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Abstract 
The study of analytical models for the determination of the contact radius between a spherical 
indenter and an elastic-plastic material is presented in this paper. Experimental results 
obtained for different spheroidized steels are compared to those obtained numerically and 
with various analytical models. The comparison between experimental and numerical 
indentation curves demonstrates that the indentation response of the studied steels can be 
correctly obtained starting from the work hardening behaviour determined by tensile test with 
the Bridgman method. The experimental and numerical comparison also shows that an 
increase in friction coefficient leads to a non negligible decrease in contact radius at large 
penetration depths. In consequence, an analytical model which is proposed with the 
assumption of friction contact allows a better contact radius to be determined. The 
comparison between the experimental and theoretical contact radius shows that the theoretical 
models, dependent only on the strain hardening exponent over-estimate the dimensionless 
contact radius, especially for low dimensionless contact radii, a/R. The models of Matthew 
(1980), Hill et al. (1989), Taljat et al. (1998) and Alcala et al. (2000) lead to acceptable results 
only for dimensionless contact radii, a/R, higher than 0.3. Below this value, only the models 
of Lee et al. (2005), Hernot et al. (2006) and Kim et al. (2006) produce results that are close to 
those obtained experimentally. The present study shows that these last models enable an 
accurate assessment of contact area from measurements of penetration depth which is central 
to the analysis of instrumented indentation experiments. 
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1. Introduction  
During spherical indentation tests on elastic-plastic materials, the surface around the contact 
area can be deformed upwards or downwards along the z axis where load is applied. This 
behaviour is called piling-up, in the first case and sinking-in, in the second case. When the 
indented material is deformed elastically, sinking-in occurs. When the yield stress, sy, of the 
indented material is exceeded, the increase in plastic deformation of the indented material has 
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a decrease in sinking-in and an increase in piling-up as a consequence. The presence of these 
phenomena has a negative effect on the determination of the projected area of contact. 
Consequently, this causes inaccuracies in the Young’s modulus and hardness values provided 
by nano-indentation tests. This also makes difficult the determination of the stress-strain 
curves from indentation load-depth data. The study of the surface deformation around the 
imprint was presented in several papers (Norbury and Samuel, 1928; Matthews, 1980; Hill et 
al., 1989; Biwa and Störackers, 1995; Taljat et al., 1998; Mesarovic and Fleck, 1999; Alcala 
et al., 2000; Mata et al., 2002; Taljat and Pharr, 2004; Peralta et al., 2004; Lee et al., 2005; 
Hernot et al., 2006; Kim et al., 2006; Collin et al., 2008a). Some of these studies concern 
spherical indentation and led to relationships between the penetration depth, h, the contact 
depth, hc, and the contact radius, a, between the indenter and the indented material (Matthews, 
1980; Hill et al., 1989;Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz, 2001; Lee 
et al., 2005; Hernot et al., 2006; Kim et al., 2006; Collin et al., 2008a). The proposed models 
can be classified in several groups. Most of existing models, particularly the oldest, calculate 
the contact depth or the contact radius starting from the work hardening exponent of the 
indented material, n (Matthews, 1980; Hill et al., 1989;Taljat et al., 1998; Alcala et al., 2000; 
Kucharski and Mröz, 2001). These models were criticized recently by Hernot et al. (2006) 
because they do not take into account the influence of the penetration depth, the Young 
modulus, E, and the yield stress on the contact radius value. In order to take into account the 
influence of these parameters and of the work hardening exponent on the a-h relationship, two 
models were recently proposed by Lee et al. (2005) and Hernot et al. (2006). Another method 
was also proposed recently by Kim et al. (2006) in which the yield stress value is not 
necessary to determine the contact radius. A new formulation of the contact depth value 
depending on the value of the work hardening exponent, the maximum penetration depth and 
the elastic stiffness of the contact is given by Kim et al. (2006). A review of all these models 
shows that they are valid only for elastic-plastic materials for which the hardening behaviour 
follows the Hollomon hardening law (s=sy

(1-n) En en ). Recently a methodology based on the 
Galin theory (1946) and the measure of the unloading stiffness was proposed by J.M. Collin et 
al. (2008a) in order to not take into account the type of work hardening of the indented 
material. This method allows the contact radius change during the indentation test to be 
determined even if the yield stress and the work hardening exponent are unknown. A 
thorough discussion of the various models presented previously is given in the appendix of 
this article. 
The aim of this work is to compare the experimental results in the case of spherical 
indentation with those obtained thanks to various models proposed to determine the contact 
depth between a spherical indenter and an elastic-plastic material. To our knowledge, no study 
has been carried out on such comparison. For the study, different spheroidized steels, which 
are a very fine microstructure, were tested. The advantage of this type of microstructure is that 
there is no problem of structural heterogeneity during the indentation test carried out with a 1 
mm or 2.5 mm diameter ball and loads ranging from 15N to 200N. Another advantage of 
these materials is that, because of their resistance and the experimental conditions, the 
indentation results are obtained for elastic-plastic and fully plastic indentation regimes. In a 
first step, the stress-strain tensile curves of the tested steels are determined by using the 
Bridgman method in order to define the stress-strain relationship after necking (Bridgman, 
1944). In order to verify that the indentation response of the spheroidized steels can be 
obtained correctly starting from the stress-strain tensile curves, numerical simulations of the 
spherical indentation test are carried out in the second step by using the Cast3M finite element 
code. Lastly, experimental spherical indentation tests were carried out using an experimental 
bench developed within our laboratory and the experimental results are compared with those 
obtained numerically and with those determined by using the models presented in this article. 



 

2 Experimental parameters 

 

2.1 Materials and thermal treatments 

The experimental tensile and indentation tests were carried out on the steels presented in 
Table 1 with the associated code for each material. 
 
Table 1 
 
As shown in Fig. 1, the selected samples are spheroidized steels. This type of steel was 
selected in order to obtain a fine and homogeneous microstructure and thus a good 
reproducibility of the indentation tests. 
 
