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Abstract.  

A new expanding cavity model (ECM) for describing conical indentation of elastic ideally-plastic material 

is developed. For the proposed ECM, it is assumed that the volume of material displaced by the indenter is 

equal to the volume loss, due to elastic deformation, in the material and depends on the pile-up or sink-in. 

It was shown that the proposed ECM matches very well numerical data in the final portion of the 

transition regime for which the contact pressure lies between approximately 2.5Y and 3Y. For material of 

large E/Y ratio, the new ECM also matches very well numerical data in the plastic-similarity regime. For 

material of smaller E/Y ratio, the proposed ECM gives better results than the Johnson’s ECM because pile-

up or sink-in is taken into account. 

 

I. INTRODUCTION 

 

Elastic, elastic-plastic and fully plastic regimes were observed for conical indentation.1-4 The 

deformation process produced during conical indentation is well described by Love1 when the regime is 

elastic. When plasticity occurs, it is more complex to describe indentation responses because the material 

of the sample exhibits multiaxial stress conditions with high gradients and large elastic–plastic strains in 

the indentation region. Strong non-linearities are induced by the unilateral contact and the involved large 
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displacements. A Pile-up can be also developed during the indentation test. Because of the complex nature 

of the strain field produced by an indentation, the first analytical solutions have been limited to rigid-

ideally plastic or elastic materials. For the former, Tabor3 has shown that the mean indentation pressure H 

is related to the material flow stress Y by 

 

 fH C Y=  (1) 

where Cf is a constant, called “constraint factor”, depending upon the geometry of the indenter with a 

value near three. 

Slip-line pattern also leads to Eq. (1) for frictionless cone penetrating a flat surface if the semi apex angle 

of the cone is large2. It was shown that this simple hardness theory is deficient for highly elastic 

materials.5 Attempts were made to correlate indentation pressure in elastic-plastic materials using the 

theoretical analysis of the expansion of a cylindrical or spherical cavity by an internal pressure.5-7 The 

most famous of these was by Johnson.8 He considered the indenter to be encased in a hemispherical core 

of radius a which replaces the cavity in Hill’s model.9 A hydrostatic uniform pressure is assumed to exist 

throughout the core, equal in magnitude to the mean indentation pressure. In the Johnson’s model8, H is 

related not only to the yield stress (Y) but also to the Young’s modulus of the indented material (E) and 

the geometry of the indenter as well. The expanding cavity model involves certain key assumptions such 

as a not purely hydrostatic stress in the material immediately below the indenter. This assumption gives 

better agreement with experimental data but introduces other inconsistencies. The basic difficulty is that 

the assumption of a true hydrostatic pressure in the core is not valid. Other shortcomings of this model 

have been pointed out in the literature and some remedial measures have been suggested.10-12 Studman10 

pointed out a step-discontinuity in the stress field at the core-plastic zone interface. An improved result is 

obtained if it is assumed that the hemispherical core is a region in which the stresses are changing from 

purely hydrostatic to values satisfying the Von Mises yield criterion.10 This modification introduces also 

other inconsistencies. Another defect pertains to the non-vanishing normal traction outside the contact 
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zone on the specimen surface, which is an outcome of applying Hill’s solution9 for a spherical cavity 

directly to the indentation problem. There have been two elegant treatments to account for the specimen 

surface. The first is Chiang’s revised expanding model.11 They calculated an auxiliary field generated by 

the exact negative tractions applied on the surface of a half space, and then they could represent the free 

surface by summing the auxiliary field with the original solution. The second model to account for the 

surface effect is based on the Yoffe’ surface inclusion model.13 According to this model, Feng et al12 

proposed that the stress distribution outside the contact-induced plastic zone can be estimated by the 

superposition of a Hertzian field and an embedded center of dilatation (ECD) in a half-space, while the 

residual stress distribution can be estimated by the ECD field alone. Because of their complexity, these 

approaches have not been widely used in practice. 

