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Abstract Drug-induced inhibition of mitochondrial fatty acid β-oxidation (mtFAO) is a key 

mechanism whereby drugs can induce steatosis. The type and severity of this liver lesion is dependent 

on the residual mtFAO flux. Indeed, a severe inhibition of mtFAO is leading to microvesicular 

steatosis, hypoglycemia and liver failure, which can be favored by genetic predispositions. In contrast, 

moderate impairment of mtFAO can cause macrovacuolar steatosis, which is by itself a benign lesion. 

In the long-term, however, macrovacuolar steatosis can progress with some drugs to steatohepatitis. 

Interestingly, drugs that are more likely to cause steatohepatitis are those impairing the mitochondrial 

respiratory chain (MRC) activity. Indeed, MRC impairment favors not only hepatic fat accretion but 

also oxidative stress and lipid peroxidation. Drugs inhibiting mtFAO could be more toxic in obese 

patients with preexisting nonalcoholic fatty liver disease (NAFLD) since higher mtFAO is a key 

metabolic adaptation to curb fat accretion during NAFLD.  
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Introduction 

 

Drug-induced liver injury (DILI) includes several kinds of lesions such as acute hepatitis, cholestasis, 

phospholipidosis and steatosis [1�, 2]. This latter lesion corresponds to accretion of lipids, mainly 

triglycerides, although other lipids species can also accumulate such as free fatty acids (FAs) and acyl-

carnitine derivatives [3, 4]. Actually, drugs are able to induce either microvesicular steatosis or 

macrovacuolar steatosis, and sometimes both kinds of lipid deposition [3, 5]. In this review, we will 

discuss how drug can induce hepatic steatosis by disturbing the mitochondrial fatty acid oxidation 

(mtFAO) pathway [3-7]. However, before considering drug-induced hepatic steatosis, we will recall 

key features of mtFAO and its regulation.  

 

mtFAO and Oxidative Phosphorylation  

 

mtFAO and oxidative phosphorylation (OXPHOS) have been reviewed previously in details [3, 8, 9]. 

Briefly, mitochondria provide most of ATP by way of the oxidation of substrates such as FAs and 

pyruvate. Whereas pyruvate oxidation takes place in the tricarboxylic acid (TCA) cycle, mitochondrial 

degradation of FAs is mediated by the β-oxidation pathway. To this end, FAs must cross the 

mitochondrial membranes. Whereas short-chain and medium-chain fatty acids (SCFAs/MCFAs) freely 

enter the mitochondria and are then activated into acyl-CoA molecules by specific acyl-CoA 

synthetases, long-chain fatty acids (LCFAs) must cross the mitochondrial membranes with a multi-

enzymatic system requiring both coenzyme A (CoA) and L-carnitine as cofactors. In this system, 

carnitine palmitoyltransferase 1 (CPT1) and CPT2 are playing a major role (Fig. 1). Inside 

mitochondria, acyl-CoA derivatives are cut down sequentially by the β-oxidation process that 

generates acetyl-CoA moieties and shorter fatty acids that enter new β-oxidation cycles (Fig. 1). These 

acetyl-CoA moieties subsequently generate ketone bodies (KB), which are used for ATP synthesis in 

extra-hepatic tissues. The key role of mtFAO in energy homeostasis is illustrated by the occurrence of 

multiple organ failure and death when this metabolic pathway is severely affected [3, 4, 10].  

mtFAO produces not only acetyl-CoA molecules but also NADH and FADH2 that provide their 

electrons and protons to the mitochondrial respiratory chain (MRC) (Fig. 1). This transfer of electrons 

and protons allows the regeneration of NAD+ and FAD, and the synthesis of ATP from ADP (Fig. 1). 

The whole process coupling substrate oxidation to ATP synthesis is called OXPHOS. OXPHOS 

uncouplers are drugs (or chemicals) that can reduce the mitochondrial membrane potential (�ψm) and 

abolish ATP synthesis without inhibiting substrate oxidation [3, 4, 11, 12�, 13].  
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A unique feature of mitochondria is that 13 MRC polypeptides are encoded by mitochondrial 

DNA (mtDNA) (Fig. 1). There are several hundred copies of mtDNA in a single cell and mtDNA 

replication is carried out by the DNA polymerase γ [3, 5, 8]. In liver, it is deemed that mtDNA copy 

number must fall below 20 to 40% of basal level in order to induce MRC impairment [14, 15], which 

can secondarily lead to reactive oxygen species (ROS) overproduction [16, 17]. Conversely, ROS and 

other endogenous molecules such as reactive nitrogen species (RNS) can subsequently damage 

mtDNA, thus leading to mtDNA mutations and depletion [5, 15, 18]. 