Figure 1 
 
Fig. 1.c represents the microstructure of the AISI 1100 steel and shows an homogeneous 
distribution of spheroidized cementite particles in a ferritic matrix. The spheroidize annealing 
of this steel was carried out in an optimal way in order to obtain a soft and ductile material. 
This heat treatment was carried out prior to delivery of materials to our laboratory, which was 
not the case for the other steels. The ferritic-pearlitic structure AISI 1035, 1065 and 4135 
steels were spheroidized within our laboratory with the parameters given in Table 1. 
Figs. 1b and 1d show that some cementite lamellas are still present in the AISI 1065 and 4135 
steels after heat treatment. 
For the AISI 1035 steel, the ferritic grains and the old pearlitic grains in which the cementite 
lamellas were partially replaced by spheroidized particles can be distinguished in Fig. 1a. 
For this steel, problems of reproducibility could occur during the indentation test if the 
imprint is located mainly in the ferritic grains or in the old pearlitic grains. Table 1, gives the 
Vickers hardness of the various tested materials and confirms that softening was not optimal 
for the AISI 1065 and 4135 steels. These steels are harder than the AISI 1100 steel because of 
partial spheroidizing. On the other hand, in spite of the small carbon percentage of the AISI 
1035 steel, this one does not have hardness which is much lower than the AISI 4135 steel 
because of its partial spheroidized pearlite. 

  

2.2 Tensile tests 

The tensile tests are performed on a Lloyd LR system with a crosshead displacement rate of 
2mm/mn. The tensile curves are obtained starting from the standardized round bars presented 
in Fig. 2. 
 
Figure 2 

 

During tensile testing, the uniform extension ceases when the tensile load reaches a material 
specific maximum. At this point the test sample begins to neck. The state of stress changes 
gradually from the simple uniaxial tension to a complicated condition of triaxial stress for the 
round bar. Because the onset of necking destroys the uniaxial state of stress it is impossible to 
determine a uniaxial true stress-strain relationship by the standard tensile test once necking 
has occurred. Various methods have been proposed to obtain the true stress-strain relationship 



after necking (Bridgman, 1944; Davidenkov and Spriridonova, 1946; Dietrich et al., 1970; 
Gromada et al., 2004; Mirone, 2004). For rods, the Bridgman method (1944) is the most 
commonly used to obtain uniaxial true stress-strain relationships after necking. Contrary to 
the other methods, many numerical and experimental studies were performed on the 
Bridgman method (Gromada et al. 2004; Cabezas and Celentano, 2004; Celentano et al., 
2004; Garcia-Garino et al., 2006). The results of these studies show that this technique is 
correct for taking into account the influence of the necking on the stress-strain relationship, 
especially when the radius of curvature of the surface in the neck region is much larger than 
the rod radius (Cabezas and Celentano, 2004; Celentano et al., 2004; Garcia-Garino et al., 
2006). This explains why, in spite of its imperfection, the Bridgman method is used in order 
to determine the work hardening behaviour of a material after the onset of necking (Ling, 
1996; Tillier, 1998; Cabezas and Celentano, 2004; Celentano et al., 2004; Garcia-Garino et 
al., 2006). In this study, the Bridgman method is used in order to define the post-necking 
behaviour of the spheroidized steels. 
In the Bridgman method (1944), it is necessary to determine the applied load, the radius of the 
smallest cross section and the radius of curvature of the surface in the necking region. The 
radius of the smallest cross section and the radius of curvature of the surface were measured, 
at various steps of the tensile test, by using video frame grabbing. The evaluation of the 
necking profile curvature was carried out from the coordinates (in an arbitrary reference 
system) of at least 10 points per profile analysed. Then, the analytical expression of the 
obtained profile leads to the curvature value by way of fifth order polynomial fittings and 
their successive algebraic manipulation. 
 
 
2.3 Indentation tests 

2.3.1 Finite element simulation 

 
Indentation simulations were performed, in axisymmetric mode, by using the Cast3M finite 
element code. The mesh used in this study was presented in a preceding article (Hernot et al., 
2006). The simulations were carried out with spherical indenters of radius, R, equal to 0.5 and 
1.25 mm and elastic properties corresponding to those of Tungsten carbide (E=600000 MPa 
and n   

The constitutive model of the indented material was taken to follow the well known J2-
associated flow theory with rate-independent deformation and isotropic hardening. Yielding 
occurs according to the Von Mises criterion and the stress-strain relationship follows the 
piecewise linear/power-law: 
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where e is the total strain, s is the stress, E is the Young modulus, sy is the yield stress and n 
is the strain hardening exponent. Young modulus of 210 GPa and Poisson ratio of 0.3 are used 
for all simulations. Friction coefficients m=0! and µ=0.2 were examined. 
 
2.3.2 Experimental bench for indentation test 

The experimental indentation tests were carried out by using an indentation instrumented 
bench designed and produced within our laboratory. A load cell measured load with a 
resolution of 0.02 N and the displacement was measured thanks to capacitive sensors which 



were fixed near the indenter .This gives the distance between the indenter and the indented 
surface of the tested material with a resolution of 0.02 µm.  
 
 
The experimental system enables a maximum load equal to 200N to be applied. For both tests 
carried out with spherical indenters of radius R = 0.5 mm and R=1.25 mm, the displacement 
rate was about 2 µm/s. 
 
2.3.3 Determination of the load frame compliance of the experimental bench 
 
It is generally supposed that the total measured compliance, Ctot, corresponds to the 
compliance of two springs in series: 
Ctot = Csample + Cm (2) 
Where Csample is the sample compliance and Cm is the load frame compliance. The total 
compliance is related to the total stiffness, Stot, by Ctot = 1/Stot and corresponds to the slope of 
the tangent line with relation to the experimental unloading curve at the maximum loading 
point. The sample compliance is related to the contact stiffness, S, by Csample= 1/S.  
The measurable parameter being Stot and the material parameter required being S, it is thus 
essential to determine Cm in order to calculate S. In other words, it is necessary to determine 
the load frame compliance of the experimental bench. 
The contact stiffness, S, between a spherical indenter and a flat elastic half space can be 
obtained by the following relationship (Bulychev et al., 1975, 1976; Shorshorov et al., 1981): 
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where A is the projected contact area and E* is the reduced modulus, calculated starting from 

the elastic properties of the sample, Emat and nmat, and of the indenter, Eind and nind such that: 
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Eqs. (2) and (3) show that the evolution of the total compliance versus the inverse of the 
square root of the contact area corresponds on a straight-line, y=αx+β, where y is the total 
compliance and x is the inverse of the square root of the contact area. 

Starting from the y=Cm versus Ax 1=  curve, the load frame compliance, Cm= β, and the 

reduced modulus, E*= 2/pa , can be obtained. 
 
