using the large 
strain elastic-plastic feature of the Abaqus finite element code. A typical mesh, comprising 
four-noded axisymmetric elements CAX4 (Abaqus, 1995), is shown in Fig. 1. In order to 
obtain precise values of contact radius throughout the indentation test, different numerical 
simulations were performed with parabolic indenters of R values chosen in the range of 0.316 
to 316,000 mm (R=0.316, 1, 3.16, 10 etc). Each finite element calculation was performed so 
that the final contact radius is equal to 1 mm. The dimensionless indentation curves a*-F*  and 
h*-a*  (a*=a/R ; F*=F/(E*R 2), h*=h/R) were obtained by assembling the final parts of the 
different indentation curves obtained for each value of R. With this procedure, a minimum of 
100 elements became directly in contact with the rigid indenter for each point of the 
indentation curves a*-F* and h*-a*  used in this study. The mesh size was chosen so that, in 
all cases, the contact radius was 500 times smaller than the total length. According to the 
Hertz theory, good numerical results were obtained with this mesh size for the elastic 
indentation regime.  

 

 
(a) 

  

 
(b) 

 
Fig. 1: Typical finite-element mesh, composed of four-noded axisymmetric elements and 
rigid parabolic indenters: (a) overall; (b) detail in the region of contact. 



The constitutive model of the elastic-ideally plastic indented material was taken to follow the 
well known J2-associated flow theory with rate-independent deformation.  
Finite element simulations were performed for materials exhibiting values of σy = 0.105, 1.05, 
10.5, 105, 1,050, 4,200 and 10,500 MPa. Young modulus of 210 GPa and Poisson ratio of 0.3 
are used for all simulations. These values were chosen in order to give σy/E ratio in the range 
of 1/2,000,000-1/20, which includes most metals. 
The actual contact radius a in our FE analysis depends of the horizontal coordinate of the last 
contact edge ‘‘node’’ between indenter and specimen. Because the actual contact radius is a 
discrete value and depends on the mesh size of contact surfaces, noisy (dF/da).(a/F) and 
(da/dh).(h/a) ratios were obtained starting from the FE results. A similar problem due to the 
discrete increments in contact size was found by Mesarovic and Fleck (1999).  
In order to obtain non-noisy (dF/da).(a/F) and (da/dh).(h/a) ratios, fitted linear regression 
models with a least squares approach were used in different intervals of the ln(a*)-ln(F*) and 
ln(h*)-ln(a*) curves (Fig. 2). The interval used for the linear regression of each point Xi 
includes the closest to Xj points (denoted by square symbols in Fig. 2), such as: 

iji X.XX χχ ≤≤   (1) 

Where χ  is a constant which defines the length of the interval used to fit the linear regression 
model to the data. 
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Fig. 2: Proposed method for smoothing the numerical data. 

 
Examples of Λ-ψ  and  Λ-(dF/da).(a/F) relationships obtained by using the proposed method 
are shown in figure 3. 
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Figure 3: Numerical and fitted curve of ψ  versus Λ obtained with χ =1.2 (a); fitted curves of 

Λ-(dF/da).(a/F) obtained with various values of χ  (b); material of E/σy ratio equal to 2000. 
 
For the results shown in Fig. 3b, various lengths of interval used for the linear regression were 
tested. The results show that the best fit for the data was obtained for a χ  parameter 
approximately equal to 1.2. For this reason, the value of χ  was fixed at 1.2 for all the fitted 
results. 
Figure 4 shows a Λ-(dF/da).(a/F) curve obtained by assembling the final parts of the different 
numerical results obtained for each value of indenter radius, R, and after fitting the linear 
regression model to the data. In this figure, the values of the coefficients of determination, r2, 
are very close to 1 and thus indicate that the proposed model is a good fit. 
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Figure 4: Λ-(dF/da).(a/F) fitted curve and values of coefficients of determination obtained for 

a material of E/σy ratio equal to 2000 (χ =1.2). 
 



Fig. 4 shows discontinuities in the assembled final Λ-(dF/da).(a/F) curve at transitions 
between the numerical results obtained for each value of indenter radius, R. These 
discontinuities do not correspond to characteristic events during spherical indentation but are 
due to the low number of nodes in contact at the beginning of each finite element simulation. 
These discontinuities will not be taken into account in the study of (dF/da).(a/F) and 
(da/dh).(h/a) curves. 
 