 

Regulation of the mtFAO Pathway 

 

During fasting, the expression of many enzymes involved in mtFAO is up-regulated by peroxisome 

proliferator-activated receptor α (PPARα), a transcription factor which can be activated by 

endogenous FAs [5, 9]. In addition, other transcription factors positively regulating hepatic FAO 

during fasting include forkhead box A2 (FoxA2) and cAMP-response element-binding protein (CREB) 

[5, 19]. Moreover, the PPARγ coactivators-1α and 1β (PGC-1α/β) are playing a key role in the 

transcriptional regulation of mtFAO enzymes [5, 9, 19]. After a meal, mtFAO of LCFAs can be 

inhibited by malonyl-CoA, since this intermediate of lipogenesis strongly inhibits CPT1 [3, 9].    

In pathophysiological conditions, other negative regulations can exist. For instance, any 

significant reduction in CoA and L-carnitine levels can compromise mtFAO [3, 4, 20]. A strong 

reduction of MRC activity can also impair mtFAO. Indeed, inhibition of MRC activity slows down the 

oxidation of NADH and FADH2 into NAD+ and FAD, which are mandatory cofactors for several 

mtFAO dehydrogenases [3, 21, 22]. Furthermore, any significant reduction of MRC activity can also 

impair the TCA cycle and cause lactic acidosis [4, 23].  

 

Drug-Induced Inhibition of mtFAO  

 

The main mechanisms whereby drugs are able to inhibit mtFAO can be classified into five different 

categories. It is noteworthy that different mechanisms can be involved for the same drug. 

 

Direct Inhibition of Mitochondrial β-Oxidation Enzyme(s)  

 

Some drugs (or their metabolites) can directly inhibit one or several enzyme(s) involved in mtFAO 

(Fig. 1). This has been showed with amiodarone, tamoxifen, perhexiline and valproic acid (VPA), or 

suspected with ibuprofen, amineptine and tianeptine [3-5, 24-28, 29�]. For the latter three drugs, a 
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stronger inhibition of mitochondrial β-oxidation of SCFAs and MCFAs compared to LCFAs suggested 

a specific impairment of enzymes involved in SCFA and MCFA oxidation, although the investigations 

did not determine the exact targeted enzyme(s) [24, 25].  

Regarding VPA (dipropylacetic acid), severe inhibition of mtFAO is probably due to the 

generation of �2,4-VPA-CoA and other reactive metabolites that irreversibly inactivate FAO 

enzyme(s) [3, 30]. Interestingly, acetaminophen (APAP) could inhibit mtFAO and MRC activity via 

the generation of N-acetyl-p-benzoquinone imine (NAPQI) [31, 32], a reactive metabolite generated 

by cytochromes P450 3A4 and 2E1 (CYP2E1) [33]. This may explain, with other mechanisms (see 

below), why APAP intoxication can induce steatosis in rodents [34-36] and in some individuals (Table 

1) [1�, 2].  

Some investigations allowed the identification of the mtFAO enzyme(s) inhibited by the 

aforementioned drugs. For instance, it has been shown that CPT1 can be inhibited by VPA, 

amiodarone and tamoxifen [28, 29�, 37]. Troglitazone is able to inhibit long-chain acyl-CoA synthase 

(ACS) (Fig. 1), thus impairing the mitochondrial entry of LCFAs through a CPT1-independent 

mechanism [38].  

 

Sequestration of CoA and/or L-Carnitine 

 

Drugs such as VPA, salicylic acid and ibuprofen can impair mtFAO via the generation of CoA and/or 

L-carnitine esters, which decreases the availability of these cofactors for the β-oxidation of 

endogenous FAs (Fig. 1) [3, 5, 25, 39]. However, drug-induced inhibition of mtFAO secondary to 

CoA and/or L-carnitine depletion could occur only when cellular levels of these cofactors are already 

below physiological concentrations [25, 39]. For some drugs, generation of xenobiotic acyl-CoA 

thioesters could also competitively inhibit different mitochondrial enzyme(s) [40].  