Table 2 recapitulates the values of the load frame compliance and the reduced modulus 
obtained for the tested materials and the two indenters used in this study. 
 

Table 2 

 
Table 2 shows that the experimental reduced modulii are close to the theoretical values 
obtained for the indented steel (E=210000 MPa and n =0.3) and a tungsten carbide indenter 
(E=600000 MPa and n = 0.28). The experimental results are smaller than the theoretical 
values, approximately 6% and 1% respectively for the 0.5 mm and 1.25 mm radius balls. 
 



In order to validate the value of the load frame compliance given in Table 2 for the carbide 
ball of radius equal to 0.5 mm, numerical simulations were performed with the indenter 
represented in Fig. 3. Fig. 4 shows the results obtained for an indented steel of yield stress 
equal to 195 MPa and hardening exponent equal to 0.233 (values corresponding to those of 
AISI 1100 steel). In this figure, the numerical load-displacement curves obtained at points P2 
and P1 are shown (Fig. 3). These curves are compared to that calculated starting from the 
equation: 

FE56.3)P(hFC)P(h)P(h 6
1m12

--=-=  (5) 

This figure shows that the load frame compliance given in Table 2 is correct to calculate the 
displacement of the point located on the top of the carbide ball (P2, see Fig. 3) starting from 
the measurement of the displacement of the point located near the displacement sensors (P1, 
Fig. 3).  
 
Figure 3 
 
Figure 4 
 
Indeed, the theoretical and numerical displacements of the top of the carbide ball are very 
close. Fig. 5 confirms this result. In this figure, it is shown that the load frame compliance 
calculated experimentally (3.56E-6mm/N) is very close to that obtained numerically (3.22E-6 
mm/N). 
 
Figure 5 
 

3 Tensile tests 

The engineering tensile curves obtained for the studied materials are represented in Fig. 6. 
 
Figure 6 

 

In this figure, the reduction in the stress observed at various points of the engineering tensile 
curves corresponds to the stress relaxation of the steel during the frame grabbing carried out 
to take into account the necking effect. Table 3 summarizes the values of the yield stress, 
tensile stress and elongation at break of the studied steels. 
 
Table 3 
 
Fig. 6 and Table 3 show that the yield and tensile stresses are not related to the carbon 
percentage of the studied steels. As in the case of the hardness results, the absence of 
connection between strength and carbon percentage is due to the microstructure and in 
particular to the size and the shape of the cementite particles and also to the presence of 
pearlite lamellas because of the non optimal spheroidizing treatment of the AISI 1035, 1065 
and 4135 steels (Fig. 1). 
The true stress-strain curves obtained after applying the Bridgman method (1944) for the post-
necking behaviour are represented Fig. 7. 
 
Figure 7 

 



The main objective of the present study is to compare the results of the experimental 
indentation tests to those obtained with the theoretical models proposed to determine the 
contact depth between a spherical indenter and an elastic-plastic material (Matthews, 1980; 
Hill et al., 1989;Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz, 2001; Lee et al., 
2005; Hernot et al., 2006; Kim et al., 2006; Collin et al., 2008a). The theoretical models were 
proposed in the case of elastic-plastic materials for which the hardening behaviour follows the 
Hollomon hardening law (Eq. (1)). 
Fig. 8 compares the experimental true stress-strain curves with those corresponding to the 
fitting of these curves by the Hollomon law. Different fits are performed, a first fit is 
performed up to the onset of necking, a second and a third, up to strains equal to 0.3 and 0.4 
respectively and a fourth, until the break point. 
 
Figure 8 
 

As shown in Fig. 8, because of the low number of mechanical parameters in the Hollomon 
law, this law does not exactly fit the tensile curves, in the whole plastic range. In this figure, 
the curves can be fitted by two piecewise functions. Indeed, up to strain values of about 0.3, 
the curve can be represented by a power law (Hollomon, Rambert-Osgood…). Fig. 8 shows 
that the Hollomon equation fits the tensile curve for strain values lower than about 0.3-0.4 
very well, especially for AISI 1065 and 1100 steels. For higher strain values, the evolution of 
the stress-strain relationship is about linear. The values of the parameters of the Hollomon law 
obtained by fitting the stress-strain curve up to a strain of 0.3 are given in Table 3. 
 
 

4 Indentation test 

4.1 Load-displacement curves 

Indentation tests were performed under various maximum loads 25, 50, 75, 100, 150, and 200 
N, with spherical indenters of diameter D = 1mm and D = 2.5 mm. In order to compare the 
results obtained with the two spherical indenters, the dimensionless parameters h/D and F 
(E*

matD
2) were used. Fig. 9 represents the experimental and numerical dimensionless load-

displacement curves obtained with the two spherical indenters. 
 
figure 9 
 
Fig. 9 shows that a good reproducibility of the experimental results is obtained for the studied 
steels because the loading curves are superimposed for the various loads. Differences in 
results were however obtained for the AISI 1035 steel. The lack of reproducibility observed in 
the indentation curves can be due to the structural heterogeneity of the tested material. For the 
tested AISI 1035 steel, the spheroidized particles are only present in the old pearlitic grains 
(before spheroidized annealing). An indentation test performed in the ferritic grain or in the 
spheroidal pearlite can lead to different indentation curves.  
In a general way, Fig. 9 shows that the numerical loading curves are close to the experimental 
loading curves. For the AISI 1065 and 1100 steels, the experimental loading curves are almost 
similar to those obtained numerically. For the AISI 1035 and 4135 steels, the numerical 
penetration depth is smaller than the experimental penetration depth. This difference between 
numerical and experimental curves can be caused by a difference between the true behaviour 
law of the material and that used for the numerical simulations.  



