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Abstract Drug-induced inhibition of mitochondrial fatty acifi-oxidation (mtFAO) is a key
mechanism whereby drugs can induce steatosis.ypleeaind severity of this liver lesion is dependent
on the residual mtFAO flux. Indeed, a severe irtuhi of MtFAO is leading to microvesicular
steatosis, hypoglycemia and liver failure, which & favored by genetic predispositions. In comtras
moderate impairment of mtFAO can cause macrovacstdatosis, which is by itself a benign lesion.
In the long-term, however, macrovacuolar steatoars progress with some drugs to steatohepatitis.
Interestingly, drugs that are more likely to cagtEatohepatitis are those impairing the mitochahdri
respiratory chain (MRC) activity. Indeed, MRC imaent favors not only hepatic fat accretion but
also oxidative stress and lipid peroxidation. Drumgjsibiting mtFAO could be more toxic in obese
patients with preexisting nonalcoholic fatty livdisease (NAFLD) since higher mtFAO is a key
metabolic adaptation to curb fat accretion duringAND.



| ntroduction

Drug-induced liver injury (DILI) includes severainkls of lesions such as acute hepatitis, cholestasi
phospholipidosis and steatosis,[R]. This latter lesion corresponds to accretiédigds, mainly
triglycerides, although other lipids species caoaccumulate such as free fatty acids (FAs) ayd ac
carnitine derivatives [3, 4]. Actually, drugs arbleato induce either microvesicular steatosis or
macrovacuolar steatosis, and sometimes both kindipidfdeposition [3, 5]. In this review, we will
discuss how drug can induce hepatic steatosis §tyirling the mitochondrial fatty acid oxidation
(mtFAO) pathway [3-7]. However, before considerohgig-induced hepatic steatosis, we will recall

key features of mtFAO and its regulation.

mtFAO and Oxidative Phosphorylation

mtFAO and oxidative phosphorylation (OXPHOS) haeerbreviewed previously in details [3, 8, 9].
Briefly, mitochondria provide most of ATP by way tife oxidation of substrates such as FAs and
pyruvate. Whereas pyruvate oxidation takes pladhartricarboxylic acid (TCA) cycle, mitochondrial
degradation of FAs is mediated by tBeoxidation pathway. To this end, FAs must cross the
mitochondrial membranes. Whereas short-chain ardiumechain fatty acids (SCFAs/MCFAS) freely
enter the mitochondria and are then activated mtgl-CoA molecules by specific acyl-CoA
synthetases, long-chain fatty acids (LCFAs) mussgrthe mitochondrial membranes with a multi-
enzymatic system requiring both coenzyme A (CoAj &rcarnitine as cofactors. In this system,
carnitine palmitoyltransferase 1 (CPT1) and CPT2 afaying a major role (Fig. 1). Inside
mitochondria, acyl-CoA derivatives are cut down saqially by the (3-oxidation process that
generates acetyl-CoA moieties and shorter fattgsattiat enter ne-oxidation cycles (Fig. 1). These
acetyl-CoA moieties subsequently generate ketomebdKB), which are used for ATP synthesis in
extra-hepatic tissues. The key role of mtFAO inrgpdnomeostasis is illustrated by the occurrence of
multiple organ failure and death when this metabpéthway is severely affected [3, 4, 10].

mtFAO produces not only acetyl-CoA molecules besbdNADH and FADH that provide their
electrons and protons to the mitochondrial respiyathain (MRC) (Fig. 1). This transfer of electrons
and protons allows the regeneration of NAdhd FAD, and the synthesis of ATP from ADP (Fip. 1
The whole process coupling substrate oxidation P Asynthesis is called OXPHOS. OXPHOS
uncouplers are drugs (or chemicals) that can retheenitochondrial membrane potentiall,) and
abolish ATP synthesis without inhibiting substrakgdation [3, 4, 11, 1213].



A unique feature of mitochondria is that 13 MRC ypaptides are encoded by mitochondrial
DNA (mtDNA) (Fig. 1). There are several hundred iespof mtDNA in a single cell and mtDNA
replication is carried out by the DNA polymeragE, 5, 8]. In liver, it is deemed that mtDNA copy
number must fall below 20 to 40% of basal levebider to induce MRC impairment [14, 15], which
can secondarily lead to reactive oxygen speciesS)R®erproduction [16, 17]. Conversely, ROS and
other endogenous molecules such as reactive nitregecies (RNS) can subsequently damage
MtDNA, thus leading to mtDNA mutations and depletj6, 15, 18].