 
3. Parabolic indentation of elastic-ideally plastic materials of larger E/σσσσy ratio 
Johnson (1985) argued that the degree of deformation in elastic-plastic indentation depends 
upon the ratio of the representative strain a/R beneath the indenter to the Yield strain σy/E* of 
the half-space. Thus the degree of indentation is defined by the single non-dimensional group 
aE*/Rσy, which we shall name Λ . With this rationale in mind, (dF/da).(a/F) and (da/dh).(h/a) 
ratios are plotted versus aE*/Rσy in Fig. 5, for parabolic indentation and materials with large 
E/σy ratios.  
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Fig. 5: (dF/da).(a/F), (dF/h).(h/F) and (da/dh).(h/a) ratios versus Λ  = aE*/Rσy for materials 
of large E/σy ratio. 



In these curves, different regimes can be distinguished. For small values of aE*/Rσy, the 
(da/dh).(h/a) and (dF/da).(a/F) ratios are constant and respectively 0.5 and 3, which 
correspond to the theoretical values of Hertz (1896). Starting from a critical value of 
aE*/Rσy,, the (dF/da).(a/F) ratio decreases quickly then less quickly until it reaches the value 
of 2. When this value is reached, (dF/da).(a/F) stabilizes and then decreases again. The lower 
the E/σy ratio of the indented material, the earlier and steeper is the last decrease in 
(dF/da).(a/F). 
As for the (dF/da).(a/F) ratio, a big change in the (da/dh).(h/a) ratio occurs for the same 
values of aE*/Rσy. The (da/dh).(h/a) ratio increases quickly starting from the elastic regime 
and up to a value of Λ  of about 8. Starting from Λ  = 8, the (da/dh).(h/a) ratio decreases and 
when Λ  is higher than approximately 10,000, the (da/dh).(h/a) tends towards the similarity 
solution, i.e. 0.5, without reaching this value for materials of E/σy ratio smaller than 200,000. 
 
3.1 yielding of the material 
 
In parabolic indentation, the elastic regime is valid up to a Λ  parameter of 2.53. The 
(dF/da).(a/F) and (da/dh).(h/a) ratios show that the indentation regime is different from the 
elastic regime starting from a value of Λ  which is very close to 2.53. This result is different 
to those presented by Park and Pharr (2004) and Mesarovic and Fleck (1999) in previous 
studies of the evolution of the constraint factor during spherical indentation. Indeed, these 
authors determined a “pseudo-Hertzian” regime at the beginning of the yielding of the 
indented material. For Park and Pharr (2004), there is no deviation in behaviour from that 
expected based on purely elastic Hertzian contact over the range of approximately 0 <Λ < 3.5. 
For Mesarovic and Fleck (1999), a ‘pseudo-Hertzian’ behaviour was found up to a value for 
Λ  of 3.77. The Λ -ψ relationship obtained with our numerical calculations for elastic-ideally 
plastic materials of different yield stress confirms that no ‘pseudo-Hertzian’ behaviour exists 
during parabolic and spherical indentation (Fig. 6). Indeed, this figure shows that the 
behaviour is rather different to that of Hertzian behaviour starting from the yielding of 
indented materials.  
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Fig. 6: Evolution of the constraint factor, ψ at the beginning of the yielding of the indented 

material 
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Fig. 7: Evolution of the plastic zone during the parabolic indentation of a material of 
E/σy=20000 (PEMAG= plastic strain according to the Von Mises theory).  

a: yielding of the material; b: limit of the“pseudo-Hertzian” regime defined by Park and Pharr 
(2004) ; c: plastic zone first breaks through the surface ; d: yielding of the material at the 

whole surface contact ; e: maximum plastic strain located at the contact edge; f: maximum 
plastic strain located near the surface and the symmetry axis 