While the FEA curves agree quite well with the experimental results during the loading 
portion, there are some discrepancies in the unloading cycle. The experimental unloading 
curves exhibit greater curvature than the numerical unloading curves. Some of these 
differences could be attributed to the behaviour law of the different pieces deformed during 
the experimental indentation test. It is possible that the indentation stage and frame do not 
perform exactly as ideal Hookean springs, but rather exhibit some non-ideal elastic or even 
viscoelastic behaviour. In recent studies (Huber and Tsakmakis, 1998; Strange and Varsneya, 
2001; Pane and Blank, 2006; Collin et al., 2008a, 2008b; Bartier et al., 2008), it has already 
been observed that the curvature of the experimental unloading curve was higher than the 
numerical one. In some of those studies (Huber and Tsakmakis, 1998; Strange and Varsneya, 
2001; Pane and Blank, 2006; Bartier et al., 2008), numerical simulations show that isotropic 
or kinematic hardening has a considerable influence on the unloading curve. The unloading 
curves exhibit a higher curvature in the case of a kinematic hardening especially on the final 
part of these curves (Huber and Tsakmakis, 1998; Strange and Varsneya, 2001; Pane and 
Blank, 2006; Bartier et al., 2008). The analysis of the morphology of the imprints confirms 
this result (Huber and Tsakmakis, 1998; Strange and Varsneya, 2001; Pane and Blank, 2006; 
Bartier et al., 2008). In any case, the similarity of the experimental and numerical loading 
curves shows that the constitutive model used for the numerical simulations and the work 
hardening law determined by tensile test give the indentation behaviour of the studied steels 
with accurate results. 
 

4.2 Comparison between experimental and numerical values for contact 

radius and hc/h ratio 
 
4.2.1 Maximum plastic strain during the indentation tests 

 
The theoretical models for determining contact radius and hc/h ratio are valid in the case of 
elastic-plastic materials for which the hardening behaviour follows the Hollomon hardening 
law (Matthews, 1980; Hill et al., 1989;Taljat et al., 1998; Alcala et al., 2000; Kucharski and 
Mröz, 2001; Lee et al., 2005; Hernot et al., 2006; Kim et al., 2006; Collin et al., 2008a). The 
results of the tensile tests showed that the Hollomon equation fits the tensile curve of the 
studied steels for strain values lower than about 0.3-0.4 with good correlation. For strain 
values higher than about 0.3-0.4, the Hollomon law cannot be used in order to represent the 
tensile behaviour of the studied steels. In order to know if the Hollomon law can be used in 
the comparison between the results of the theoretical models with those obtained 
experimentally, it is thus necessary to study the values of the maximum plastic strain obtained 
in the indented zone during the indentation test. 
With the aim of determining the values of the plastic strain in the indented steels, finite 
elements simulations were carried out by using the code Cast3M. The maximum plastic strain 
values in the indented zone are examined for an applied load of 200N (maximum load for our 
experimental bench), and a spherical indenter of radius R = 0.5 mm (smaller indenter radius). 
Fig. 10 shows the plastic strain isovalues obtained in the indented zone of the studied steels. 
In this figure, the plastic strain is the equivalent strain corresponding to the Von Mises stress. 
 

Figure 10 
 
Fig. 10 shows that the maximum plastic strain in the indented zone does not exceed 30% for 
the AISI 1065, 1100 and 4135 steels, when the maximum indentation load is applied. 
For the AISI 1035 steel, the maximum plastic strain slightly exceeds this value and reaches 
35%. For all tested steels, the plastic strain does not exceed 10% in most of the plastic 



volume. Only the zone located under the indenter contains high plastic strain. Consequently, 
the fitting of the tensile curves by the Hollomon law, up to a strain equal to 0.3, can be used in 
order to correctly represent the behaviour of the studied steel during the indentation test. 
 
4.2.2 Indenter tip displacement determination  

 
In order to use the theoretical models to determine contact radius and hc/h ratio (Matthews, 
1980; Hill et al., 1989;Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz, 2001; Lee 
et al., 2005; Hernot et al., 2006; Kim et al., 2006; Collin et al., 2008a), it is necessary to 
determine the penetration depth, h, measured from the reference surface (= original material 
surface) at loaded state. In Fig. 9, the displacement of the F-h curves corresponds to the 
displacement of a material point located in the tungsten carbide indenter, far from the contact 
zone, compared to the surface of the indented material (point P2, Fig. 3). The indenter being 
deformable, this displacement does not correspond to the penetration depth of the indenter tip 
(point P3, see Fig. 3), h. In order to compare the experimental values with those obtained from 
the theoretical models, it is thus necessary to take into account the elasticity of the indenter. 
 

The penetration depth of the indenter tip at maximum loaded state, maxFh , can be obtained with 

the following equation: 
max

Z
maxmax FF

curvehF
F uhh -= -  (6) 

Where maxF
curvehFh -  is the maximum penetration depth of the indenter obtained starting from the 

F-h curves and max
Z

Fu  is the elastic displacement of a material point of the indenter toward the 

contact surface at maximum loaded state. 
 
During spherical indentation test on elastic materials, the elastic displacement of a material 
point of the indenter, located in the symmetry axis and far to the indenter tip, with respect to 
the contact surface, is given by (Hertz, 1882): 
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For elastic plastic indented materials, it can be seen that the initially elliptical shape pressure 
distribution found in the elastic state flattens considerably as the load is progressively 
increased and becomes rather rectangular in shape (Hardy et al., 1971; Sinclair et al. 1985; 
Biwa et Störackers, 1995). 
For the case of uniform pressure, the normal elastic displacement measured with respect to the 
original specimen is, at the center of contact, given by (Johnson, 1985):  
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Fig. 11 shows the difference in displacement between the point located on the top of the 
carbide ball (point P2, see Fig. 3) and that located on the indented tip (point P3, Fig. 3), 
obtained numerically by F.E.M for materials similar to the AISI 1035 and 1100 steels. The 
numerical results are compared in this figure to the normal elastic displacements calculated 
with eqs. (7) and (8). Fig. 11 shows that Eq. (8) leads to a better evaluation of the elastic 
displacement of a material point of the spherical indenter toward the contact surface, when an 
elastic-plastic material is indented by a sphere. The difference between the displacement 
calculated with Eq. (8) and that obtained numerically by F.E.M. is very small (equal to about 
0.15 µm at maximum loaded state for the AISI 1035 and 1100 steels). 
 



Figure 11 
 
Fig. 12 gives a comparison between the numerical F-h curve obtained for a rigid indenter and 
that obtained by using Eqs. (6) and (8) for AISI 1035 and 1100 indented steels and a tungsten 
carbide indenter, for which E=600000 MPa and n=0.28. It is observed that the F-h curves 
obtained for rigid indenter are closed to that obtained by using Eqs. (6) and (8) for a tungsten 
carbide indenter.  
 
Figure 12 
 
In conclusion, the experimental depth, h, measured from the reference surface (= original 
material surface) at loaded state will be calculated in this study starting from Eq. (8) proposed 
in the case of uniform pressure. 
 
