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abstract

A phenomenological study of parabolic and spherindentation of elastic ideally plastic
materials was carried out by using precise resflinite elements calculations. The study
shows that no “pseudo-Hertzian” regime occurs duspherical indentation. As soon as the
yield stress of the indented material is exceedeadkviation from the,purely elastic Hertzian
contact behaviour is found. Two elastic-plasticimegs and two plastic regimes are observed
for materials of very large Young modulus to Yieldess ratioE/g. The first elastic-plastic
regime corresponds to a strong evolution of thermeld plastic zone. The first plastic regime
corresponds to the commonly called “fully plasegime”, in which the average indentation
pressure is constant and equal to about three timeegeld stress of the indented material. In
this regime, the contact depth to penetration degtio tends toward a constant value, i.e.
hs/h=1.47. B/h is only constant for very low values of yieldast (¢/E lower than 5.16)
whenaE*/Rgy is higher than 10,000. The second plastic regiareesponds to a decrease in
the average indentation pressure and to a steeperase in the pile-up. For materials with
very large E/gy ratio, the second plastic regime appears whenvidae of the non-
dimensional contact radiua/R is lower than 0.01. In the case of spherical anchadic
indentation, results show that the first plastigimee exists only for elastic-ideally plastic
materials having ak&/gy ratio higher than approximately 2.000.

Keywords: Spherical indentation; deformation regirakastic ideally plastic material; finite
element method

1. Introduction

A characteristic feature of the spherical indent®hat different regimes can occur during
the deformation of metals. So far, elastic, elagkastic with elastically-dominated and
plastically dominated parts, fully plastic and fenideformation regimes were observed for
spherical indentation (Hertz, 1881; Tabor, 195hinkon, 1985; Mesarovic and Fleck, 1999;
Park and Pharr, 2004, Pane and Blank, 2006). Tharndation process produced during
spherical indentation is well described if the negiis elastic, but this is more complex when
plasticity occurs. Many experimental and numergtaldies have been performed in order to
understand the phenomena which occur during s@iendentation. Following the early
work of Tabor (1951), Johnson (1985) suggestedttigaspherical indentation process can be
divided into three distinct regimes: elastic, ataptastic and fully plastic. When the yield
point is first exceeded the plastic zone is smadl fully contained by material which remains



elastic so that the plastic strains are of the samder of magnitude as the surrounding elastic
strains. In these circumstances the material displdy the indenter is accommodated by an
elastic expansion of the surrounding solid. Asitftentation becomes more severe, either by
increasing the load, an increasing pressure isinegjloeneath the indenter to produce the
necessary expansion. Eventually the plastic zoaehes the free surface and the material is
free to move by plastic flow to the sides of thdenter. This is the “uncontained” mode of
deformation analysed by the theory of rigid-plasttids proposed by Ishlinsky (1944) which
used the slip-line method, as well as Hill et #83) and Biwa and Storakers (1995) which
used deformation and flow theory, respectivelys lassumed that the two ranges of loading,
ile elastic-plastic and fully plastic, correspondsprectively to the *“contained” and
“uncontained” modes. For the “uncontained” mode, efasticity is considered as negligible.
According to the similarity solution proposed fdnet “uncontained mode” (Biwa and
Storakers, 1995), the upper limit of the mean arpaessure, which is usually interpreted as
the material hardness, is equal to three timesyigld strength of an elastic ideally plastic
material. In the elastic-plastic regime, the meantact pressure starts from a value equal to
1.07gy and reaches the value of the similarity solutibhe ratio between the mean contact
pressurePn,, and the vyield stress corresponds to the “comdtfactor” calledy, which is
commonly used to study the transition between ielpsastic and “fully” plastic regime. On
the basis of results of different experimental anherical indentation tests using spheres,
Johnsor(1985) showed that fully plastic deformation isaleed at a valugl=E*a/(gyR) = 40.

For elastic-ideally plastic solidgy increases until the ratie*a/(gR) is equal to 40-50
(Mesarovic and Fleck, 1999). More recently, fomage ofE*/ gy ratio, which includes most
metals,Park and Pharr (2004howed that full plasticity is achieved when théugaof the
ratio E*a/(gyR) is equal to 50-200. For elastic— ideally plastiatemnials ofE/g; ratio in the
range 20-1500, which covers most metals, ceraraigs$ glasses, the results suggest that fully
developed plasticity, as conventionally definedtbg point at which the constraint factor
levels off at a value of about 3, starts at the Imligher valueE*a/(g;R) = 110 (Taljat and
Pharr, 2004). Lastly, in a study of the role ofspiaty in spherical indentation for different
kinematic and isotropic materials, the limit betwedhbe elastic-plastic regime and the fully
plastic regime was fixed &*a/(oyR) = 80 by Pane and Blank (2006).