 
It is also underlined that the reason of the existence of the “pseudo-Hertzian” behaviour given 
by Park and Pharr (2004) is not correct. For Park and Pharr (2004), the existence of the 
“pseudo-Hertzian” behaviour can be understood by considering the evolution of the plastic 



zone. Their explanation is that as the plastic zone grows, it spreads upward and outward, but 
the plasticity is totally constrained by surrounding elastic material up to Λ = 3.5 and at loads 
slightly greater than this, the plastic zone first breaks through the surface. Thus, the region of 
“pseudo-Hertzian contact occurs when 2.52<Λ <3.5. As shown in Fig. 7, our results are not in 
accordance with the results of Park and Pharr because the plastic zone first breaks through the 
surface for a value of Λ  greater than 3.5. For the different elastic-ideally plastic materials 
tested in this study, plasticity is totally constrained by surrounding elastic material when the 
Λ  parameter is equal to 3.5 and 3.77 and the plastic zone first breaks through the surface 
when Λ  is about 5.9 (Fig. 7.c). In consequence, the deviation in behaviour from that expected 
based on purely elastic Hertzian contact is not due to the break of the plastic zone through the 
surface.  
 
3.2 Beginning of the plastic deformation 
 
For aE*/Rσy > 2.53, (dF/da).(a/F) decreases quickly and (da/dh).(h/a)  increases quickly up 
to a value of aE*/Rσy of about 8 (Fig. 5), a value not far from that for which the plastic zone 
first breaks through the surface, i.e. aE*/Rσy = 5.9 (Fig. 7). On the other hand, the study of the 
(dF/dh).(h/F) ratio shows that this parameter decreases gradually over the range of 
2.53<Λ <1000 (Fig. 5.a). These results and the large changes in (dF/da).(a/F) and 
(da/dh).(h/a) observed at the first step of yielding indicate that the contact radius increases 
very quickly. 
From Λ = 8, a decrease in (da/dh).(h/a) ratio is observed. From the same value of Λ , there is 
less decrease of (dF/da).(a/F). These phenomena indicate that the speed of the piling-up 
formation decreases slightly. For Park and Pharr, aE*/Rσy = 10 corresponds to the transition 
between an elastically-dominated regime and a plastically-dominated regime. For these 
authors, Λ = 10 corresponds to the transition of two regimes, in which the indentation 
behaviour depends or not on the work hardening characteristics of the indented material. For 
our work, this explanation is not valid because the studied materials are elastic-ideally plastic. 
Fig. 8 shows rather that Λ = 12 is a value which is very close to that given by Park and Pharr 
(2004) and corresponds to a modification of the location of the maximum plastic strain. When 
Λ  is smaller than 12, the maximum plastic strain is located along the axis of the symmetry, in 
agreement with the Hertzian contact theory. Beyond this value, Fig. 8 shows that the 
indentation regime becomes very different from the elastic regime. 
To resume, during the step corresponding to Λ  values in the range of 2.53 and 12, the plastic 
zone grows beneath the surface, spreads upward and outward, breaks through the surface 
when Λ  is about equal to 5.9, and is not constrained by surrounding elastic material at the 
end of the step (Fig. 7). The large changes in the plastic zone mean, consequently, large 
changes in the (dF/da).(a/F) and (da/dh).(h/a) ratios over the range of approximately 2.53 
<Λ < 8 (Fig. 5). When Λ = 12, the location of the maximum plastic strain is not located along 
the axis of symmetry.  

 



 
Fig. 8: Evolution of the localisation of the maximum plastic strain during parabolic indentation of 

materials of large E/σy ratio. 
 

 
3.3 “elastic-plastic” and “fully plastic” regimes 
 
For aE*/Rσy > 6-8 , the (dF/da).(a/F) ratio decreases slowly up to a value of Λ  of 
approximately 200 (Fig. 5.a). Fig. 8 shows that the maximum plastic strain location moves 
slowly upwards and outwards starting from Λ =12 and is located at the contact edge when the 
value of Λ is equal to 220. When the maximum plastic strain moves toward the symmetry 
axis, i.e. for Λ  values larger than 220, the (dF/da).(a/F) ratio and constraint factor, ψ, remain 
constant at values of 2 and 3 respectively, which correspond to the values of the rigid-ideally 
plastic similarity solution (Fig. 9.a). The values of ψ are close of the values determinated by 
experimental investigations (O Neill, 1944; Tabor, 1951) or by finite element simulations 
(Mesarovic and Fleck, 1999; Park and Pharr, 2004). The value of Λ  starting from ψ=3 is in 
the range of the values determined by Park and Pharr (2004), i.e : E*a/(σyR) ≈ 50 to 200. On 
the other hand, this value is higher than those obtained by Johnson (1985), E*a/(σyR) ≈ 40; 
Mesarovic and Fleck (1999), E*a/(σyR) ≈ 40–50; Taljat and Pharr (2004), E*a/(σyR) = 110 
and Pane and Blank (2006), E*a/(σyR) = 80.  
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 (a)  (b) 
Fig. 9: Evolution of the constraint factor, ψ, and c2 parameter during parabolic indentation of materials 

of large E/σy ratio. 
 