 

Inhibition of the MRC  

 

mtFAO can also be secondarily impaired as a result of severe inhibition of the MRC [3-5]. This could 

occur with amiodarone, perhexiline, tamoxifen and buprenorphine [4, 21, 26, 28, 41]. Interestingly, 

these amphiphilic drugs can be protonated within the mitochondrial intermembrane space, thus 

generating cationic compounds entering the matrix thanks to �ψm (Fig. 1). This allows their 

accumulation within mitochondria and the subsequent inhibition of mtFAO and MRC enzymes. 

Actually, whereas relatively low concentrations of these amphiphilic drugs can inhibit directly FAO 

enzyme(s), higher concentrations are required to impair the respiratory chain [11, 21, 26, 28, 41]. 

Thus, mitochondrial accumulation of these amphiphilic drugs eventually inhibits FAO through a dual 
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mechanism. The precise sites of MRC inhibition have been identified for amiodarone and perhexiline, 

which both inhibit complexes I and II [21, 26].  

For some drugs inhibiting mtFAO, investigations have not been able to clearly establish whether 

this deleterious effect was due to direct inhibition of mtFAO enzyme(s), or to indirect inhibition via 

MRC impairment. This is the case for tetracycline derivatives for which bone fine inhibition of mtFAO 

has been shown in some investigations [42, 43], while MRC (or OXPHOS) impairment has been 

demonstrated in other independent studies [3, 44, 45].  

Drugs such as tianeptine and ibuprofen inhibit MRC activity, in particular at the level of complex 

I [46-48]. Importantly, these effects were demonstrated on heart, duodenum or brain mitochondria. 

However, some investigations showed that mitochondrial toxicity could greatly vary between tissues 

[15, 49]. Actually, ibuprofen and tianeptine-induced impairment of complex I in liver mitochondria is 

unlikely to be strong because this would cause a similar inhibition of β-oxidation with all kinds of FAs 

(i.e. SCFAs, MCFAs and LCFAs), thus irrespective of their chain length. However, investigations 

performed on isolated mouse liver mitochondria showed that these drugs inhibited more strongly the 

β-oxidation of SCFAs and MCFAs compared to LCFAs [24, 25]. Accordingly, although ibuprofen 

inhibited mitochondrial respiration on isolated liver mitochondria (Table 2) [12�], this effect appeared 

with much higher concentrations compared to those affecting MRC activity with mitochondria isolated 

from duodenum [48]. 

 

Impairment of mtDNA Replication 

 

Inhibition of mtFAO can also result from reduced hepatic mtDNA levels. This mechanism has been 

shown for the antiviral fialuridine (FIAU), zidovudine (AZT), stavudine (d4T) and didanosine (ddI), 

which all inhibit mtDNA polymerase γ activity [3-5, 50, 51]. Importantly, liver injury induced by these 

drugs can be associated with severe lactic acidosis, which is caused by TCA cycle inhibition. 

Interestingly, tamoxifen and tacrine can induce hepatic mtDNA depletion possibly by interacting with 

the mitochondrial topoisomerases [28, 52].  

Finally, some drugs could also induce mtDNA depletion via the generation of ROS, RNS and/or 

reactive metabolites. For instance, APAP and troglitazone can reduce mtDNA levels by inducing 

mtDNA strand breaks [53, 54]. Indeed, damaged mtDNA molecules harboring numerous strand breaks 

(or other bulky damages) can be rapidly degraded by mitochondrial endonucleases [18, 55].  

 

Impaired PPARα Activity  
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Some drugs could impair mtFAO by reducing PPARα expression and activity. This is suspected with 

APAP, VPA and tetracycline that reduce the mRNA expression of PPARα and some of its target genes 

including CPT1 [36, 44, 56]. Although the direct consequences of this effect are still uncertain, 

impairing PPARα activity could prevent an important metabolic adaptation that takes place during 

drug-induced steatosis [57, 58]. The mechanism(s) whereby these drugs could impair PPARα 

expression might deserve further attention.  

 

Drug-Induced Alterations of Other Pathways Involved in Lipid Homeostasis  

 

Although not being in the scope of this article, it is noteworthy that drug-induced steatosis can be also 

caused by other mechanisms. For instance, drugs can inhibit very low density lipoprotein (VLDL) 

secretion and increase lipid synthesis, in particular by direct (or indirect) activation of key lipogenic 

transcription factors such as sterol regulatory element binding protein 1c (SREBP-1c) and PPARγ [5, 

59, 60]. Interestingly, some drugs such as amiodarone and tamoxifen could both inhibit mtFAO and 

stimulate de novo lipogenesis [5, 61�].  