Another paramete?, and equal to%42hR), is also used in order to study the defoionat
regimes. This parameter was proposed in ordequantify the degree of piling-up and
sinking-in during the indentation tesf >1 indicates piling-up, wherea$ <1 accounts for
sinking-in (Matthews, 1980; Hill et al, 1989; Tdlgt al., 1998; Alcala et al., 2000; Kucharski
and Mréz, 2001). In the case of material elastcdéformed by indentation? és constant
and equal to 0.5. When the stress under the indenteigher than the yield stress of the
indented material, this parameter increases with ittdent depth during a stage called
“elastic-plastic indentation regime” (Mesarovic aRkck, 1999). For higher indent depths,
the ¢ parameter is again considered constant duringstéige called “fully plastic regime”
((Matthews, 1980; Hill et al, 1989; Taljat et dl998; Alcala et al., 2000). For indentation by
a sphere, Bower et al (1993) and Mesarovic andkH&899) show that the fully plastic
regime can be subdivided into two regimes. Fortikadly small contact sizes, a similarity
solution applies while for large contact sizesn#éd deformation mode dominates. Mesarovic
and Fleck (1999) define the first regime: “plagtimilarity regime”, in whichgand c? are
constant. By observing the results of Mesarovic Elegk (1999), we can notice a difference
between the lower limit of the “fully plastic regithdetermined by? and the lower limit of
the “plastic similarity regime” determined lyandc®. For example, in the case Bf/ g, ratio
equal to 10000y is constant WheE*a/(ayR) is equal to about 40-50 awflis constant when
E*a/(gyR) reaches the value of 1000. The second regime inBléfully plastic regime”,



called “finite deformation regime” by Mesarovic akteck (1999), occurs for large contact
sizes and corresponds to a dropyo&ndc?. "For smallerE*/ g, ratios, Mesarovic and Fleck
(1999) showed that the plastic similarity regimenever reached sina& increases in the
elastic-plastic regime and immediately falls witltrieasing contact size in the stage called
“finite deformation regime”. For Bower et al. (1998)d Mesarovic and Fleck (1999), the
drop inc? value for large contact sizes represents the itdirthe assumptions involved in
the similarity solution, especially the assumptadrinfinitesimal strain kinematics (Bower et
al., 1993; Mesarovic and Fleck,1999)) and the bamndondition of uniform normal velocity
(Mesarovic and Fleck, 1999)). We can notice thatsih@larity solution was also determined
with the assumption that the geometric profilete indenter can be represented by a power-
law relationship. This assumption includes indeatatoy a rigid sphere, since, for small
contact sizes, the profile of a sphere can be ajpaied by a paraboloid of revolution. For
large contact sizes, the failure of this assumpiiotihe case of spherical indentation can also
explain the drop in the?/2hRratio. Indeed, in a recent study, Hernot et 8006 showed
that the use of the® parameter has for consequence a noticeable utideatisn of the
contact radius for large values of penetration hidggcause the spherical indenter cannot be
considered as similar to the parabolic indenter.

The aim of this work is to study the different imtition regimes during parabolic and
spherical indentation of elastic-ideally plastic tetels on the basis of precise numerical
simulations. For our study, we propose to anallygsestvolution of the constraint factgy the
contact depth-penetration depth ratin/lf), the ¢ parameter and two non-dimensional
expressiongdF/da).(a/F)and (da/dh).(h/a)during the indentation test. The expansion of the
plastic deformation in the indented zone and tleation of the maximum plastic deformation
will be also studied in this work. In a first stepe analysis is carried out by using the results
of numerical simulations of the indentation of daséc—plastic half-space by a frictionless
rigid paraboloid of revolution. This type of indenis used for the same reason as mentioned
before in a previous study (Hernot et al. (2008).a second step, some numerical
simulations are performed in the case of a rigidesphl indenter in order to study the
influence of the shape of the indenter on the iteteon regimes for high contact radius
values. Another goal of the proposed paper is laai® the use of the non dimensional
expressiongdF/da).(a/F) and (da/dh).(h/a)for the study the indentation of elastic-ideally
plastic materials. This work is the first step befgtudying the indentation regimes during
spherical indentation of work hardened materialsubyng the non-dimensional expressions
(dF/da).(a/F)and(da/dh).(h/a) The proposed paper is a contribution to the stfdyaterial
elastoplastic properties evaluation by sphericalemation. Tabor’s relation or plastic
similarity solution are used in various methodoésgifor mechanical property extractions
through indentation experiment (Tabor 1951, Field &wain 1995, Taljat et al. 1998, Ahn
and Kwon 2001, Kucharski and Mroz 2001, 2004, 2¢@dher and E. Tyulyukovskiy 2003,
Mulford et al. 2004, Weiler et al. 2005, Herberaet2006, Jeon et al. 2006, Kim et al. 2006,
Jiang et al. 2009, Zhang et al. 2009J.andc? parameters are used in Tabor's relation and
plastic similarity solution. Most of these methogsre used with the assumption that the
indentation regime is fully plastic. The resultsloé proposed work allow the validity of these
methods in the case of weak strain hardened metete determined.