Notwithstanding these inherent assumptions and limitations, the expanding cavity model (ECM) is still 

being employed to interpret indentation data in ductile solids.14,15 The reason for the enduring popularity 

of this model is its simplicity and ability to predict with reasonable accuracy important experimental 

results such as the indentation stress versus strain curve, evolution of plastic zone size with load and stress 

distribution beneath the indenter.2,8,14,15 

The objective of this paper is to provide a new expanding cavity model (ECM) for describing conical 

indentation. We show that the Johnson’s expanding cavity model8 based on the conservation of volume 

during an increment of penetration can be replaced by an ECM based on the equality between the 

displaced volumes and the volume loss in the indented material. In a first step, it is assumed that the 

volume of material displaced by the indenter is equal to the volume loss, due to elastic deformation, in the 

core, plastic zone and elastic zone. In a second step, we propose a new formulation of ECM for materials 

that exhibit pile-up or sink-in. It was shown that the Johnson’s ECM fits very well experiment data in the 

elastic-plastic regime, i.e. the transitional regime where H lies between 0.5~3Y.2,10,14 The purpose of this 

paper is also to show that the results of ECM can be in agreement with numerical results in regimes, 

whose contact response is more plastically dominated, if pile-up or sink-in is taken into account in the 

model.  
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II. JOHNSON’S EXPANDING CAVITY MODEL (ECM) 

It is assumed that the elastic-plastic regime begins when the yield point is exceeded and occurs up to the 

fully plastic regime for which the elasticity is considered as negligible. In this regime, the plastic zone is 

contained by material which remains elastic. For the elastic-plastic regime, Marsh4 and Johnson8 

suggested that the material in the indented zone can be viewed as being encased in an expanding 

hemispherical core. The proposed model is based on the compatibility between the volumetric expansion 

of the core and the volume of material displaced by the indenter. In this context, it was considered that (1) 

the hemispherical core is incompressible and subjected to an internal pressure, (2) the radius of the core, a 

, is equal to the contact radius and (3) the hydrostatic stress within the core is equal to the radial stress at 

the core boundary (Fig. 1). 

 

FIG. 1: Schematic illustrating the Johnson’s ECM for conical indentation. 

 

Outside the core it is assumed that the stresses and displacements have radial symmetry. The stresses in 

the plastic zone, a ≤ r ≤ c, are given by Hill9: 

 
2 1

2ln       2ln
3 3

r c c

Y r Y r

θσσ    = − − = − +   
   

 (2) 

In the elastic zone, r ≥c : 

 
3 3

2 1
        

3 3
r c c

Y r Y r

θσσ    
= − =   

   
 (3) 

At the interface between core and the plastic zone, the hydrostatic stress in the core is just equal to 

the radial component of stress in the external zone, rσ  :  
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2

2ln
3

rP c

Y Y a

σ  = − = + 
 

 (4) 

Based on the radial displacements within the plastic zone given by Hill9, conservation of volume and 

concept of geometrical similarity of the indentation, the ratio of the plastic zone size to the contact radius 

is: 

 
( )

( )
3

1 tan
4 1 2

6 1

c E

a Y

β
ν

ν
   = + −   −   

 (5) 

where β is the inclination of the face of the cone to the surface. 

III. NEW FORMULATION OF THE EXPANDING CAVITY MODEL 

A) Ratio of the plastic zone size to the contact radius 

 

For the new formulation, it is assumed that the volume of material displaced by the indenter is 

equal to the volume loss, due to elastic deformation, in the core, plastic zone and elastic zone:  

 i c p eV V V V∆ = ∆ + ∆ + ∆  (6) 

Where iV∆  is the volume of material displaced by the indenter, cV∆ , pV∆  and eV∆  are the volume loss 

due to elastic deformation, respectively in the core, plastic zone and elastic zone. 