Regulation of the mtFAO Pathway

During fasting, the expression of many enzymes lires in mtFAO is up-regulated by peroxisome
proliferator-activated receptoo (PPARx), a transcription factor which can be activated by
endogenous FAs [5, 9]. In addition, other transmip factors positively regulating hepatic FAO

during fasting include forkhead box ABoxA2) and cAMP-response element-binding prot@RIEB)

[5, 19]. Moreover, the PPARcoactivators-@ and B (PGC-In/p) are playing a key role in the

transcriptional regulation of mtFAO enzymes [5,19)]. After a meal, mtFAO of LCFAs can be

inhibited by malonyl-CoA, since this intermediatelipbgenesis strongly inhibits CPT1 [3, 9].

In pathophysiological conditions, other negativeggulations can exist. For instance, any
significant reduction in CoA and L-carnitine levatan compromise mtFAO [3, 4, 20]. A strong
reduction of MRC activity can also impair mtFAOd#ed, inhibition of MRC activity slows down the
oxidation of NADH and FADH into NAD" and FAD, which are mandatory cofactors for several
mtFAO dehydrogenases [3, 21, 22]. Furthermore, sagpyificant reduction of MRC activity can also
impair the TCA cycle and cause lactic acidosi2[3],

Drug-Induced Inhibition of mtFAO

The main mechanisms whereby drugs are able to tnmithHAO can be classified into five different
categories. It is noteworthy that different meckars can be involved for the same drug.

Direct Inhibition of Mitochondria3-Oxidation Enzyme(s)

Some drugs (or their metabolites) can directly bithone or several enzyme(s) involved in mtFAO
(Fig. 1). This has been showed with amiodaronepidien, perhexiline and valproic acid (VPA), or

suspected with ibuprofen, amineptine and tianepib, 24-28, 2¢. For the latter three drugs, a
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stronger inhibition of mitochondrifd-oxidation of SCFAs and MCFAs compared to LCFAsgasied
a specific impairment of enzymes involved in SChA MCFA oxidation, although the investigations
did not determine the exact targeted enzyme(s)42},

Regarding VPA (dipropylacetic acid), severe inhdnt of mtFAO is probably due to the
generation ofA2,4-VPA-CoA and other reactive metabolites thaeversibly inactivate FAO
enzyme(s) [3, 30]. Interestingly, acetaminophenARFP could inhibit mtFAO and MRC activityia
the generation of N-acetpHbenzoquinone imine (NAPQI) [31, 32], a reactivetabelite generated
by cytochromes P450 3A4 and 2E1 (CYP2EL) [33]. Thay explain, with other mechanisms (see
below), why APAP intoxication can induce steatasisodents [34-36] and in some individuals (Table
1) [1., 2].

Some investigations allowed the identification d¢fe tmtFAO enzyme(s) inhibited by the
aforementioned drugs. For instance, it has beemwrhihat CPT1 can be inhibited by VPA,
amiodarone and tamoxifen [28,+237]. Troglitazone is able to inhibit long-chaioykCoA synthase
(ACS) (Fig. 1), thus impairing the mitochondrial sniof LCFAs through a CPT1-independent
mechanism [38].

Sequestration of CoA and/or L-Carnitine

Drugs such as VPA, salicylic acid and ibuprofen iwapair mtFAOvia the generation of CoA and/or
L-carnitine esters, which decreases the availgbitif these cofactors for th@-oxidation of
endogenous FAs (Fig. 1) [3, 5, 25, 39]. Howevengednduced inhibition of mtFAO secondary to
CoA and/or L-carnitine depletion could occur onlizem cellular levels of these cofactors are already
below physiological concentrations [25, 39]. For sonrugs, generation of xenobiotic acyl-CoA

thioesters could also competitively inhibit diffatenitochondrial enzyme(s) [40].

Inhibition of the MRC

mtFAO can also be secondarily impaired as a redidevere inhibition of the MRC [3-5]. This could
occur with amiodarone, perhexiline, tamoxifen angrbaorphine [4, 21, 26, 28, 41]. Interestingly,
these amphiphilic drugs can be protonated withia thitochondrial intermembrane space, thus
generating cationic compounds entering the mathanks to Ay, (Fig. 1). This allows their
accumulation within mitochondria and the subsequahtbition of mtFAO and MRC enzymes.
Actually, whereas relatively low concentrationstieése amphiphilic drugs can inhibit directly FAO
enzyme(s), higher concentrations are required foaimthe respiratory chain [11, 21, 26, 28, 41].

Thus, mitochondrial accumulation of these amphiplidtugs eventually inhibits FAO through a dual
5



mechanism. The precise sites of MRC inhibition hiagen identified for amiodarone and perhexiline,
which both inhibit complexes | and Il [21, 26].