2. Numerical procedure

Numerical simulations were principally performedtiwrigid parabolic indenter geometry,
defined by the equatior= r?/(2R), wherer andz are respectively the radial and the vertical
coordinates and R is the radius of the osculatingiec Several numerical simulations of
spherical indentation were performed in order tanexe the difference between the results



obtained for spherical indentation and parabolicemdtion. These simulations were
performed in axisymetric mode and under frictioalesntact conditiong£0) using the large
strain elastic-plastic feature of the Abaqus firetement code. A typical mesh, comprising
four-noded axisymmetric elements CAX4 (Abaqus, 9% shown in Fig. 1. In order to
obtain precise values of contact radius throughbetindentation test, different numerical
simulations were performed with parabolic indentdrR values chosen in the range of 0.316
to 316,000 mmR=0.316, 1, 3.16, 10 etc). Each finite element datean was performed so
that the final contact radius is equal to 1 mm. dimeensionless indentation cunasF* and
h*-a* (a*=a/R ; F*=F/(E*R?), h*=h/R) were obtained by assembling the final parts ef th
different indentation curves obtained for each vatR. With this procedure, a minimum of
100 elements became directly in contact with thgdrindenter for each point of the
indentation curvea*-F* andh*-a* used in this study. The mesh size was chosenatpiith
all cases, the contact radius was 500 times smiéar the total length. According to the
Hertz theory, good numerical results were obtaimeth this mesh size for the elastic
indentation regime.

N\, /
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Fig. 1. Typical finite-element mesh, composed ofrfoaded axisymmetric elements and
rigid parabolic indenters: (a) overall; (b) detaithe region of contact.



The constitutive model of the elastic-ideally piastdented material was taken to follow the
well knownJy-associated flow theory with rate-independent de&dion.

Finite element simulations were performed for materexhibiting values ofy, = 0.105, 1.05,
10.5, 105, 1,050, 4,200 and 10,500 MPa. Young nusdotf 210 GPa and Poisson ratio of 0.3
are used for all simulations. These values wers@han order to give,/E ratio in the range
of 1/2,000,000-1/20, which includes most metals.

The actual contact radiasin our FE analysis depends of the horizontal coaté of the last
contact edge “node” between indenter and specinBatause the actual contact radius is a
discrete value and depends on the mesh size oaaostirfaces, noisydF/da).(a/F) and
(da/dh).(h/a)ratios were obtained starting from the FE resuitsimilar problem due to the
discrete increments in contact size was found bgavtevic and Fleck (1999).

In order to obtain non-noisgdF/da).(a/F) and (da/dh).(h/a)ratios, fitted linear regression
models with a least squares approach were usedfémetit intervals of the la)-In(F’) and
In(h)-In(@) curves (Fig. 2). The interval used for the lineagression of each poinX;
includes the closest & points (denoted by square symbols in Fig. 2), sasch

X[ X< X, < xX (1)
Where y is a constant which defines the length of theruatieused to fit the linear regression
model to the data.
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Fig. 2: Proposed method for smoothing the numedatd.

Examples oi1-¢ and A-(dF/da).(a/F)elationships obtained by using the proposed method
are shown in figure 3.
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Figure 3: Numerical and fitted curve gf versus/l obtained with y =1.2 (a); fitted curves of
/1-(dF/da).(a/Fpbtained with various values ¢f (b); material oE/gy ratio equal to 2000.

For the results shown in Fig. 3b, various lengthisterval used for the linear regression were
tested. The results show that the best fit for data was obtained for g parameter

approximately equal to 1.2. For this reason, tHaevaf y was fixed at 1.2 for all the fitted

results.

Figure 4 shows d-(dF/da).(a/F)curve obtained by assembling the final parts ofdilfferent
numerical results obtained for each value of indemadius,R, and after fitting the linear
regression model to the data. In this figure, thkeies of the coefficients of determinatiof,
are very close to 1 and thus indicate that the megonodel is a good fit.
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Figure 4:/1-(dF/da).(a/F)fitted curve and values of coefficients of determimaobtained for
a material oE/gy ratio equal to 2000 =1.2).



Fig. 4 shows discontinuities in the assembled fidaldF/da).(a/F) curve at transitions
between the numerical results obtained for eachuevadf indenter radiusR. These
discontinuities do not correspond to characteristients during spherical indentation but are
due to the low number of nodes in contact at thggriméng of each finite element simulation.
These discontinuities will not be taken into accoumtthe study of(dF/da).(a/F) and
(da/dh).(h/a)urves.