4.2.3 Contact radius determination 

The imprint radius has been determined by optical microscopy for indentation tests under 
various maximum loads (25, 50, 75, 100, 150, and 200 N). For each imprint, the value of the 
radius corresponds to the average of 12 measurements. The contact radius at maximum loaded 
state is supposed to be similar to the imprint radius measured after unloading. This 
assumption is correct if the radial displacement of the point located at the edge of the contact 
only varies very slightly during unloading indentation. 

Fig. 13 represents the evolution of the radial displacement of the point located at the edge of 
the contact numerically calculated during unloading indentation, for the studied steels. The 
results show that the radial displacement during the total unloading indentation is lower than 
0.4 µm. This value being very small compared to the value of the contact radius (less than 
0.72%), it can be supposed that the imprint radius is similar to the contact radius obtained 
when the maximum indentation load is applied, i.e., when F= 25, 50, 75, 100, 150, or 200 N.  
The same result was found by Rodriguez and Garrido Maneiro (2007) for spherical 

indentation on various elastic-plastic materials. 

 

Figure 13 

 
4.2.4 Determination of the evolution of contact radius or contact depth during spherical 

indentation 

 
The dimensionless contact radius, a/R, obtained experimentally with the spherical indenters of 
diameter 1 and 2.5 mm are compared with those calculated by the theoretical models. The 
results obtained at different penetration depths for the studied steels are presented Fig. 14. 
 
Figure 14 
 
Fig. 14 shows that the models, which depend only on the strain hardening exponent, over-
estimate the dimensionless contact radius (Matthews, 1980; Hill et al., 1989; Taljat et al., 
1998; Alcala et al., 2000; Kucharski and Mröz, 2001). The Kucharski et al. model (Kucharski 
and Mröz, 2001) overestimates the value of the contact radius the most. This model was 
proposed for a rigid–plastic material indented by ball. The over-estimation of the contact 
radius by this model is due to the elasticity and the well-developed yield stress of the tested 



materials, not taken into account in the Kucharski et al. model. Indeed, various works show 
that the smaller the sy/E ratio, the higher the contact radius is (Lee et al., 2005; Hernot et al., 
2006).The Collin et al. methodology (Collin et al., 2008a), based on the calculation of the 
slope of the unloading curve and the use of the BASh equation (Bulychev et al., 1975, 1976; 
Shorshorov et al., 1981), undervalue the value of the contact radius. According to the authors, 
this method gives a good evaluation of the contact radius only for values of a/R ratios lower 
than 0.25, which is not always the case for the experiments carried out in this study. Fig. 14 
confirms that the values of the contact radius obtained by the methodology suggested by 
Collin et al. (2008a) are closest to those obtained experimentally for the lowest values of 
penetration depth. Fig. 9 shows that the initial slopes of the numerical unloading curves are 
often slightly higher than those of the experimental unloading curves. The calculation of the 
slope of the unloading curve is necessary in the case of the Collin et al. model. Due to the fact 
that the lesser, the smaller the contact radius, the low value of the contact radius could be due 
to a too low experimental elastic stiffness. The disadvantage of the method of Collin et 
al.(2008a) is that it requires precise determination of the initial slope of the unloading curves, 
which is not easy in experiments. However, it is important to note that this method is the only 
method which can give an evaluation of the contact radius during indentation without the 
knowledge of the yield strain and the strain hardening exponent values. 
In order to compare the proposed models for the determination of the contact radius with 
more accuracy, the relationship between the hc/h ratio and the penetration depth, h/R, is 
represented in Fig. 15. For clarity, the results from Kucharski and Mröz and Collin et al. 
models are not represented in this figure. 
 
Figure 15 
 
Fig. 15 shows that the experimental ratio hc/h increases with the penetration depth. This result 
is in agreement with the theory. Indeed, it was shown that an elastic plastic material deforms 
only elastically at small depths, and that in this case, the indentation profile corresponds to 
that of Hertzian contact with hc/h=0.5. As the load on the indenter is increased, the plastic 
zone grows and spreads upward, and the sink-in diminishes; i.e. hc/h increases. 
The hc/h results can be influenced by material heterogeneity, calibration errors and accuracy 
of the displacement sensors. Dispersion in hc/h results is higher for the AISI 1035 steel, for 
which structural heterogeneity is observed. The lack in precision in experimental results, 
especially for the low values of h*, is mainly due to the precision of the penetration depths 
measured experimentally starting from the indentation curve. When the spherical indenter 
with radius of 1.25 mm is used, the values of the penetration depth are very low for weak 
applied load For these conditions, a low error in the penetration depth measurement has, as a 
consequence, a high error in the hc/h and a/R values.  
The experimental results in Fig. 15 show that piling-up predominates when the hardening 
exponent of the indented material is weakest; i.e. AISI 1035 and AISI 4135 steels (Table 3). 
This result is in agreement with those obtained in previous experimental and numerical 
studies of metals indented by a ball (Norbury and Samuel, 1928; Matthews, 1980; Hill et al., 
1989; Biwa and Störackers, 1995; Taljat et al., 1998; Alcala et al., 2000; Mata et al., 2002; 
Taljat and Pharr, 2004; Lee et al., 2005; Hernot et al., 2006). Fig. 15 confirms that the models, 
depending only on the strain hardening exponent, tends to over-estimate the dimensionless 
contact radius a/R (Matthews, 1980; Hill et al., 1989;Taljat et al., 1998; Alcala et al., 2000; 
Kucharski and Mröz, 2001). As mentioned in the annexe, the Matthew (1980), Hill et al. 
(1989), Taljat et al. (1998) and Alcala et al. (2000) models give acceptable results only for a 
dimensionless contact radius, a/R, higher than 0.3 and when sy/E is smaller than about 1/330 
(Hernot et al., 2006). Fig. 15 confirms that the experimental results are closest to those 