For conical indenters, the volume of material displaced by the indenter is: 

 3 tan
3iV a
π

β∆ =  (7) 

The volume loss in the elastic zone is: 

 2 ²e r cV c uπ =∆ =  (8) 

where r cu =  is the radial displacement at the elastic-plastic interface. 

The volume loss in the plastic zone is: 

 2 ²p r a eV a u Vπ =∆ = − ∆  (9) 

where r au =  is the radial displacement at the core-plastic zone interface. 
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Using the Hill’s solution for r au = in Eq. (9) leads to:  

 ( ) ( )
3

2 2
2 1 1 2 1 3ln

3e p

Y c c
V V a a

E a a
π ν ν

    
∆ + ∆ = − − − +    

     
 (10) 

 

For the proposed formulation of ECM, constant hydrostatic pressure in the core and continuous stress field 

at the interface between core and plastic zone are assumed, i.e: 

. ( ) ( ) ( ) ( ); ;r rr a r a r a r aθ θσ σ σ σ− + − += = = = = =  (11) 

With these assumptions, the constant hydrostatic pressure in the core is equal to:  

 2 ln
c

p Y
a

=  (12) 

On contrary to the Johnson’s formulation, the stress in the core is not purely hydrostatic in our 

formulation. With the concept of geometric similarity of the indentation, i.e: c/a=constant, 
_

p  is constant 

during indentation.  

 

The advantage of the proposed formulation is that continuity in the Von Mises stress field exists at the 

interface between core and plastic zone on contrary to the classical formulation of the expanding cavity 

model8. The assumption of continuous stress field at the interface between core and plastic zone is 

incompatible with the assumption of hydrostatic core. In consequence, the mean indentation pressure can 

not be determined starting from the hydrostatic pressure.  

From Eq. (12) it follows that the volume loss in the core is: 

 ( ) ( )3 1 2
2 2 tan lnc

c
V a Y

E a

ν
π β

−
∆ = −  (13) 
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Substituting Eqs. (7), (10) and (13) into Eq. (6) then leads to 

 
( )

3
1 1 2 2
tan tan ln
6 1 1 3

c E c

a Y a

ν
β β

ν ν
−   = + −   − −   

 (14) 

Notice that, for low cone angle, Eq. (14) is similar to the Johnson’s formulation (Eq. 5). 

 

Hernot and Pichot16 show that the degree of deformation at the transition between the elastic-plastic 

regime and plastic regime depends on the normalized deformation 'Λ . In the case of conical 

indentation 'Λ  is: 

 
( )
1

' tan
2 1

E

Y
β

ν
Λ =

−
 (15) 

It thus follows that: 

 
3

' 2 1 2

3 3 1

c

a

ν
ν

Λ − 
= +  − 

 (16) 

 

B) Indentation Pressure 

The equilibrium of the core leads to the indentation load: 

 2 2 2
2ln

3

c
F a H a Y

a
π π  = = + 

 
 (17) 

where H is the indentation pressure. 

The Johnson’s formulation8, with a condition of purely hydrostatic stress in all parts of the core, is similar 

to Eq. (17). It was shown that this equation is inadequate to fit indentation experiments.2, 10 Indeed, in 

Johnson’s paper his theoretical curve lies completely beneath the data points by a roughly constant amount 

up to pressures where fully plastic behaviour ensues. For Johnson2, the problem is due to the fact that the 

stress in the material immediately below the indenter is not purely hydrostatic and thus the indentation 

pressure is not equal to the purely hydrostatic stress. Johnson modified his formulation in order to obtain a 
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best estimate of the indentation pressure. In a similar way, Eq. (17) is modified in order to obtain better 

agreement between theoretical and experimental results: 

 

 2 2 2
2 3ln

3

c
F a H a Y

a
π π  = = + 

 
 (18) 

 

Because of the proposed assumptions for the new ECM, it is not possible to keep the same arguments that 

the Johnson arguments in order to explain the modification added to Eq. (17).  