3. Parabolic indentation of elastic-ideally plastianaterials of larger E/g; ratio

Johnson (1985) argued that the degree of deformati@lastic-plastic indentation depends
upon the ratio of the representative sti@iR beneath the indenter to the Yield strajfE* of
the half-space. Thus the degree of indentationfiset by the single non-dimensional group
aE*/Ray, which we shall namel. With this rationale in minddF/da).(a/F)and(da/dh).(h/a)
ratios are plotted verswE*/Ragy in Fig. 5, for parabolic indentation and materiaigh large
E/g, ratios.
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Fig. 5:(dF/da).(a/F), (dF/h).(h/F) and (da/dh).(h/&gtios versus\ = aE*/Ragy for materials
of largeE/g ratio.



In these curves, different regimes can be diststged. For small values @E*/Rgy, the
(da/dh).(h/a) and (dF/da).(a/F) ratios are constant and respectively 0.5 and 3.clwhi
correspond to the theoretical values of Hertz (18%parting from a critical value of
aE*/Rgy, the(dF/da).(a/F)ratio decreases quickly then less quickly untieiches the value
of 2. When this value is reache@F/da).(a/F)stabilizes and then decreases again. The lower
the E/g; ratio of the indented material, the earlier andeper is the last decrease in
(dF/da).(a/F)

As for the (dF/da).(a/F) ratio, a big change in th@a/dh).(h/a)ratio occurs for the same
values ofaE*/Rgy. The (da/dh).(h/a)ratio increases quickly starting from the elaségime
and up to a value oft of about 8. Starting froom = 8,the (da/dh).(h/a)ratio decreases and
when A is higher than approximately 10,000, ffua/dh).(h/a)tends towards the similarity
solution, i.e. 0.5, without reaching this value fioaterials of Ed, ratio smaller than 200,000.

3.1 yielding of the material

In parabolic indentation, the elastic regime isidvalp to a /A parameter of 2.53. The
(dF/da).(a/F)and (da/dh).(h/a)ratios show that the indentation regime is differeom the
elastic regime starting from a value df which is very close to 2.53. This result is diffet

to those presented by Park and Pharr (2004) ancredds and Fleck (1999) in previous
studies of the evolution of the constraint factorimiy spherical indentation. Indeed, these
authors determined a “pseudo-Hertzian” regime at klibginning of the vyielding of the
indented material. For Park and Pharr (2004), tiemeo deviation in behaviour from that
expected based on purely elastic Hertzian contaat the range of approximately 0k 3.5.
For Mesarovic and Fleck (1999), a ‘pseudo-Hertzlagtaviour was found up to a value for
/N of 3.77. TheA-y relationship obtained with our numerical calcuas for elastic-ideally
plastic materials of different yield stress confirthat no ‘pseudo-Hertzian’ behaviour exists
during parabolic and spherical indentation (Fig. B)deed, this figure shows that the
behaviour is rather different to that of Hertziarhé@e@our starting from the yielding of
indented materials.

2.0 A

1.5 A1

Limit of the elastic regime

Fl(ra’o,)

i

1.0 1

0.5

A=E'alo R
Fig. 6: Evolution of the constraint factag,at the beginning of the yielding of the indented
material
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Fig. 7: Evolution of the plastic zone during thegimlic indentation of a material of
E/a;=20000 (PEMAG-= plastic strain according to the Voisés theory).

a: yielding of the material; b: limit of the“pseudtertzian” regime defined by Park and Pharr
(2004) ; c: plastic zone first breaks through thdagce ; d: yielding of the material at the
whole surface contact ; e: maximum plastic stragated at the contact edge; f: maximum

plastic strain located near the surface and thersstny axis

It is also underlined that the reason of the eristeof the “pseudo-Hertzian” behaviour given
by Park and Pharr (2004) is not correct. For Parit Bharr (2004), the existence of the
“pseudo-Hertzian” behaviour can be understood hysictering the evolution of the plastic



zone. Their explanation is that as the plastic zgnoavs, it spreads upward and outward, but
the plasticity is totally constrained by surrourglglastic material up tel= 3.5 and at loads
slightly greater than this, the plastic zone fbvretaks through the surface. Thus, the region of
“pseudo-Hertzian contact occurs when 2.32<3.5. As shown in Fig. 7, our results are not in
accordance with the results of Park and Pharr [secthe plastic zone first breaks through the
surface for a value o1 greater than 3.5. For the different elastic-ideallastic materials
tested in this study, plasticity is totally consted by surrounding elastic material when the
/1 parameter is equal to 3.5 and 3.77 and the plaste first breaks through the surface
when A is about 5.9 (Fig. 7.c). In consequence, the dievian behaviour from that expected
based on purely elastic Hertzian contact is nottdute break of the plastic zone through the
surface.