 

Drug-Induced Microvesicular Steatosis 

 

Numerous investigations have shown that drug-induced microvesicular steatosis is the consequence of 

severe inhibition of mtFAO [3-7, 21, 24, 25, 28, 29�, 39, 42, 62]. Interestingly, this mechanism is also 

involved in the pathophysiology of microvesicular steatosis occurring in other conditions such as 

inborn errors of mtFAO, Reye’s syndrome and acute fatty liver of pregnancy [3, 10]. 

A primary consequence of severe inhibition of mtFAO is ATP depletion and accumulation of FAs 

that are either esterified into triglycerides, or that remain as a free form [3, 13]. It has been postulated 

that the small size of the lipid droplets could be due to an “emulsification” of triglycerides by free fatty 

acids [3], although this hypothesis has never been confirmed. Alternatively, the nature and/or the 

abundance of some proteins wrapping the lipids could play a role [5, 63]. Whereas triglycerides are not 

toxic for the cells, free FAs and some of their derivatives (i.e. acyl-CoA thioesters and dicarboxylic 

acids) could worsen mitochondrial dysfunction and cause cell death [3, 9, 64].  

Drug-induced microvesicular steatosis is a potentially severe and fatal liver lesion that can be 

associated with liver failure, encephalopathy and profound hypoglycemia [3-5]. Liver pathology shows 

the presence within the cytoplasm of numerous lipid droplets, which leave the nucleus in the center of 

the hepatocyte [3, 21, 42, 62]. Besides lipid accumulation, hepatic cytolysis and increased plasma 



8 
 

transaminases can also be observed to a variable degree. Examples of drugs able to induce 

microvesicular steatosis are given in Table 1 [3, 4, 5, 65-68].  

Drug-induced microvesicular steatosis can be associated with severe hypoglycemia and abnormal 

levels of plasma KB [3-5]. Hypoglycemia could be due to impaired gluconeogenesis and/or to higher 

extra-hepatic utilization of glucose [3, 69]. Although hypoketonemia has been observed with VPA, 

pirprofen and ibuprofen, high levels of plasma KB was also reported experimentally with amineptine, 

amiodarone, salicylic acid, tetracycline and tianeptine [3, 4, 21, 24, 39, 42, 70]. Drug-induced 

hyperketonemia could be related to a severe inhibition of peripheral KB utilization [3, 4]. Finally, 

microvesicular steatosis can be associated with an accumulation of acyl-carnitine derivatives and 

dicarboxylic acids in plasma and urine [3-5]. 

 

Inhibition of mtFAO and Steatosis Induced by Other Xenobiotics 

 

Although beyond the scope of this review, it is noteworthy that non-pharmaceutical compounds are 

able to inhibit mtFAO and induce hepatic lipid accumulation, especially as microvesicular steatosis. It 

is for instance the case with alcohol, cocaine, perfluorooctane sulfonate (a persistent organic pollutant), 

triptolide (a diterpenoid epoxide isolated from a Chinese woody wine plant), and hypoglycine (a toxin 

present in the unripe fruit of Jamaican ackee tree) [3, 55, 71�, 72, 73].       

 

Factors Favoring Drug-Induced Mitochondrial Dysfunction 

 

At least three factors could favor drug-induced impairment of mtFAO and MRC activity. Importantly, 

these factors are not mutually exclusive and their combination is likely to induce severe mitochondrial 

dysfunction and microvesicular steatosis in some patients.   

1) Drug structure and biotransformation. Amiodarone, perhexiline and tamoxifen are amphiphilic 

drugs harboring protonable amine moieties that favor their accumulation inside the mitochondrial 

matrix [3, 7, 11, 26, 28]. For amiodarone, the benzofuranyl-phenylmethanone moiety could be the 

chemical structure responsible for mitochondrial dysfunction [74, 75, 76�]. VPA is a branched-chain 

fatty acid that freely enters the mitochondria, where it is activated by CoA and undergoes β-oxidation 

[3, 6, 40]. However, the two-step biotransformation of VPA by CYPs and β-oxidation generates 

reactive metabolites that irreversibly inactivate FAO enzymes and induce cytotoxicity [3, 30, 77]. 