For aE*/Rσy > 12, the (da/dh).(h/a) ratio decreases slowly, but conversely to the (dF/da).(a/F) 
ratio is not constant starting from Λ = 220 (Fig. 5.b).  
When Λ  is higher than 10,000, (da/dh).(h/a) tends towards the similarity solution, i.e. 0.5 
(Fig. 5.b). Fig 9.b shows that the similarity solution, i.e. hc/h=1.47, is attained for a material of 
E/σy equal to 2,000,000 when Λ  is equal to 10,000. For materials of E/σy ratio smaller than 
200,000, the c2 parameter increases quickly with Λ  starting from the elastic regime and 
increases more slowly for values of Λ  higher than about 200. This result shows that the 
models in which the c2 parameter is considered constant during a stage called “fully plastic 
regime” are not correct ((Matthews, 1980; Hill et al, 1989; Taljat et al., 1998; Alcala et al., 
2000).  
Fig. 9 shows the effect of friction on the values of the similarity solutions. It is clear from 
Figs. 9.a and 9.b that the values of the similarity solutions in terms of ψ and hc/h for the case 
of sticking indentation are respectively higher and smaller than those obtained for the case of 
frictionless indentation. 
For high values of Λ , Fig. 5.a shows that the (dF/da).(a/F) ratio falls starting from the value 
of the similarity solution. For materials of an E/σy ratio equal to 200,000 and 20,000, the drop 
occurs respectively to values of Λ  lower than 10,000 and 1,000. Fig. 9.a shows that the drop 
of the (dF/da).(a/F) ratio corresponds to the drop of the constraint factor, ψ. The same 
behaviour has been observed by Mesarovic and Fleck (1999) concerning the constraint factor, 
ψ. Fig. 9.b shows that the c2 parameter obtained for the material of E/σy ratio equal to 20,000 
becomes higher than that obtained for the material of E/σy ratio equal to 200000 for the same 
value of Λ  corresponding to the drop of the (dF/da).(a/F) ratio and the constraint factor, ψ . 
The greater increase in the c2 parameter starting from a given value of the Λ  parameter 
indicates that the formation of the piling-up is accentuated as the indentation continues. This 
result obtained for elastic-ideally plastic materials indented by a parabolic indenter is different 
from that obtained by Mesarovic and Fleck (1999) in the case of spherical indentation. 
Indeed, Mesarovic and Fleck (1999) found that the beginning of the finite deformation 
plasticity regime corresponds to the drop of the constraint factor, ψ and the c2 parameter. 
Moreover, the drop of the constraint factor, ψ does not correspond to that of the c2 parameter 
in the work of Mesarovic and Fleck (1999). No explanation was given by these authors. We 
will discuss about this point hereafter in the paragraph corresponding to the study of the 
spherical indentation. 
 
4. Parabolic indentation of elastic ideally plastic materials of smaller E/σσσσy ratio 
 
Figs. 10a and 10b show that a drop in the (dF/da).(a/F) ratio and the constraint factor ψ 
occurs for materials of smaller E/σy starting from a value of Λ , which decreases with 
decreasing E/σy. Fig. 10c also confirms that the c2 parameter becomes higher than those of 
materials with higher E/σy ratios for a particular value of Λ . The same particular value is 
reached when the (dF/da).(a/F) and ψ curves separate from those obtained for a rigid plastic 
material. This phenomenon occurs during a second plastic regime which corresponds partly 
to the finite deformation plasticity defined by Mesarovic and Fleck (1999). It is further noted 
from Fig. 10b that the maximum value of the average pressure associated with the similarity 
solution is never attained for an elastic-ideally plastic material with a E/σy ratio lower than 
about 20000. Fig. 10c confirms that no rigid-ideally plastic similarity regime of constant 
a2/2hR is obtained during the parabolic indentation of an elastic-ideally plastic material with a 
E/σy ratio lower than about 200,000. 
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Fig. 10: Evolution of a/F.dF/da, ψ and c2=(hc/h) as a function of Λ , during parabolic 

indentation of elastic-ideally plastic materials. 
 