For the authors, Eq. (17) gives bad agreement with the experimental data because the proposed 

assumptions only give an approximation to the real system. Eqs. (2) and (3) are obtained with the 

assumption that the indentation of an elastoplastic half-space is equivalent to a spherical cavity expanding 

in an infinite medium. However, the spherical symmetry around a cavity in an infinite medium does not 

match the symmetry around an indentation on a half-space involving a free surface. For example, θσ must 

be equal to zero on the free surface and it is not the case by using the Eq. (2). 

 

IV. NEW FORMULATION OF ECM CONSIDERING PILE-UP AND SINK-IN 

Johnson performed his study with the assumption that no piling-up or no sinking-in occurs during 

indentation. We propose, in this section, a new formulation of ECM for materials that exhibit pile-up or 

sink-in. 

For materials that exhibit pile-up, it is assumed that the volume of material displaced by the 

indenter is equal to the pile-up volume and the volume loss, due to elastic deformation, in the core, plastic 

zone and elastic zone (Fig. 2(a)). 

For materials that exhibit sink-in, it is assumed that the volume of material displaced by the 

indenter and the sink-in volume are equal to the volume loss, due to elastic deformation, in the core, 

plastic zone and elastic zone (Fig. 2(b)). 
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a) case of piling up 

 

b) case of sinking-in 

FIG. 2: Schematic illustrating elastic–plastic indentation as idealized by the expanding cavity model 

considering surface deformation. (a) pile-up and (b) sink-in. 

 

 

A) Materials that exhibit pile-up 

 

The equality between the displaced volumes and the volume loss in the indented material is:  

 i pu c p eV V V V V∆ − ∆ = ∆ + ∆ + ∆  (19) 

Where puV∆  is the volume of the pile-up. 

The radius of the core is equal to ac and the volume of material displaced by the indenter is calculated 

starting from a (Eq. 7). The volume in the pile-up can thus be determined by geometrical conditions. The 

volume of the pile-up is calculated from: 

 1 ch
C

h
=  (20) 

Where h is the penetration depth and hc is the contact height.  

In this equation, C1 quantifies the degree of pile-up and sink-in during the indentation test; C1 
>1 indicates 

pile-up, whereas, C1 
<1 accounts for sink-in. 

The volume in the pile-up is divided into two parts. The first part corresponds to the volume of pile-up 

calculated for r<ac and the second part corresponds to the volume calculated for r>ac. The pile-up volume 
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is obtained by rotating the surface shown Fig. 2 around symmetry z-axis. For the second part of the pile-up 

volume, only a fraction, α, of the right angled triangle of legs (c-ac) and (hc-h) is considered. The value of 

α will be defined thereafter. 

Following the present geometrical considerations, the volume of the pile-up is: 

 

2
3

1 1 1

2
3

1

1 1 1
tan 1 2

3

1
tan 1 2

3

pu c

c
c c

V a
C C C

c c
a

a aC

π
β

π
α β

     ∆ = − − − + +        

     + − − + +         

 (21) 

It thus follows that: 

 
2

3
1 1

3 1
tan 2 1 2

3i pu c
c c

c c
V V a

a aC C

π
β α

        ∆ − ∆ = − + − − − + +              

 (22) 

 

Replacing variable a with ac in Eq. (13): 

 ( ) ( )3 1 2
2 2 tan lnc c

c

c
V a Y

E a

ν
π β

−
∆ = −  (23) 

 

The volume loss in the plastic zone and elastic zone is calculated starting from 
cr au = . To simplify the 

calculation, it is assumed that 
cr au =  is calculated for a spherical cap defined by the ψ  angle shown in Fig. 