3.2 Beginning of the plastic deformation

For aE*/Rgy, > 2.53,(dF/da).(a/F)decreases quickly anda/dh).(h/a) increases quickly up
to a value oRE*/Rgy of about 8 (Fig. 5), a value not far from that ¥anich the plastic zone
first breaks through the surface, e&*/Ragy = 5.9 (Fig. 7). On the other hand, the study ef th
(dF/dh).(h/F) ratio shows that this parameter decreases gradumalbr the range of
2.53</1<1000 (Fig. 5.a). These results and the large dwmnig (dF/da).(a/F) and
(da/dh).(h/a)observed at the first step of yielding indicatet tthee contact radius increases
very quickly.

From A= 8, a decrease (@a/dh).(h/a)ratio is observed. From the same value/fthere is
less decrease dfiF/da).(a/F) These phenomena indicate that the speed of thwey-pip
formation decreases slightly. For Park and Pler/Ray = 10 corresponds to the transition
between an elastically-dominated regime and a ipdigtdominated regime. For these
authors, /1= 10 corresponds to the transition of two regimeswhich the indentation
behaviour depends or not on the work hardeningacheristics of the indented material. For
our work, this explanation is not valid becausedtuglied materials are elastic-ideally plastic.
Fig. 8 shows rather thall= 12 is a value which is very close to that givgrPark and Pharr
(2004) and corresponds to a modification of thatlimn of the maximum plastic strain. When
/1 is smaller than 12, the maximum plastic strailocated along the axis of the symmetry, in
agreement with the Hertzian contact theory. Beytimd value, Fig. 8 shows that the
indentation regime becomes very different frometfaestic regime.

To resume, during the step correspondingltealues in the range of 2.53 and 12, the plastic
zone grows beneath the surface, spreads upwardwmard, breaks through the surface
when A is about equal to 5.9, and is not constrainedusyoanding elastic material at the
end of the step (Fig. 7). The large changes inpllastic zone mean, consequently, large
changes in thédF/da).(a/F) and (da/dh).(h/a)ratios over the range of approximately 2.53
<A< 8 (Fig. 5). When/1= 12, the location of the maximum plastic straimas located along
the axis of symmetry.
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Fig. 8 Evolution of the localisation of the maximum glastrain during parabolic indentation of
materials of larg&/g; ratio.

3.3 “elastic-plastic” and “fully plastic” regimes

For aE*/Rgy > 6-8 , the(dF/da).(a/F) ratio decreases slowly up to a value df of
approximately 200 (Fig. 5.a). Fig. 8 shows that itieximum plastic strain location moves
slowly upwards and outwards starting frofi=12 and is located at the contact edge when the
value of /lis equal to 220. When the maximum plastic strairvesotoward the symmetry
axis, i.e. for/1 values larger than 220, tij@F/da).(a/F)ratio and constraint factog, remain
constant at values of 2 and 3 respectively, whaespond to the values of the rigid-ideally
plastic similarity solution (Fig. 9.a). The valuesy are close of the values determinated by
experimental investigations (O Neill, 1944; Tabb®51) or by finite element simulations
(Mesarovic and Fleck, 1999; Park and Pharr, 200d¢. value of/ starting from¢=3 is in
the range of the values determinedRark and Pharr (2004), i.&*a/(gyR) = 50 to 200. On
the other hand, this value is higher than thosainetl byJohnson(1985),E*a/(g,R) = 40;
Mesarovic and Fleck (1999*a/(gyR) = 40-50;Taljat and Pharr (2004E*a/(yR) = 110
and Pane and Blank (200&}a/(gyR) = 80.
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ForaE*/Ragy,> 12, the(da/dh).(h/a)ratio decreases slowly, but conversely to(tfe/da).(a/F)
ratio is not constant starting from= 220 (Fig. 5.b).

When A is higher than 10,00qda/dh).(h/a)tends towards the similarity solution, i.e. 0.5
(Fig. 5.b). Fig 9.b shows that the similarity sauat i.e. h/h=1.47, is attained for a material of
E/g, equal to 2,000,000 whed is equal to 10,000. For materials ofozfatio smaller than
200,000, thec® parameter increases quickly with starting from the elastic regime and
increases more slowly for values &f higher than about 200. This result shows that the
models in which the® parameter is considered constant during a staltgd cully plastic
regime” are not correct ((Matthews, 1980; Hill &t £¥989; Taljat et al., 1998; Alcala et al.,
2000).

Fig. 9 shows the effect of friction on the valudstlee similarity solutions. It is clear from
Figs. 9.a and 9.b that the values of the similadhutions in terms ofy andh/h for the case

of sticking indentation are respectively higher anuhller than those obtained for the case of
frictionless indentation.