obtained with these models when a/R is higher than 0.3. This figure also shows that the 
experimental results are closest to those obtained with these models for the steels with the 
lowest yield stress. When a/R is lower than 0.3, only the models proposed by Lee et al. 
(2005), Hernot et al. (2006) and Kim et al. (2006) lead to results close to the experimental 
ones. The comparison between the experimental results and the results of these models shows 
that the Lee et al. model overestimates the contact depth. The results obtained by the Hernot 
et al. model are very similar to the experimental ones when h/R is lower than 0.02. When h/R 
is higher than 0.02, the Hernot et al. model gives values of hc/h higher than those obtained in 
the experiments as a whole. The overestimation of the contact depth by the Hernot et al. 
model can be due partly to the friction coefficient between the indenter and the indented steel. 
The Hernot et al. model was established starting from numerical calculations carried out with 
the assumption of frictionless contact. Finite elements calculations show however that an 
increase in friction coefficient has a decrease in hc/h ratio for large values of penetration 
depth, as a consequence (Mata et al., 2002; Taljat and Pharr, 2004; Hernot et al., 2006). 
Indeed, Fig. 15 shows that the numerical results are closer to those obtained in experiments 
when the friction coefficient is equal to 0.2. The Kim et al. model was obtained starting from 
results of finite element simulations carried out with a friction coefficient, between the ball 
and the indented material, equal to 0.2. The results obtained with this model are the closest to 
those obtained experimentally for large contact radius. As mentioned in the appendix, the 
definition of the contact depth given by Kim et al. (2006) is open to criticism. Moreover, the 
disadvantage of this model is that it requires precise determination of the initial slope of the 
unloading curve in order to obtain the elastic stiffness. In conclusion, despite their 
imperfections, the recent Lee et al., Hernot et al. and Kim et al. models allow a correct contact 
radius-penetration depth relationship to be determined. 
 

5. Conclusion 
 

The aim of this work was to study the analytical models for the determination of contact 
radius between a spherical indenter and an elastic-plastic material. In order to compare the 
results of these models with those obtained experimentally, tensile and indentation tests were 
performed on different spheroidized steels. The true stress-true strain curves of the tested 
steels are determined by using the Bridgman method in order to define the stress-strain 
relationship after necking. The comparison between experimental and numerical indentation 
curves demonstrates that the indentation response of the studied steels can be correctly 
obtained starting from the work hardening behaviour determined by tensile test with the 
Bridgman method. Finite element simulations show that for a maximum load of 200 N, the 
maximum plastic strain in the indented zone does not exceed 30% for the studied steels. The 
experimental and numerical comparison also shows that an increase in friction coefficient 
leads to a non negligible decrease in contact radius for large penetration depth. Consequently, 
analytical models proposed with the assumption of friction contact allow a more accurate 
contact radius to be determined. The comparison between the experimental and theoretical 
contact radius shows that the theoretical models, depending only on the strain hardening 
exponent, over-estimate the dimensionless contact radius, especially for low dimensionless 
contact radii, a/R. The Matthew, Hill et al., Taljat et al. and Alcala et al. models lead to 
acceptable results only for dimensionless contact radii, a/R, higher than 0.3. Below this value, 
only the Lee et al., Hernot et al. and Kim et al. models provide results which are close to the 
experimental ones. 
 



Annexe : depth–contact radius relationship models for spherical 

indentation 

 
It is recognized that the material around the contact area can be deformed upwards or 
downwards along the z axis, during an indentation test. This behaviour is called piling-up in 
the first case and sinking-in in the second case. Fig. A.1 shows this phenomenon in both 
cases. 
 
Figure A.1 
 
When sinking-in occurs, the contact depth, hc, is lower than the penetration depth, h, i.e; hc/h 
< 1. In the case of piling-up, the hc/h ratio is higher than 1. 
 
Elastic indentation regime 

 
In the case of material which is elastically deformed by indentation, hc/h is constant and equal 
to 0.5 (Sneddon, 1965). 
 
 
Elastic-plastic and plastic indentation regimes 

Norbury and Samuel (1928) were among the first to show that the profile of the surface 
indended by a sphere is characterized by piling-up or sinking-in depending on the hardening 
properties of the material. The level of contact perimeters, experimentally determined by 
these authors after unloading, shows that annealed metals, which are fully capable of 
hardening, exhibit sinking-in. On the contrary, cold-worked metals showing almost perfectly 
plastic behaviour are characterized by piling-up.  
Moreover, they noticed a relationship between the ratio of (hc-h)/h and (n+2), where hc is the 
contact depth (Fig. A.1) and (n+2) the exponent of the Meyer law (Meyer, 1908) given by :  

2nkaF +=  (A.1) 

in which, F is the applied load, a is the contact radius and k and n are material constants 
 
According to this rule, Matthews (1980) proposed the following equation as a fit the Norbury 
and Samuel hc/h versus n data obtained after unloading and loading, at a depth for which a/R 
was mostly between 0.4 and 0.8: 
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If the shape of the sphere can be approximated by a parabolic curve or for small 
displacements of the spherical indenter (hc!<< R), Eq. (A.2) can be expressed by using the c2 
parameter introduced by Hill et al. (1989) as follows: 
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By using these equations, we can observe that, piling-up occurs, i.e hc/h and c2 are higher than 
1, when n is smaller than approximately 0.262. 
 
More recently, Hill et al. (1989) conducted a theoretical and numerical study of the spherical 
indentation test using a nonlinear elastic constitutive model for the indented material. 



According to the authors, this model, equivalent to a rigid/plastic behaviour law for the 
Brinell test, should be applicable for elastic-plastic material, as for metals, over most of the 
plastic domain once the Meyer regime is established. The results of the theoretical study of 
the spherical indentation test show that the speculative formulae of Matthews (1980) is 
incompatible with the pressure distribution. From the results of this theoretical study and FE 
computations, Hill et al. (1989) proposed a new relationship for c2

 depending on n valid for 
the loaded state, namely: 
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It is important to notice that in this equation, the invariant c2
 only depends on n and cannot be 

influenced by the yield stress sy and the Young modulus E of the indented material and the 
friction coefficient m between the indenter and the indented material because of the model 
used by the authors. 
For a rigid–plastic material indented by ball, Kucharski and Mroz (2001) propose to replace 
the Hill formulation (A.4) by the following equation: 

)n97,0(2c exp4,1c
h

h -=»  (A.5) 

 
The comparison between results obtained starting from Eqs. (A.4) and (A.5) shows that the 
Kucharski and Mroz formulation gives higher values of hc/h than those obtained by the Hill et 
al. formulation.  
Another formulation of c2, valid for materials of elastic-plastic constitutive behaviour, was 
proposed by Taljat et al. (1998) using the results of finite element simulations. For numerical 
simulations, the plastic constitutive behaviour was taken to follow J2-associated flow theory 
with rate-independent deformation and isotropic hardening. The plastic strain-hardening was 
represented by a power law curve similar to that given in Eq. (1) and Von Mises yield 
criterion was assumed. The c2 formulation, determined using computed FE data obtained for 
an sy/E = 1/500 material, a friction coefficient equal to 0.2 and an a/R ratio equal to 0.5, 
(1998) is: 
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As for the formulation proposed by Hill et al (1989), the invariant c2

 of Eq. (A.6) cannot be 
influenced by sy, E and m because of the assumptions of the model used by Taljat et al. 
(1998). 
 