2(a). It thus follows that: 

  

 ( )22 1 cos
ce p c r aV V a uπ =∆ + ∆ = − Ψ  (24) 

 

Replacing variable cosψ  with ( )ch h c−  leads to: 
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 ( ) ( )
3

2
1

1 2
2 1 tan 1 1 1 2 1 3ln

3
c

e p c c
c c

a Y c c
V V a a

c E a aC
π β ν ν

        ∆ + ∆ = − − − − − +              

 (25) 

 

Taking 'Λ defined by Eq. (15) and substituting Eqs. (22), (23) and (25) into Eq. (19) leads to: 

 

( )
( )

( )
( )

2

1 1

3 3

1 1 1

1 3 1
' 2 1 2

3

1 2 1 22 1 2 1 2
tan 1 . . 1 1 ln

3 1 1 3

c c

c c c

c c

a aC C

c c c

a a aC C C

α

ν ν
β

ν ν

        Λ − + − − − + + =             

  − −           − + − − + − + −           − −              

 (26) 

 

When tan 1β << , Eq. (26) becomes: 

 
( )
( )

3 2

1 1

1 21 3 1 2
' 2 1 2

3 3 1c c c

c c c

a a aC C

ν
α

ν

   −        = Λ − + − − − + + +        −         

 (27) 

This equation is more complex than the Johnson’s formulation. The determination of the c/ac ratio 

necessitates the solution of a polynomial equation of degree 3 and the knowledge of the C1 parameter. 

FEM simulations show that the results obtained from Eq. (27) are very close to those obtained from Eq. 

(26), even for large values of β. Notice that Eq. (27) becomes equal to the Johnson’s formulation (Eq. (5)) 

if there is no pile-up or sink-in. 

 

B. Materials that exhibit sink-in 

 

The concept of ECM based on the equality between the displaced volumes and the volume loss in the 

indented material is applied for materials that exhibit sink-in.  

Fig. 3 shows that the geometrical constructions proposed to define the pile-up can be used to define the 

sink-in. 
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FIG. 3 : Volume displaced by the indented materials that exhibit sink-in. 

 

In light of this analogy, the volume of the sink-in, i.e. siV∆ , can be determined with Eq. (19) where puV∆  

is replaced by siV∆ . It thus follows that the c/ac ratio is also obtained from Eq. (27) in the case of 

materials that exhibit sink-in. 

 

5. APPLICATION OF THE NEW ECM  

 

To illustrate the new ECM developed in the preceding section, the constraint factor Cf=H/Y obtained by 

applying Eqs. (18) and (27) is compared with numerical results. 

A. FEM. model 

 

The finite element analysis presented here assumes a conical perfectly rigid indenter in frictionless contact 

with the flat surface of the specimen. The simulations were performed in axisymmetric mode using the 

large strain elastic-plastic feature of the Abaqus finite element code. 

For conical indentation of elastic-ideally plastic materials, the degree of indentation is commonly defined 

by the non-dimensional E*
tanβ/Y (where E*=E/(1-ν2)).2 The numerical simulations were performed for 

various β angles and constant E/Y ratio. The E/Y ratios of the indented materials are equal to 200, 2000, 

20,000 and 200,000. The high value of E/Y ratio (200,000) was chosen in order to obtain a material very 

similar to the rigid-ideally plastic material for which the similarity regime can be reached. The finite 

element simulations were performed for materials with Poisson’s values v= 0, 0.3 and 0.5. The 

constitutive model of the elastic-ideally plastic indented material was taken to follow the well known J2-

associated flow theory with rate-independent deformation. The constraint factor is calculated starting from 
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the weight average of the indentation pressures obtained during the indentation process. The size of the 

elements in contact with the indenter is equal to 0.003a at maximum penetration depth. Details of the 

finite element meshes and their density-region hierarchy are given by Bartier and Hernot.17 

 

B. FEM results 

 

Fig. 4 shows the development of Cf and C
1 with ′Λ . Four regimes are differentiated in this figure. First, up 

to 0.91′Λ = , there is no deviation in behaviour from the elastic stage described by Love1. This first regime 

can be called “pseudo-elastic regime”. The second regime occurs when the contact pressure lies between 

approximately 0.7Y and 3Y. This regime corresponds to the elastic-plastic regime defined by Johnson in 

which the Johnson’s ECM given in Eq. (18) is considered as valid.2,8,10 The third regime is reached when 

Cf=3. This regime is commonly called “fully plastic”. Notice that C
1 is not constant in this regime. We 

will show thereafter that this regime is not fully plastic because the elasticity can not be considered as 

negligible. The fourth regime is reached for large values of ′Λ and corresponds to a drop of Cf. We will 

show that this regime is fully plastic. 