Regarding the role of CYPs, it is noteworthy that APAP-induced dysfunction of liver mitochondria 

could depend, at least in part, on the presence of CYP2E1 within these organelles [32]. Finally, the 

antiretroviral nucleoside reverse transcriptase inhibitors (NRTIs) are able to inhibit mtDNA replication 

and cause severe mtDNA depletion owing to their structural analogy with the natural nucleosides [3, 
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6]. In this pharmacological class, drugs such as zalcitabine (ddC), ddI and d4T are significantly more 

toxic to mitochondria than others (AZT and lamivudine) [78]. 

2) Drug dosage and duration of treatment. Clinical reports in the 50’s and 60’s indicated that 

severe microvesicular steatosis induced by tetracycline and its derivatives was clearly dose-dependent 

[3]. In particular, most cases of steatosis were observed in patients receiving large intravenous dosages 

(>1.5 g/day) of tetracycline derivatives [3]. However, tetracycline-induced steatosis is no longer 

observed since such huge intravenous doses have been abandoned. Long-lasting administration of 

NRTIs also increases the risk of mitochondrial toxicity in liver and other tissues [15, 79].  

3) Genetic predispositions. Several congenital defects in mtFAO and OXPHOS enzymes have 

been detected in patients with VPA-induced hepatotoxicity [3, 5, 80]. A mutation in the gene encoding 

DNA polymerase γ (POLG) could favor mitochondrial toxicity induced by NRTIs, possibly by 

enhancing the probability of their incorporation within the mtDNA molecules and the subsequent 

arrest of mtDNA replication [5, 81]. Intriguingly, mutations in the POLG gene could also favor VPA-

induced hepatotoxicity [82�], although this cannot be explained by the incorporation of VPA within 

mtDNA. Finally, interindividual differences in mitochondrial antioxidant enzymes such as MnSOD 

could enhance the risk of mitochondrial toxicity and liver injury [83, 84].  

 

Drug-Induced Macrovacuolar Steatosis and Steatohepatitis 

 

With some drugs, liver triglycerides accumulate as a large (often single) lipid vacuole displacing the 

nucleus close to the plasma membrane. This lesion is commonly referred to as macrovacuolar steatosis 

and can be induced by other factors such as high-calorie feeding and ethanol intoxication [4, 83, 85]. 

Examples of drugs able to induce macrovacuolar steatosis are indicated in Table 1 [4, 5, 86-88]. 

The prevalence of drug-induced macrovacuolar steatosis may be underestimated, mainly because 

this liver lesion is benign, at least in the short term. However, this lesion can progress in the long term 

to steatohepatitis, which is characterized by necrosis, inflammation and some fibrosis. Moreover, some 

drugs such as amiodarone, perhexiline, tamoxifen and didanosine (ddI) can also induce cirrhosis after 

long-term treatment (Table 1) [1�, 5].  

In contrast to microvesicular steatosis that can be considered as a bona fide mitochondrial disease, 

several mechanisms seem to be involved in the pathogenesis of drug-induced macrovacuolar steatosis. 

These mechanisms include moderate inhibition of mtFAO, enhanced de novo lipogenesis and reduced 

secretion of VLDL [5, 59, 60]. Importantly, these different mechanisms are not mutually exclusive, 

and for instance some drugs can inhibit both mtFAO and VLDL secretion [5, 60].  

It is also noteworthy that some drugs can induce both microvesicular and macrovacuolar steatosis 

(Table 1). Although the exact reason of this observation is unclear, it is conceivable that 
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microvesicular steatosis could occur when mtFAO is severely inhibited, whereas macrovacuolar 

steatosis could take place if mitochondrial function is relatively preserved [5]. The differences in the 

severity of drug-induced mitochondrial dysfunction can be explained by several factors, as discussed 

in the previous section. 

Although the pathophysiology of drug-induced steatohepatitis is not fully understood, some data 

suggest that reduced MRC activity could be involved [4, 5, 26, 89]. Indeed, MRC inhibition could not 

only contribute to fat deposition but also to ATP deficiency, which can cause necrosis. Moreover, 

MRC impairment can be associated with ROS overproduction, a key event involved in the progression 

of fatty liver to steatohepatitis whatever its etiology [5, 9, 89]. Importantly, ROS overproduction in a 

cellular environment enriched in fat can trigger lipid peroxidation and the production of reactive 

aldehydes that induce many deleterious effects in liver [5, 9, 89, 90]. Although drug-induced inhibition 

of MRC and β-oxidation mostly leads to the hepatic accretion of saturated fatty acids, some 

polyunsaturated fatty acids can also accumulate in sufficient quantity to generate lipid peroxidation-

derived reactive aldehydes in the presence of ROS [71].      