For high values o#1, Fig. 5.a shows that thdF/da).(a/F)ratio falls starting from the value
of the similarity solution. For materials of &gy ratio equal to 200,000 and 20,000, the drop
occurs respectively to values gf lower than 10,000 and 1,000. Fig. 9.a shows tiaudtop

of the (dF/da).(a/F) ratio corresponds to the drop of the constraintofacy. The same
behaviour has been observed by Mesarovic and F1899) concerning the constraint factor,
(. Fig. 9.b shows that the¥ parameter obtained for the materialEs&, ratio equal to 20,000
becomes higher than that obtained for the matefig&lg; ratio equal to 200000 for the same
value of /A corresponding to the drop of tk@F/da).(a/F)ratio and the constraint factay .
The greater increase in thd parameter starting from a given value of tMeparameter
indicates that the formation of the piling-up is@ectuated as the indentation continues. This
result obtained for elastic-ideally plastic matksriadented by a parabolic indenter is different
from that obtained by Mesarovic and Fleck (1999)the case of spherical indentation.
Indeed, Mesarovic and Fleck (1999) found that tegirming of the finite deformation
plasticity regime corresponds to the drop of thestmint factor,i and thec® parameter.
Moreover, the drop of the constraint factgrdoes not correspond to that of tfeparameter

in the work of Mesarovic and Fleck (199®%o explanation was given by these authors. We
will discuss about this point hereafter in the gaaph corresponding to the study of the
spherical indentation.

4. Parabolic indentation of elastic ideally plastienaterials of smaller E/g; ratio

Figs. 10a and 10b show that a drop in (HE/da).(a/F)ratio and the constraint factay
occurs for materials of smallé/g; starting from a value of/1, which decreases with
decreasing=/gy. Fig. 10c also confirms that the parameter becomes higher than those of
materials with higher B ratios for a particular value of1. The same particular value is
reached when the (dF/da).(a/F) agdcurves separate from those obtained for a rigaspt
material. This phenomenon occurs during a second plastieneegvhich corresponds partly
to the finite deformation plasticity defined by Mesvic and Fleck (1999). It is further noted
from Fig. 10b that the maximum value of the averpgessure associated with the similarity
solution is never attained for an elastic-ideallgspic material with &/gy ratio lower than
about 20000. Fig. 10c confirms that no rigid-idggdlastic similarity regime of constant
a’/2hRis obtained during the parabolic indentation okkastic-ideally plastic material with a
E/g; ratio lower than about 200,000.
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Fig. 10: Evolution o&/F.dF/dg  andc’=(hs/h) as a function o1, during parabolic
indentation of elastic-ideally plastic materials.

Fig. 11 shows the constraint factay and thec® parameter changes according to the
normalized contact siza/R As was observed by Mesarovic and Fleck (19993, filgure
shows that the curves of constraint factgrversusa/R seem to coalesce to a single master
curve whena/R increases. Close examination of the Fig. 11.a ightd a small difference
between the curves obtained for materials of a Isk&l, ratio (smaller than 200). The
existence of a single master curve depending ondh@alized contact sizgR indicates that
the elastic contribution to the strain field beietlite indenter is negligible, and the parameter
E*a/(gyR) ceases to uniquely define the degree of indemaf@r Mesarovic and Fleck
(1999), the elastic contribution to the straindibeneath a spherical indenter is negligible for
a/R>0.16, independent of the magnitudeEdds,. Our results show that this is not the case for
parabolic indentation. Indeed, the curves of thesttamt factor,¢ versusa/R coalesce to a
single master curve starting from a valueaR depending on th&/gy ratio of the indented
material. For the higher value &gy ratio, the constraint factogy reaches the value of
similarity solution in a first step and then faditarting from a very low value of normalized
contact sizea/R (lower than 0.01) following the master curve. Tlwv value of the
normalized contact siz/R starting from where the finite deformation regioeeurs does not
validate the definition of the finite deformatioegime given by Mesarovic and Fleck (1999),
l.e., “as the contact size increases, the tandesiacity of points in contact with the indenter
deviates from the horizontal, so that the uniforentical velocity boundary condition ceases