 

 (a): Cf- ′Λ  curves (b): C1- ′Λ  curves 

FIG. 4 : Evolution of the constraint factor, Cf, and C
1 parameter during conical indentation of 

elastic-ideally plastic material of large E/σy ratio. 
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C. New ECM predictions 

To calculate the radius of the plastic zone from Eq. (27), one has to define the value of the α constant. If 

the existence of a similarity regime is assumed, it is also assumed that Cf and C
1 take constant value 

during this regime. For materials very similar to the rigid-ideally plastic material, Cf and C
1 remain 

constant for large values of ′Λ . In order not to obtain c → ∞  from Eq. (27), it is necessary to verify that: 

 
1

1 2

3 2 1

1
2

c c

C

C c c

a a

α
−

=
−  

− + +  
 

 (28) 

For Alcala et al.18, 1 1.202C = , for Felder et al.19, 1 1.263C = , for Malherbe et al.20, 1 1.28C =  and for 

Pelletier21, 1 1.3C = . For the proposed study, 1C  was fixed at 1.28 in Eq. (27) (value close to the 

numerical results).  

In the Johnson’s ECM8, Eq. (18) gives the elastic-plastic boundary at 2.3cc a ≈  when the “fully plastic” 

state, defined by Cf=3, occurs. This result matches the experimentally based estimates of Zielinski et al.
22 

who found that 2.12cc a ≈ . By assuming that 2.2cc a ≈  and 1 1.285C = , Eq. (28) gives 0.3α = . This 

value is in agreement with the numerical results obtained for the studied materials. For example, the 

calculation of the pile-up volume for a material with E/Y=2,000 and tan 0.1β =  gives 0.3082α =  (Fig. 5) 

 

FIG. 5: (a): plastic zone, (b): shape of the imprint obtained from FEM  

(material with E/Y=2,000 and tan 0.1β = ).  

 

0.3α =  was introduced in Eq. (27). 

The variation of the normalized indentation pressure (H/Y) with the degree of indentation ( 'Λ ) obtained 

from Eqs. (18) and (27) is illustrated in Fig. 5. 
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FIG. 6: Predictions from the new ECM for conical indentation of elastic-ideally materials with 

E/Y=200,000. 

 

 In this figure, H/Y was calculated for the material with E/Y=200,000. This figure reveals that the 

theoretical results are in accordance to the finite element simulations in the third indentation regime and in 

the final portion of the second indentation regime. Fig. 7(a) shows that the shape of the plastic zone is very 

different from the shape described in Fig. 2 at the beginning of the elastic-plastic regime. For ' 2Λ = , the 

plastic zone remains embedded within an elastic zone. The failure of the assumptions involved in ECM 

can explain the difference between theoretical results and numerical results at the beginning of the elastic-

plastic regime. Fig. 6(b) shows that the plastic zone is similar to the shape of the plastic zone described in 

Fig. 2 when ' 10Λ = . Starting from this value, the predicted constraint factor curve fits well with all 

numerical data points up to the end of the third indentation regime.  

 

 (a): ' 2Λ =  (b): ' 10Λ =  

FIG. 7: Plastic zone in a material, with E/Y=200,000 and v= 0, indented by cone; (a): ' 2Λ = , (b): ' 10Λ = . 