Fig. 11 shows the constraint factor, ψ and the c2 parameter changes according to the 
normalized contact size a/R. As was observed by Mesarovic and Fleck (1999), this figure 
shows that the curves of constraint factor, ψ  versus a/R seem to coalesce to a single master 
curve when a/R increases. Close examination of the Fig. 11.a highlights a small difference 
between the curves obtained for materials of a small E/σy ratio (smaller than 200). The 
existence of a single master curve depending on the normalized contact size a/R indicates that 
the elastic contribution to the strain field beneath the indenter is negligible, and the parameter 
E*a/(σyR) ceases to uniquely define the degree of indentation. For Mesarovic and Fleck 
(1999), the elastic contribution to the strain field beneath a spherical indenter is negligible for 
a/R >0.16, independent of the magnitude of E/σy. Our results show that this is not the case for 
parabolic indentation. Indeed, the curves of the constraint factor, ψ versus a/R coalesce to a 
single master curve starting from a value of a/R depending on the E/σy ratio of the indented 
material. For the higher value of E/σy ratio, the constraint factor, ψ  reaches the value of 
similarity solution in a first step and then falls starting from a very low value of normalized 
contact size a/R (lower than 0.01) following the master curve. The low value of the 
normalized contact size a/R starting from where the finite deformation regime occurs does not 
validate the definition of the finite deformation regime given by Mesarovic and Fleck (1999), 
i.e., “as the contact size increases, the tangential velocity of points in contact with the indenter 
deviates from the horizontal, so that the uniform vertical velocity boundary condition ceases 



to be appropriate”. For the lower value of E/σy ratio, the constraint factor, ψ  doesn’t reach the 
value of similarity solution and falls starting from a value of normalized contact size a/R, 
which increases with decreasing the value of the E/σy ratio of the indented material.  
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(a) (b) 
Fig. 11: ψ et c2 parameters as a function of a/R. 

 
It was noticed, for materials of very high E/σy ratio (E/σy> 20,000), that the constraint factor, 
ψ  is close to the value of the similarity solution when the maximum plastic strain, located 
near the contact surface moves towards the symmetry axis (Fig. 8). For these materials, this 
phenomenon occurs starting from a value of Λ =220. For materials of E/σy ratio lower than 
20,000, the values of Λ starting from the plastic deformation reaches the contact edge and the 
symmetry axis decreases with decreasing E/σy (Fig. 12). In paragraph 4, the second plastic 
regime has been defined as being a regime where the constraint factor decreases and the c2 
parameter increases more with an increase in Λ . Figs. 10 and 12 show that the maximum 
plastic strain is located near the contact surface and tends to move toward the symmetry axis 
when the second plastic regime occurs. For small values of E/σy ratio, the maximum plastic 
strain doesn’t reach the contact edge before moving toward the symmetry axis because the 
second plastic regime occurs for low values of Λ  (Figs. 12 c and d). The existence of the 
second plastic regime is due to the high values of the plastic strain located in periphery of the 
contact and to the greatest facility of material displacement on the surface. The combination 
of these two phenomena has as a consequence a decrease in the mean contact pressure and a 
higher increase in the piling-up (Figs. 10b and c). As the E/σy ratio of the indented material 
decreases, the different plastic regimes preceding the second plastic regime disappear and are 
replaced by this one.  
 



 
 (a)  (b) 

 
 (c)  (d) 
 

Fig. 12: Evolution of the localisation of the maximum plastic strain during parabolic 
indentation of materials of low and medium E/σy ratio. 

 
 

Tabor (1951) proposed that the strain value on the edge of a spherical indentation of a given 
a/R is the “representative” strain of the indentation. Figs. 8 and 12 show that there is nothing 
particularly important or significant about the plastic strain on the indentation edge, as it is not 
always the maximum strain during plastic deformation. Nanoindentations carried out on the 
surface of annealed polycrystalline oxygen-free copper (OFC) of 99.99% purity, showed that 
the maximum strain hardening occurs in areas close to the centre of the indentations even for 
small a/R ratios (Chaudhri, 2000; Lim, 2002). Our results agree with these experimental 
results. Indeed, maximum plastic strain is found close to the centre of the indentations for 
small a/R ratios in the case of materials of large E/σy ratio (Figs. 8 and 12.a).  
 