 

Drug-Induced Inhibition of mtFAO and Aggravation of NAFLD  

 

Obesity is often associated with metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), 

dyslipidemia and type 2 diabetes [5, 9]. During NAFLD, insulin resistance and adaptive 

hyperinsulinemia favor fat deposition in liver, in particular via SREBP1c-mediated de novo 

lipogenesis [9]. However, there is a compensatory stimulation of mtFAO in order to limit fat accretion 

[9, 85, 91]. Thus, any significant impairment of mtFAO is likely to aggravate NAFLD in obese 

individuals. Moreover, drugs that alter MRC activity are also likely to promote the progression of fatty 

liver to nonalcoholic steatohepatitis (NASH) by enhancing ROS generation and oxidative stress [59]. 

Drugs that are suspected to aggravate NAFLD in obese patients are tamoxifen, raloxifene, 

irinotecan, methotrexate and NRTIs such as stavudine and didanosine [9, 59, 92]. Interestingly, 

inhibition of mtFAO has been documented with several of these drugs, namely tamoxifen, raloxifene 

and NRTIs [3, 28, 93, 94]. Moreover, drugs such as tamoxifen, methotrexate and NRTIs can inhibit 

MRC activity and favor oxidative stress [3, 16, 28, 95, 96]. However, for some of these compounds, 

aggravation of preexisting NAFLD could also be secondary to other mechanisms. For instance, 

tamoxifen could also inhibit VLDL secretion and stimulate de novo lipogenesis [28, 59, 97]. 

We took advantage of the present article to determine whether β-oxidation of palmitoyl-L-

carnitine could be more severely inhibited by some of the afore-mentioned drugs when liver 

mitochondria were isolated from ob/ob mice compared to wild-type mice. Although irinotecan, 

methotrexate and tamoxifen impaired palmitoyl-L-carnitine β-oxidation, this inhibition was not 
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statistically different between wild-type and ob/ob liver mitochondria (Table 2). Nevertheless, further 

investigations will be required to determine whether chronic administration of these drugs could 

aggravate fatty liver in ob/ob mice. In contrast, other drugs were able to inhibit palmitoyl-L-carnitine 

β-oxidation more strongly on ob/ob liver mitochondria, as discussed below.    

 

Conclusion and Outlook  

 

As discussed in this review, inhibition of mtFAO is a key mechanism whereby drugs can induce 

steatosis and actually drug-induced microvesicular steatosis can be considered as a mitochondrial 

disease [3-7]. Moreover, long-term impairment of MRC activity could be an important mechanism 

leading to drug-induced steatohepatitis, in particular as a result of mitochondrial ROS overproduction 

[5, 26, 89]. It is also noteworthy that some drugs able to induce mitochondrial dysfunction could be 

more toxic in obese patients with preexisting NAFLD, which could be aggravated during the 

treatment. Indeed, drug-induced mtFAO impairment can impede a key compensatory metabolic 

pathway set up during NAFLD in order to limit hepatic fat accumulation [9, 59, 91], whereas MRC 

impairment is able to major oxidative stress and lipid peroxidation [26, 89].  

Although numerous drugs can induce steatosis [1, 3, 4], their ability to inhibit mtFAO is still 

unknown for a majority of them. Thus, high-throughput screening can be suited in order to determine 

whether inhibition of mtFAO is a frequent feature observed with all the steatogenic drugs. Importantly, 

such screening could also assess the ability of these drugs to impair MRC activity [12�, 98�]. These 

investigations can also be performed on liver mitochondria isolated from obese and wild-type mice in 

order to determine whether “obese” mitochondria are more sensitive to drug-induced mitochondrial 

dysfunction. Table 2 gives some examples of steatogenic drugs and their ability to inhibit (or not) 

mitochondrial respiration assessed with glutamate/malate and palmitoyl-L-carnitine/malate on liver 

mitochondria isolated from lean and ob/ob mice.  