to be appropriate”. For the lower valueBty, ratio, the constraint factog/ doesn't reach the
value of similarity solution and falls starting fnoa value of normalized contact siafr,
which increases with decreasing the value ol ratio of the indented material.
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It was noticed, for materials of very higfig; ratio E/a> 20,000), that the constraint factor,
Y is close to the value of the similarity solution whiie maximum plastic strain, located
near the contact surface moves towards the symmagisy(Fig. 8). For these materials, this
phenomenon occurs starting from a value/b£220. For materials dE/g, ratio lower than
20,000, the values oh starting from the plastic deformation reaches th&act edge and the
symmetry axis decreases with decreadtilg, (Fig. 12). In paragraph 4, the second plastic
regime has been defined as being a regime whereoisgraint factor decreases and the
parameter increases more with an increaselinFigs. 10 and 12 show that the maximum
plastic strain is located near the contact surbawtends to move toward the symmetry axis
when the second plastic regime occurs. For smallegsaofE/gy ratio, the maximum plastic
strain doesn’t reach the contact edge before mowongrd the symmetry axis because the
second plastic regime occurs for low values/bf(Figs. 12 ¢ and d). The existence of the
second plastic regime is due to the high valugb®plastic strain located in periphery of the
contact and to the greatest facility of materigpticement on the surface. The combination
of these two phenomena has as a consequence askeareghe mean contact pressure and a
higher increase in the piling-up (Figs. 10b andAg.theE/gy ratio of the indented material
decreases, the different plastic regimes precetti@gecond plastic regime disappear and are
replaced by this one.
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Fig. 12: Evolution of the localisation of the maxim plastic strain during parabolic
indentation of materials of low and medidry ratio.

Tabor (1951) proposed that the strain value orettge of a spherical indentation of a given
a/Ris the “representative” strain of the indentatibigs. 8 and 12 show that there is nothing
particularly important or significant about the gtia strain on the indentation edge, as it is not
always the maximum strain during plastic deformatiNanoindentations carried out on the

surface of annealed polycrystalline oxygen-freependOFC) of 99.99% purity, showed that

the maximum strain hardening occurs in areas dimsiee centre of the indentations even for
small a/R ratios (Chaudhri, 2000; Lim, 2002). Oasults agree with these experimental
results. Indeed, maximum plastic strain is founaselto the centre of the indentations for
small a/R ratios in the case of materials of |dg® ratio (Figs. 8 and 12.a).

5. Spherical indentation of elastic ideally plastienaterials.

Fig. 13 shows the changes @f and h/h with respect to/1. Except for the last part of the
curves, the comparison between this figure and.Figb and 10c shows that results are
similar to those obtained for the parabolic indeata The same deformation regimes as
those presented for parabolic indentation exissfdrerical indentation.



For the final part of the curves shown in Fig. tti& increase igyand the decrease ing’h are
due to the loss of contact between the indente@&nmbhind the indenter when the value of
the contact radius is close to that of the indersidits.
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Fig. 13: Constraint factogy and Contact depth-penetration depth ratio versusr spherical
indentation.

A more precise comparison between spherical anabpéc indentations is presented in Fig.
14 in the case of elastic-ideally plastic materddIE/gy ratios equal to 200 and 2,000.
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Fig. 14: Comparison between spherical and parabalientations of elastic ideally plastic
materials ofE/g; ratios equal to 200 and 2000.



Fig. 14 shows that the difference between the wabie’® obtained for spherical indentation
and parabolic indentation is significant startingnfi values of non-dimensional contact radii
higher than approximately 0.2. Note that thgarameter is equal t6/€hR) in our study. In
the case of parabolic indentation, this parametetesponds to the ratio between the contact
depth, he, and the penetration depth, The ¢ parameter was also often used in previous
studies to determine the degree of the piling-upsioking-in in the case of spherical
indentation (Mathews, 1980; Hill et al., 1989; Biaad Stoérackers, 1995; Taljat et al., 1998;
Mesarovic and Fleck, 1999; Alcala et al. 2000; Karski and Mroz, 2001). However, this
parameter, which is valid for all values of conteardius in the case of parabolic indentation,
is incorrect for high values of contact radiushe tase of spherical indentation.

We showed in a previous study that the use of plaisameter in the case of spherical
indentation had, as a consequence, a large unaea&sn of the contact radius for high
values of penetration depth (Hernot et al., 2006nrder to obtain a correct value of thg¢h
ratio, it is necessary to use the following parametalledc’?, when the profile of the
spherical indenter cannot be approximated by aoodoal of revolution:

_R-VJR*-&°
h h

c’=-—t= 2)

Fig. 14 confirms that the? parameter has consequently a significant underastin of the
piling-up for large contact radius in sphericalenthtion. Moreover, the examination of the
evolution of thec 2 parameter and of thef parameter obtained for the parabolic indentation
shows that the difference between the results ddaior parabolic indentation and spherical
indentation becomes significant starting from aueadfa/R of approximately 0.3. This result
Is similar to that obtained for thgparameter.

In paragraph 3, we indicated that Mesarovic an@k-(@999) did not explain in their work
why the decreases in the constraint facigrand in thec’ parameter do not begin from the
same value of1. The above results explain this. The decreaskdrconstraint factor is due
to the decrease in contact pressure during thentatien test. The decrease i occurs
starting from a value ofl, which depends on the indented material. The deeri@as is only
due to the incorrect formulation of this parametéich is used to characterize the changes in
piling-up or sinking-in.