5. Spherical indentation of elastic ideally plastic materials.  
Fig. 13 shows the changes of ψ  and hc/h with respect to Λ . Except for the last part of the 
curves, the comparison between this figure and Figs. 10b and 10c shows that results are 
similar to those obtained for the parabolic indentation. The same deformation regimes as 
those presented for parabolic indentation exist for spherical indentation. 



For the final part of the curves shown in Fig. 13, the increase in ψ and the decrease in hc/h are 
due to the loss of contact between the indented material and the indenter when the value of 
the contact radius is close to that of the indenter radius. 
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Fig. 13: Constraint factor, ψ  and Contact depth-penetration depth ratio versus Λ  for spherical 

indentation.  
 

A more precise comparison between spherical and parabolic indentations is presented in Fig. 
14 in the case of elastic-ideally plastic materials of E/σy ratios equal to 200 and 2,000. 
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Fig. 14: Comparison between spherical and parabolic indentations of elastic ideally plastic 

materials of E/σy ratios equal to 200 and 2000. 
 



Fig. 14 shows that the difference between the values of c2 obtained for spherical indentation 
and parabolic indentation is significant starting from values of non-dimensional contact radii 
higher than approximately 0.2. Note that the c2 parameter is equal to a2/(2hR) in our study. In 
the case of parabolic indentation, this parameter corresponds to the ratio between the contact 
depth, hc, and the penetration depth, h. The c2 parameter was also often used in previous 
studies to determine the degree of the piling-up or sinking-in in the case of spherical 
indentation (Mathews, 1980; Hill et al., 1989; Biwa and Störackers, 1995; Taljat et al., 1998; 
Mesarovic and Fleck, 1999; Alcala et al. 2000; Kucharski and Mröz, 2001). However, this 
parameter, which is valid for all values of contact radius in the case of parabolic indentation, 
is incorrect for high values of contact radius in the case of spherical indentation. 
We showed in a previous study that the use of this parameter in the case of spherical 
indentation had, as a consequence, a large underestimation of the contact radius for high 
values of penetration depth (Hernot et al., 2006). In order to obtain a correct value of the hc/h 
ratio, it is necessary to use the following parameter, called c’2, when the profile of the 
spherical indenter cannot be approximated by a paraboloid of revolution: 

h

aRR

h

h
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22
c2 −−==   (2)  

 
Fig. 14 confirms that the c2 parameter has consequently a significant underestimation of the 
piling-up for large contact radius in spherical indentation. Moreover, the examination of the 
evolution of the 2'c parameter and of the c2 parameter obtained for the parabolic indentation 
shows that the difference between the results obtained for parabolic indentation and spherical 
indentation becomes significant starting from a value of a/R of approximately 0.3. This result 
is similar to that obtained for the ψ parameter.  
In paragraph 3, we indicated that Mesarovic and Fleck (1999) did not explain in their work 
why the decreases in the constraint factor, ψ, and in the c2 parameter do not begin from the 
same value of Λ . The above results explain this. The decrease in the constraint factor is due 
to the decrease in contact pressure during the indentation test. The decrease in ψ occurs 
starting from a value of Λ , which depends on the indented material. The decrease in c2 is only 
due to the incorrect formulation of this parameter which is used to characterize the changes in 
piling-up or sinking-in. 
On the basis of their numerical results, Mesarovic and Fleck (1999) defined the “finite-
deformation plasticity regime” as being a regime in which the constraint factor, ψ and the c2 
parameter decrease. However, the c2 parameter is not valid when it decreases and thus the 
definition of this regime is erroneous. The parabolic and spherical results presented given in 
Figs. 10b, 10c, and 13 show that this regime must be replaced by a regime, called in this 
article second plastic regime, in which the average pressure decreases (ψ  decreases) and the 
formation of the piling-up is accentuated (greater  increase in the hc/h ratio).  
 