These investigations provided some new interesting findings. For instance, diclofenac and 

ibuprofen-induced inhibition of mtFAO was stronger with ob/ob mitochondria (Table 2). Importantly, 

this stronger impairment was not due to lower basal oxygen consumption with palmitoyl-L-carnitine 

since it was increased by 62% in ob/ob mitochondria as compared to wild-type mitochondria, in 

keeping with previous investigations [9, 91]. Moreover, diclofenac induced a stronger inhibition of 

glutamate/malate-driven respiration on ob/ob mitochondria. It would be interesting to determine 

whether these two NSAIDs could worsen fatty liver in ob/ob mice, or in other murine models of 

obesity and NAFLD. Our investigations also revealed that irinotecan strongly inhibited mtFAO and 

MRC activity (Table 2). Although more investigations will be needed, these novel data could explain 

why this antineoplastic drug is able to induce steatohepatitis in some patients (Table 1) [2, 99]. Finally, 
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we found that AZT inhibited palmitoyl-L-carnitine-driven respiration at concentrations below those 

required to impair MRC (Table 1). Interestingly, some investigations already showed that this 

antiretroviral drug was able to directly impair MRC activity (e.g. complex II), in addition to its long-

term deleterious effect on mtDNA replication [15]. Thus, AZT could also directly inhibit mtFAO in 

liver, in addition to its detrimental effects on MRC activity.  
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Table 1  
Examples of drugs inducing microvesicular steatosis, macrovacuolar steatosis, steatohepatitis or 
cirrhosis in treated patients. 

Drug Therapeutic class Liver lesions 
 
Acetaminophen (overdose) 
Amineptine   
Amiodarone 
Aspirin (and salicylic acid) 
Carbamazepine 
Diclofenac 
Didanosine (ddI) 
Enalapril  
Fialuridine (FIAU) 
5-Fluorouracil 
Glucocorticoids 
Ibuprofen 
Indinavir  
Interferon-α 
Irinotecan 
Methotrexate 
Nifedipine 
Panadiplon 
Perhexiline 
Pirprofen 
Raloxifene  
Stavudine (d4T) 
Tamoxifen 
Tetracycline and its derivatives (high doses)  
Tianeptine 
Toremifene 
Troglitazone  
Valproic acid  
Zidovudine (AZT) 

 
Analgesic, antipyretic  
Antidepressant  
Antianginal, antiarrhythmic  
NSAID 

Antiepileptic  
NSAID 

Antiretroviral (anti-HIV)  
Antihypertensive (ACE inhibitor)  
Antiviral (anti-HBV)  
Antineoplastic (colorectal cancer) 
Anti-inflammatory 
NSAID 
Antiretroviral (anti-HIV)  
Antiviral (anti-HCV and anti-HBV) 
Antineoplastic (colorectal cancer) 
Antipsoriatic, anti-rheumatoid 
Antianginal, antihypertensive 
Anxiolytic  
Antianginal 
NSAID  
SERM, anti-osteoporotic 
Antiretroviral (anti-HIV)  
SERM, antineoplastic (breast cancer) 
Antibiotics 
Antidepressant  
SERM, antineoplastic (breast cancer) 
Antidiabetic 
Antiepileptic 
Antiretroviral (anti-HIV)  

 
MiSt1, MaSt 
MiSt 
MiSt, MaSt, StH, Cir 
MiSt 
MaSt, StH, Cir 
MaS, Cir 
MiSt, MaSt, StH, Cir 
MiSt 
MiSt 
MaSt, Cir 
MaSt 
MiSt, MaSt, Cir 
MiSt 
MaSt 
MaSt, StH 
MaSt, StH, Cir 
MaSt, StH 
MiSt 
MaSt, StH, Cir 
MiSt 
MaSt 
MiSt, MaSt, StH, Cir 
MaSt, StH, Cir 
MiSt 
MiSt 
MaSt 
MiSt 
MiSt 
MiSt 
 

1Abbreviations in the table: ACE: angiotensin-converting enzyme; Cir, Cirrhosis; HBV, hepatitis B virus; 
HCV, hepatitis V virus; HIV, human immunodeficiency virus; MaSt, macrovacuolar steatosis; MiSt, 
microvesicular steatosis; NSAID, nonsteroidal anti-inflammatory drug; SERM, selective estrogen receptor 
modulator; StH, Steatohepatitis. Drugs in italics have been shown to impair mitochondrial β-oxidation and/or 
other key mitochondrial functions such the MRC activity. Information concerning liver lesions can be found 
mainly in references [1-7] and [100].  
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Table 2  
Drug-induced inhibition of mitochondrial respiration with glutamate/malate and palmitoyl-L-
carnitine/malate in liver mitochondria isolated from lean and ob/ob mice1. 
Drugs Lean mice Ob/ob mice 