On the basis of their numerical results, Mesaranc Fleck (1999) defined the “finite-
deformation plasticity regime” as being a regimaninich the constraint factory and the £
parameter decrease. However, thearameter is not valid when it decreases and tiheis
definition of this regime is erroneous. The parabahd spherical results presented given in
Figs. 10b, 10c, and 13 show that this regime mastdplaced by a regime, called in this
article second plastic regime, in which the avenagssure decreasey (decreases) and the
formation of the piling-up is accentuated (great&rease in thac/hratio).

6. Conclusion

The different deformation regimes during parab@md spherical indentation of elastic-
ideally plastic material are defined starting frahe numerical study of the evolution of
(dF/da).(a/F) ¢, (da/dh).(h/a) and hg/h versus the single non-dimensional group,
A= E*a/JyR and the non-dimensional contact radia$. The study of the changes in the
(dF/da).(a/F)and the(da/dh).(h/a)ratios indicates that, when the vyield stress otlastic-
ideally plastic material is exceeded, several deédion regimes can exist according to the
value of theE/gj ratio of the indented material.



For materials having a very larg&g; ratio, two elastic-plastic regimes and two plastic
regimes were found. A first elastic-plastic reginge observed up to a/ value of
approximately 6-12. During this stage, the maximplastic strain is located on the axis of
symmetry and thédF/da).(a/F) and (da/dh).(h/a)ratios change a lot because of the large
changes in the plastic zone. The second elaststipl@egime corresponds to a weak decrease
in (dF/da).(a/F)up to a/l value of approximately 220. During this step, amé modification

of the plastic zone is found but the maximum ptastrain location moves slowly upwards
and outwards and then remains located at the doethe. For the first plastic regime, the
(dF/da).(a/F)ratio and constraint factog, remain constant at values of 2 and 3 respectively,
which correspond to the values of the rigid-idegligstic similarity solution. The study of the
(da/dh).(h/a andhy/h ratios shows that no rigid-ideally plastic simitgrregime of constant
he/h is obtained for materials of &/ ratio smaller than 200,0060r these materials, the/h
ratio tends towards the similarity solution, i.e. 1.4Tthaut reaching this value. For materials
of E/gy ratio higher than 200,000¢/hand g areconstanwvhen /1=10,000.

For the second and last plastic regime, the meataciopressure decreases and the piling-up
increases even more. This decrease in the meaact@ressure and this higher increase in
the piling-up are more marked in the case of theespal indentation. For materials of very
high E/gy ratio, the second plastic regime appears vaiBns lower than 0.01. The low value
of the normalized contact sizR, from which the second plastic regime starts, shthas
this regime is not related to a change of the dorof the tangential velocity of the points in
contact with the indenter, as it was stated by M®ga and Fleck (1999).

The existence of the second plastic regime is duthé high values of the plastic strain
located in the periphery of the contact and togleatest facility of material displacement on
the surface. The combination of these two phenorteads to a decrease in the mean contact
pressure and a steeper increase in the piling-bp. résults of the finite element calculus
show that the first plastic regime exists duringesptal and parabolic indentation only for
elastic-ideally plastic materials of aB/gy ratio higher than approximately 2000. The
comparison of the results obtained for parabolic spiterical indentation shows that ttfe
parameter generally used in order to characteheevolution of the piling-up or the sinking-
in in the case of spherical indentation is not ectribeyond a value of a non-dimensional
contact radiusa/R equal to about 0.2. WheaxiR is higher than 0.2, it is necessary to use the
c'? parameterd®=h//h), equal to the true contact depth-penetration hieatio, in order to
correctly determine the contact radius. To conclutde complexity of the changes in the
(dF/da).(a/F) ¢, (da/dh).(h/a)and h/h parameters shows that it is not easy to determine
simple relationships between the penetration ddptthe contact radius, and the applied
load, F, when an elastic-ideally plastic material is defed by a sphere or a parabola.
Particularly, this study shows that thén power laws, proposed in the literature, are irexirr
with respect to their representation of the contadius — depth penetration relationship. This
work shows that both Tabor’s relation and plastmilarity solution can not be used for
mechanical property extractions, through sphericdéntation, in the case of material with
very weak strain hardening aidg; ratio higher than approximately 2000. The ressittsw
that the non-dimensional expressidiaé/da).(a/F) and (da/dh).(h/a)are appliable for the
study of the indentation regimes during spherigadentation of elastic-ideally plastic
materials. This work is a first step before thedgtwf the indentation regimes of work
hardened materials during spherical indentationhgughe non-dimensional expressions
(dF/da).(a/F)and (da/dh).(h/a) The advantage of these expressions is that theyotlaeed
the definition of a "representative” strain, whismeeded in the case @f’
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