 

 

Fig. 4(a) shows that the constraint factor remains about constant and close to 3 for ′Λ  in the range 36-

2000 (third regime). It is commonly assumed that “fully plastic” regime is reached when the constraint 

factor remains constant during plastic deformation. It is also assumed that “fully plastic” regime occurs 

when the elastic contribution to the strain field beneath the indenter is negligible, and the parameters 

E*tanβ/Y or Λ′  cease to uniquely define the degree of indentation. In order to determine if the elastic 

contribution to the strain field beneath the indenter is negligible when Cf=3, simulations were performed 

for materials with values of v= 0, 0.3 and 0.5. 
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Fig. 4(b) shows that the development of the pile-up is dependent on the Poisson’s ratio when Cf=3. This 

result shows that ′Λ  continues to define the degree of indentation, when Cf remains constant. Thus, the 

third regime can not be considered as “fully plastic”. For this regime, the new ECM has the capacity to 

describe the indentation test (Fig. 6). 

As it was mentioned above, the fourth regime corresponds to a drop of Cf. The normalized indentation 

pressure (H/Y) obtained from the proposed ECM also decreases in the fourth indentation regime, but this 

decrease is much less pronounced (Fig. 5). Fig. 4(b) shows that the decrease in Cf corresponds to a steeper 

increase in the pile-up.  

When Cf begins to decrease from 3, the Cf- ′Λ  and C1- ′Λ curves markedly separate and thus ′Λ  is 

inappropriate to correlate the indention tests on materials of various Poisson’s ratios. Fig. 8 shows the 

existence of unique solution if Cf and C
1
 are plotted versus tanβ. This indicates that the elastic 

contribution to the strain field beneath the indenter is negligible for the regime where Cf decreases. Thus, 

this regime can be considered as “fully plastic”. For this regime, the new ECM is inappropriate to describe 

the indentation test. 

 

 (a): Cf- tanβ curves (b): C1- tanβ curves 

FIG. 8: Variation of Cf, and C
1 with tanβ  for an elastic-ideally plastic material of large E/Y ratio. 

  

 

Fig. 9 shows the Variation of Cf, with ′Λ  for elastic-ideally plastic materials of various E/Y ratios. This 

figure shows that with decreasing E/Y ratio the regime where hardness remains constant tends to vanish. 

The same phenomenon was observed in the case of spherical indentation of elastic-ideally plastic 

materials.17 

 

FIG. 9: Predictions from the new ECM for conical indentation of various elastic-ideally materials. 
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As shown above, the regime where Cf decays is fully plastic. The existence of the fully plastic regime is 

due to the high values of the plastic strain located in periphery of the contact and to the greatest facility of 

material displacement on the surface. The combination of these two phenomena has as a consequence a 

decrease in the mean contact pressure and a higher increase in the pile-up (Fig. 4). Fig. 9 also shows that 

for a given apical angle of the tip, Cf becomes constant irrespectively of ′Λ  if fully plastic regime is 

reached. For our conditions, 2.54fC ≈  if a Vickers indenter with an equivalent conical tip half apex angle 

of 70:3° is used. Notice that Cf  will be higher than this value in fully plastic regime for friction contact 

and strain hardening materials.23,24 As for the elastic-ideally plastic material of large E/Y ratio, ECM does 

not match numerical results in the regime where Cf  decays (Fig. 9). We can notice however that the new 

ECM gives better results than the Johnson’s ECM because pile-up or sink-in is taken into account.  