Glutamate  
+ malate 

Palmitoyl-L-carnitine  
+ malate 

Glutamate  
+ malate 

Palmitoyl-L-carnitine  
+ malate 

 
 
Acetaminophen (APAP)  
Carbamazepine 
Diclofenac 
Ibuprofen 
Irinotecan  
Methotrexate 
Salicylic acid 
Tamoxifen 
Zidovudine (AZT) 

>4002 

>400 
35 
107 
10 
53   

>400 
42 
309  

 >400 
>400 
47 
287 
6 
44 

>400 
4 
79 

>400  
379 
16* 
99 
25 
40 

>400 
72 
144 

>400 
341 
11*  
80* 
10 
42 

>400 
11 
83 

1Measurement of oxygen consumption in the presence of ADP (state 3) and the different substrates was 
carried out on the Mitologics' screening platform, as previously described [12�]. Whereas glutamate/malate-
driven mitochondrial respiration assesses the MRC activity from complex I to complex IV, palmitoyl-L-

carnitine/malate-driven respiration evaluates LCFA mtFAO. 2Numbers in this table correspond to the effective 

concentrations (in µM) inducing 20% of the maximal effects (EC20) as described in [12�]. Values are means 
for 3 to 5 different mitochondrial preparations. *Different from lean mice (P<0.05).  
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Legend to Figure 1 

 

Mitochondrial β β β β-Oxidation and main mechanisms whereby drugs can impair this metabolic 

pathway. Adapted from Begriche et al. [5]. Whereas short and medium-chain fatty acids (SCFAs and 

MCFAs) freely enter mitochondria (not shown), the entry of long-chain fatty acids (LCFAs) within 

these organelles requires a specific shuttle system involving four steps. (1) LCFAs are activated into 

LCFA- CoA thioesters by long-chain acyl-CoA synthetases (ACS). (2) The LCFA-CoA is converted 

into an acyl-carnitine by carnitine palmitoyltransferase-1 (CPT1) located in the outer mitochondrial 

membrane. (3) The acyl-carnitine is transferred across the inner mitochondrial membrane into the 

mitochondrial matrix by carnitine-acylcarnitine translocase. (4) Finally, carnitine palmitoyltransferase-

2 (CPT2), located on the inner side of the inner mitochondrial membrane, transfers the acyl moiety 

from carnitine back to coenzyme A (CoA). Acyl-CoA thioesters are then oxidized into acetyl-CoA 

moieties via the β-oxidation process, irrespective of their chain length. Acetyl-CoA moieties can then 

generate ketone bodies (mainly acetoacetate and β-hydroxybutyrate), which are liberated into the 

plasma and used by extra-hepatic tissues for energy production. mtFAO generates NADH and FADH2, 

which transfer their electrons (e-) to the mitochondrial respiratory chain (MRC), thus regenerating 
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NAD+ and FAD used for other β-oxidation cycles. Within the MRC, electrons are sequentially 

transferred to different polypeptide complexes (numbered from I to IV) embedded within the inner 

membrane. The final transfer of the electrons to oxygen takes place at the level of complex IV 

(cytochrome c oxidase). Importantly, the flow of electrons within the MRC is coupled to the extrusion 

of protons (H+) from the matrix to the intermembrane space, which creates the mitochondrial 

transmembrane potential, �ψm. When energy is needed, these protons re-enter the matrix through ATP 

synthase (complex V), thus liberating energy that is used to phosphorylate ADP into ATP. The 

mitochondrial DNA (mtDNA) encodes 13 polypeptides, which are inserted within complexes I, III, IV 

and V. Drugs can impair mtFAO through different mechanisms such as: 1) direct inhibition of β-

oxidation enzyme(s), including ACS, CPT1 and different acyl-CoA dehydrogenases; 2) sequestration 

of the mtFAO cofactors L-carnitine and CoA; 3) inhibition of MRC activity, either directly or 

indirectly by way of mtDNA depletion; 4) impairment of PPARα expression and activity (not shown).  

 