 
6. Conclusion 
 
The different deformation regimes during parabolic and spherical indentation of elastic-
ideally plastic material are defined starting from the numerical study of the evolution of 
(dF/da).(a/F), ψ,  (da/dh).(h/a) and hc/h versus the single non-dimensional group, 
Λ = RaE yσ/*  and the non-dimensional contact radius, a/R. The study of the changes in the 

(dF/da).(a/F) and the (da/dh).(h/a) ratios indicates that, when the yield stress of an elastic-
ideally plastic material is exceeded, several deformation regimes can exist according to the 
value of the E/σy ratio of the indented material. 



For materials having a very large E/σy ratio, two elastic-plastic regimes and two plastic 
regimes were found. A first elastic-plastic regime is observed up to a Λ  value of 
approximately 6-12. During this stage, the maximum plastic strain is located on the axis of 
symmetry and the (dF/da).(a/F) and (da/dh).(h/a) ratios change a lot because of the large 
changes in the plastic zone. The second elastic-plastic regime corresponds to a weak decrease 
in (dF/da).(a/F) up to a Λ  value of approximately 220. During this step, no large modification 
of the plastic zone is found but the maximum plastic strain location moves slowly upwards 
and outwards and then remains located at the contact edge. For the first plastic regime, the 
(dF/da).(a/F) ratio and constraint factor, ψ, remain constant at values of 2 and 3 respectively, 
which correspond to the values of the rigid-ideally plastic similarity solution. The study of the 
(da/dh).(h/a) and hc/h ratios shows that no rigid-ideally plastic similarity regime of constant 
hc/h is obtained for materials of E/σy ratio smaller than 200,000. For these materials, the hc/h 
ratio tends towards the similarity solution, i.e. 1.47, without reaching this value. For materials 
of E/σy ratio higher than 200,000, hc/h and ψ are constant when Λ =10,000.  
For the second and last plastic regime, the mean contact pressure decreases and the piling-up 
increases even more. This decrease in the mean contact pressure and this higher increase in 
the piling-up are more marked in the case of the spherical indentation. For materials of very 
high E/σy ratio, the second plastic regime appears when a/R is lower than 0.01. The low value 
of the normalized contact size a/R, from which the second plastic regime starts, shows that 
this regime is not related to a change of the direction of the tangential velocity of the points in 
contact with the indenter, as it was stated by Mesarovic and Fleck (1999). 
The existence of the second plastic regime is due to the high values of the plastic strain 
located in the periphery of the contact and to the greatest facility of material displacement on 
the surface. The combination of these two phenomena leads to a decrease in the mean contact 
pressure and a steeper increase in the piling-up. The results of the finite element calculus 
show that the first plastic regime exists during spherical and parabolic indentation only for 
elastic-ideally plastic materials of an E/σy ratio higher than approximately 2000. The 
comparison of the results obtained for parabolic and spherical indentation shows that the c2 
parameter generally used in order to characterize the evolution of the piling-up or the sinking-
in in the case of spherical indentation is not correct beyond a value of a non-dimensional 
contact radius, a/R equal to about 0.2. When a/R is higher than 0.2, it is necessary to use the 
c’2 parameter (c’2=hc/h), equal to the true contact depth-penetration depth ratio, in order to 
correctly determine the contact radius. To conclude, the complexity of the changes in the 
(dF/da).(a/F), ψ,  (da/dh).(h/a) and hc/h parameters shows that it is not easy to determine 
simple relationships between the penetration depth, h, the contact radius, a, and the applied 
load, F, when an elastic-ideally plastic material is deformed by a sphere or a parabola. 
Particularly, this study shows that the a-h power laws, proposed in the literature, are incorrect 
with respect to their representation of the contact radius – depth penetration relationship. This 
work shows that both Tabor’s relation and plastic similarity solution can not be used for 
mechanical property extractions, through spherical indentation, in the case of material with 
very weak strain hardening and E/σy ratio higher than approximately 2000. The results show 
that the non-dimensional expressions (dF/da).(a/F) and (da/dh).(h/a) are appliable for the 
study of the indentation regimes during spherical indentation of elastic-ideally plastic 
materials. This work is a first step before the study of the indentation regimes of work 
hardened materials during spherical indentation, using the non-dimensional expressions 
(dF/da).(a/F) and (da/dh).(h/a). The advantage of these expressions is that they do not need 
the definition of a ”representative” strain, which is needed in the case of ψ.”  
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