 

 

VI. CONCLUSION 

A new expanding cavity model (ECM) for describing conical indentation of elastic ideally-plastic material 

was proposed in this paper. We show that the Johnson’s expanding cavity model based on the 

conservation of volume during an increment of penetration can be replaced by an ECM based on the 

equality between the displaced volumes and the volume loss in the indented material. For the proposed 

ECM, it is assumed that the volume of material displaced by the indenter is equal to the volume loss, due 

to elastic deformation, in the material and depends on the pile-up or sink-in. It was shown that the 

proposed ECM matches very well numerical data in the final portion of the transition regime for which the 

contact pressure lies between approximately 2.5Y and 3Y. For material of large E/Y ratio, the new ECM 

also matches very well numerical data in the plastic-similarity regime (regime in which Cf =3). It is 

commonly assumed that this last regime is “fully plastic”. We show that it is not the case because the 
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elastic contribution to the strain field beneath the indenter is non-negligible in this regime. For material of 

smaller E/Y ratio, the proposed ECM gives better results than the Johnson’s ECM because pile-up or sink-

in is taken into account. 
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FIG. 1: Schematic illustrating the Johnson’s ECM for conical indentation. 

FIG. 2: Schematic illustrating elastic–plastic indentation as idealized by the expanding cavity model 

considering surface deformation. (a) pile-up and (b) sink-in. 

FIG. 3: Volume displaced by the indented materials that exhibit sink-in. 

FIG. 4: Evolution of the constraint factor, Cf, and C
1 parameter during conical indentation of elastic-

ideally plastic material with E/Y=200,000. (a): Cf, (b): C
1. 

FIG. 5: (a): plastic zone, (b): shape of the imprint obtained from FEM (material with E/Y=2,000 and 

tan 0.1β = ).  

FIG. 6: Predictions from the new ECM for conical indentation of elastic-ideally materials with 

E/Y=200,000. 

FIG. 7: Plastic zone in a material, with E/Y=200,000 and v= 0, indented by cone; (a): ' 2Λ = , (b): ' 10Λ = . 

FIG. 8: Variation of Cf, and C
1 with tanβ for an elastic-ideally plastic material with E/Y=200,000. (a): Cf, 

(b): C1. 

FIG. 9: Predictions from the new ECM for conical indentation of various elastic-ideally materials. 
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FIG. 1: Schematic illustrating the Johnson’s ECM for conical indentation.  
72x42mm (600 x 600 DPI)  

 
 

Page 21 of 34 Journal of Materials Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
  

 

 

FIG. 2: Schematic illustrating elastic–plastic indentation as idealized by the expanding cavity model 

considering pile-up. (a) pile-up and (b) sink-in.  
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FIG. 2: Schematic illustrating elastic–plastic indentation as idealized by the expanding cavity model 

considering pile-up. (a) pile-up and (b) sink-in.  
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FIG. 3 : Volume displaced by the indenter materials that exhibit sink-in.  
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FIG. 4 : Evolution of the constraint factor, Cf, and C
1 parameter during conical indentation of elastic-ideally 

plastic material of large E/Y ratio.  
119x95mm (600 x 600 DPI)  
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FIG. 4 : Evolution of the constraint factor, Cf, and C
1 parameter during conical indentation of elastic-ideally 

plastic material of large E/Y ratio.  
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FIG. 5: (a): plastic zone, (b): shape of the imprint obtained from FEM (material with E/Y=2,000 

and  tanβ=0.1).  
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FIG. 5: (a): plastic zone, (b): shape of the imprint obtained from FEM (material with E/Y=2,000 

and  tanβ=0.1).  

106x81mm (600 x 600 DPI)  

 
 

Page 28 of 34Journal of Materials Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

FIG. 6: Predictions from the new ECM for conical indentation of elastic-ideally materials with E/Y=200,000.  
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FIG. 7: Plastic zone in a material, with E/Y=200,000 and ν= 0, indented by cone; (a):  Λ'=2, (b): Λ'=10 .  
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FIG. 7: Plastic zone in a material, with E/Y=200,000 and ν= 0, indented by cone; (a):  Λ'=2, (b): Λ'=10 .  
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FIG. 8: Variation of Cf, and C1 with tanβ for an elastic-ideally plastic material with E/Y=200,000. (a): Cf, (b): 

C1.  
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FIG. 9: Predictions from the new ECM for conical indentation of various elastic-ideally materials.  
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