The Norbury and Samuel data (1928) were also used by Alcala et al. (2000) in order to 
propose another c2 formulation. These data and experimental results, obtained for metals with 
sy/E ranging between 1/1026 and 1/296, led to the following equation: 

322c n469.1n451.2n748.1276.1c
h

h
-+-=»   (A.7) 

 
It can be seen that as for the other formulations, c2 depends only on n in this last equation. It 
should be specified that Eq. A.7 is obtained by fitting experimental data. Consequently, this 
equation does not perfectly represent the evolution of c2 according to n. Moreover, the small 



range of sy/E values of the metals tested by Alcala et al. (2000), does not allow us to show if 
E or sy has an influence on c2. 
The influence of E or sy on hc/h was shown by Hernot et al. (2006) thanks to finite element 
simulations of the spherical indentation of elastic-plastic materials for which the sy/E ratio is 
in the range of 1/4200 to 1/33. The results show that the higher the value of sy/E ratio, the 
larger the sinking-in is developed. The same behaviour was found for conical indentation by 
Mata et al. (2002) for materials with sy/E ratio between 1/4000 and 1/70. Hernot et al. (2006) 
also found that, because of the assumptions of the different authors (Matthews, 1980; Hill et 
al., 1989;Taljat et al., 1998; Alcala et al., 2000), the analytical formulations, depending only 
on the hardening exponent (Eqs. (A.3), (A.4), (A.6), (A.7)), lead to acceptable results only for 
dimensionless contact radii, a/R, higher than 0.3 and when sy/E is smaller than about 1/333.  
In order to take into account the influence of penetration depth, Young modulus, yield stress 
and the work hardening exponent on the hc/h ratio, two models were recently proposed by Lee 
et al. (2005) and Hernot et al. (2006). 
The Lee et al. model was proposed starting from numerical simulations of indentation by ball 
with a diameter D = 1 mm, a Young's modulus E = 537 GPa and a Poisson' s ratio n=0.24. 
The finite elements simulations were performed for materials with sy/E ratio between 1/2000 
and 1/87.5 and strain hardening exponent in the range of 0.02 to 0.999. The Lee et al model 
is: 
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This model confirms that the smaller the sy/E and the strain hardening exponent are, the 
earlier the pile up arises. This model also shows that the higher the value of penetration depth, 
the larger the piling-up is developed. The main disadvantage of the Lee et al model is its 
complexity because it requires the use of 40 coefficients aijk in order to determine the hc/h 
ratio. 
 
 
The Hernot et al. model was also proposed starting from numerical simulations results. Finite 
element simulations were performed for materials exhibiting all possible combinations of sy = 
50, 100, 250, 630, 1600, 2500, 4000 and 6300 MPa and n= 0, 0.1, 0.2, 0.3 and 0.4. Young 
modulus of 210 GPa and Poisson ratio of 0.3 were used for all simulations. These values were 
chosen in order to give sy/E ratio in the range of 1/4200-1/33, which includes most of metals. 
The Hernot et al model is given by: 
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where sy
*=sy /E. 

As the Lee et al. model, the Hernot et al model shows that the smaller the sy/E and the higher 
the penetration depth are, the larger the hc/h ratio is. The advantage of the Hernot et al. model 
is that it is simpler than the Lee et al. model. 
The Hernot et al. model has also the advantage of being established for a greater range of sy / 

E ratios, 
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model. The Hernot et al. model is also valid for higher values of penetration depth. Indeed, 
the model of Lee et al. (2005) was proposed starting from finite elements simulations 
performed up to an h/R ratio equal to 0.12, which corresponds to a a/R ratio equal to 0.49. For 
the Hernot et al. model, the finite elements simulations were performed up to an h/R ratio 
equal to 0.4, which corresponds to an a/R ratio equal to 0.8. On the other hand, the Hernot et 
al. model was established for materials of strain hardening exponent lower than 0.4, which is 
not the case for the Lee et al. model. 
 
A method different from those presented in the two preceding studies was also proposed 
recently by Kim et al. (2006) in order to take into account the influence of E, sy and the 
penetration depth on the hc/h ratio, in the case of spherical indentation. 
When the yield stress, sy, of the indented material is exceeded during spherical indentation, 
Kim et al. (2006) propose to allot the phenomenon “sinking-in, piling-up” to two independent 
behaviours. Sinking-in is caused by the elasticity of the indented material and piling-up is due 
to the plastic deformation. The contact depth, hc, is thus obtained by the addition of two 
independent terms: 

*
pile

*
cc hhh +=   (A.10) 

 
 
 

Where *
ch  is the elastic contact depth and *

pileh  is the increase in depth from *
ch by the plastic 

pile-up phenomenon. 
Starting from results of numerical simulations, Kim et al. (2006) show that the contact depth, 
due to the elastic deflection can be calculated by using Oliver and Pharr’s method (Oliver and 
Pharr, 1992), starting from the unloading curve , i.e.: 
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Where hmax and Fmax are respectively the maximum depth and the maximum applied load, e is 
a constant related to the geometry of the indenter (e = 0.75 for a paraboloid of revolution) and 
S is the experimentally measured stiffness of the upper portion of the unloading data.  
Thanks to the definition of the contact depth given by Eq. (A.10) and finite elements results, it 

is shown, that sy / E does not have much influence on *
pileh . On the basis of this observation, 

Kim et al. (2006) propose the following formulation to determine the increase in depth from 
*
ch by the plastic pile-up phenomenon, i.e. *

pileh .: 
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Where R is the indenter radius and n is the strain hardening exponent of the indented material. 
The disadvantage of this model is that it requires precise determination of the initial slope of 
the unloading curve in order to obtain the elastic stiffness, S. Moreover, this method is open to 
criticism due to the relevance of the definition of the contact depth given by Eq. (A.10) and 
especially because of the manner in which the contact depth was calculated. An examination 
of the Kim et al. results shows that the elastic contact depth calculated by using Eq. (A.11) is 
over-estimated compared to that obtained numerically, especially for materials of small sy / E 

ratio. In the same way, another examination of the Kim et al. results shows that the *
pileh  is 

little influenced by sy / E, but *
c

*
pile hh  increases when sy / E decreases. This result indicates 

that the definition of the contact depth given by Eq. (A.10) does not make it possible to 
completely dissociate the pile-up/sink-in phenomenon into two independent behaviours, 
“elastic deflection” and “plastic pileup” 
 
One disadvantage of the preceding models is that they are valid only for elastic-plastic 
materials for which the hardening behaviour follows the Hollomon hardening law (s=sy

(1-n) 

En en ). 
The models proposed by Matthews (1980), Hill et al. (1989), Taljat et al. (1998), Alcala et al. 
(2000), Kucharski and Mroz (2001) and Kim et al. (2006) require knowledge of the strain 
hardening exponent and those proposed by Lee et al. (2005) and Hernot et al. (2006) require 
knowledge of both the strain hardening exponent and the yield stress. 
In order to avoid the determination of the elastic-plastic behaviour law of material before 
determining hc/h, a methodology, based on the use of the BASh equation (Bulychev et al., 
1975, 1976; Shorshorov et al., 1981), was recently proposed by J.M Collin et al. (2008a). 
Collin et al. (2008a) also suggest using the correction of the BASh equation proposed by Hay 
and Wolf (2001) in order to obtain a radial displacement compatible with the indenter 
geometry. 
The combination of the BASh equation and this correction gives the following equations: 
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This method requires knowledge of the elastic parameters of indented material and of the 
indenter which can be easily found in the literature or determined by a non destructive 
technique such as the ultrasonic method. It also necessitates the programming of several 
loading, unloading and reloading cycles in order to determine unloading stiffness changes 
S(h). According to Collin et al. (2008a), the best evaluation of contact radius is obtained when 
a/R is lower than 0.25 because of the use of the BASh equation (Bulychev et al., 1975, 1976; 
Shorshorov et al., 1981) corrected by Hay and Wolf (2001). Finally, the method proposed by 
Collin et al. (2008a) does not necessitate the knowledge of the yield stress and the strain 
hardening exponent of the tested material. This is a real advantage when the indentation test is 
carried out on material in order to determine its characterisation. 
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Fig. 1: Microstructures of the tested steels after polishing  and nital etching, (a) AISI 1035, 
spheroidized ; (b) AISI 1065, spheroidized ; (c) AISI 1100, spheroidized and (d) AISI 4135, 
spheroidized 
 
Fig. 2: specimens used for the tensile test 
 
Fig. 3: Mesh of the indenter (carbide ball of radius R=0.5 mm) 

 
Fig. 4: Comparison between the numerical displacement of the point located on the top of the 
carbide ball and the displacement calculated starting from the load frame compliance given in 
Table 2. 

 
Fig. 5: Numerical value of the load frame compliance. 
 
Fig. 6: Engineering tensile curves 
 
Fig. 7: True stress-strain curves obtained by using the Bridgman method 
 
Fig. 8: comparison between the experimental true stress-strain curves and those corresponding 
to the fit of these curves by the Hollomon law. Different fits are represented: fits up to the 
onset of necking, up to strain equals to 0.3 and 0.4 and up to the break point. 
 
Fig. 9: Experimental and numerical dimensionless load-displacement curves obtained for the 
AISI 1035 (a), AISI 1065 (b), AISI 1100 (c) and AISI 4135 (d) steels. 
 
Fig. 10: Plastic strain isovalues obtained with the studied steels for an applied load of 200N 
and with a spherical indenter of radius R = 0.5 mm: AISI 1035 (a), AISI 1065 (b), AISI 1100 
(c) and AISI 4135 (d) steels. 
 
Fig. 11: Displacement of the center of the ball indenter obtained with Eqs. (7) and (8) and that 
calculated numerically by F.E.M (tungsten carbide indenter : E=600000 MPa, =0,28 ; 
indented material : AISI 1035 and 1100 steels). 
 
Fig. 12: Comparison between the numerical F-h curve obtained for a rigid indenter and that 
obtained by using Eqs (6) and (8) for a tungsten carbide indenter (tungsten carbide indenter : 
E=600000 MPa, =0,28, indented material : AISI 1035 steel). 
 
Fig. 13: Evolution of the radial displacement of the point located at the edge of the contact 
during unloading indentation. Results are obtained numerically for a maximum applied load 
equal to 200N and for elastic plastic materials similar to the studied steels. 
 
Fig. 14: Dimensionless contact radius, a/R, measured experimentally and calculated by the 
theoretical models.  
 
Fig. 15: Relationship between the hc/h ratio and the penetration depth, h/R. Comparison 
between the experimental results and those obtained by theoretical models. 
 
Fig. A.1 : Schematic representation of sinking-in (a) and piling-up (b) of material around 
spherical indents. 
 

Figure captions



 

Steels Initial state Heat treatment conditions 

Vickers hardness 

(30Kg) 

AISI 1035 Normalized state Spheroidization (710°C, 10 h) 156 

AISI 1065 Normalized state Spheroidization (710°C, 10 h) 181 

AISI 1100 Spheroidized state - 170 

AISI 4135 Normalized state Spheroidization (710°C, 10 h) 198 

 
 

Table 1



 
 Indenter of radius R = 0.5 mm Indenter of radius R = 1.25 mm 
 Cm (mm/N*106) E* (N/mm) Cm (mm/N*106) E* (N/mm) 
Experimental 
results  

3.56 160374 3.96 168484 

Theoretical values  170000  170000 
 

Table 2



 

 

Material Yield stress 

 (MPa) 

Tensile stress 

(MPa) 

Elongation at 

break 

(in %) 

Strain hardening 

exponent 

AISI 1035 steel 300 491 28.6 0.135 

AISI 1065 steel 285 641 23.4 0.2 

AISI 1100 steel 195 554 30.8 0.233 

AISI 4135 steel 472 638 21.8 0.105 

Table 3



Table 1: AISI standard specifications, initial state, heat treatment conditions and Vickers 
hardness of the studied steels. 
 
Table 2: Experimental values of the load frame compliance and the reduced modulus. 
 
Table 3: Tensile properties of the studied materials. 

 
 

Table captions