For some drugs inhibiting mtFAO, investigations @anot been able to clearly establish whether
this deleterious effect was due to direct inhilmitaf mtFAO enzyme(s), or to indirect inhibitiama
MRC impairment. This is the case for tetracyclieeihtives for whictbone fineinhibition of mtFAO
has been shown in some investigations [42, 43]JeMWiRC (or OXPHOS) impairment has been
demonstrated in other independent studies [3, 34, 4

Drugs such as tianeptine and ibuprofen inhibit M&ivity, in particular at the level of complex
| [46-48]. Importantly, these effects were demaaistti on heart, duodenum or brain mitochondria.
However, some investigations showed that mitochiahtivxicity could greatly vary between tissues
[15, 49]. Actually, ibuprofen and tianeptine-inddaenpairment of complex | in liver mitochondria is
unlikely to be strong because this would causendai inhibition of 3-oxidation with all kinds of FAs
(i.,e. SCFAs, MCFAs and LCFAs), thus irrespectivetludir chain length. However, investigations
performed on isolated mouse liver mitochondria stebwhat these drugs inhibited more strongly the
[3-oxidation of SCFAs and MCFAs compared to LCFAs,[25]. Accordingly, although ibuprofen
inhibited mitochondrial respiration on isolatedelivmitochondria (Table 2) [3P this effect appeared
with much higher concentrations compared to thésettng MRC activity with mitochondria isolated

from duodenum [48].

Impairment of mtDNA Replication

Inhibition of mtFAO can also result from reducecpaec mtDNA levels. This mechanism has been
shown for the antiviral fialuridine (FIAU), zidovuag (AZT), stavudine (d4T) and didanosine (ddl),
which all inhibit mtDNA polymerasg activity [3-5, 50, 51]. Importantly, liver injurjnduced by these
drugs can be associated with severe lactic acidegisch is caused by TCA cycle inhibition.
Interestingly, tamoxifen and tacrine can induce hiepatDNA depletion possibly by interacting with
the mitochondrial topoisomerases [28, 52].

Finally, some drugs could also induce mtDNA depletiia the generation of ROS, RNS and/or
reactive metabolites. For instance, APAP and tragtine can reduce mtDNA levels by inducing
mtDNA strand breaks [53, 54]. Indeed, damaged mtDMN#Aecules harboring numerous strand breaks
(or other bulky damages) can be rapidly degradechibychondrial endonucleases [18, 55].

Impaired PPAR Activity



Some drugs could impair mtFAO by reducing PRAEXpression and activity. This is suspected with
APAP, VPA and tetracycline that reduce the mRNAregpion of PPAR and some of its target genes
including CPT1 [36, 44, 56]. Although the directnsequences of this effect are still uncertain,
impairing PPARx activity could prevent an important metabolic ad#iph that takes place during
drug-induced steatosis [57, 58]. The mechanism(sereby these drugs could impair PRAR

expression might deserve further attention.

Drug-Induced Alterations of Other Pathways Involved in Lipid Homeostasis

Although not being in the scope of this articlesinoteworthy that drug-induced steatosis canlée a
caused by other mechanisms. For instance, drugsnbarit very low density lipoprotein (VLDL)
secretion and increase lipid synthesis, in pamicbly direct (or indirect) activation of key lipage
transcription factors such as sterol regulatorynelet binding protein 1c (SREBP-1c) and PRAR
59, 60]. Interestingly, some drugs such as amiggaend tamoxifen could both inhibit mtFAO and

stimulatede novdipogenesis [5, &].

Drug-Induced Microvesicular Steatosis

Numerous investigations have shown that drug-inducirovesicular steatosis is the consequence of
severe inhibition of mtFAO [3-7, 21, 24, 25, 28,2389, 42, 62]. Interestingly, this mechanism i®als
involved in the pathophysiology of microvesiculdeaosis occurring in other conditions such as
inborn errors of mMtFAQO, Reye’s syndrome and acaity fiver of pregnancy [3, 10].

A primary consequence of severe inhibition of mtFB@TP depletion and accumulation of FAs
that are either esterified into triglycerides, lmattremain as a free form [3, 13]. It has beenyjatd
that the small size of the lipid droplets coulddoe to an “emulsification” of triglycerides by fréatty
acids [3], although this hypothesis has never bemrfirmed. Alternatively, the nature and/or the
abundance of some proteins wrapping the lipidsctpldy a role [5, 63]. Whereas triglycerides aré no
toxic for the cells, free FAs and some of theiriiives (i.e. acyl-CoA thioesters and dicarboxylic
acids) could worsen mitochondrial dysfunction aadse cell death [3, 9, 64].

Drug-induced microvesicular steatosis is a potépteevere and fatal liver lesion that can be
associated with liver failure, encephalopathy araiqund hypoglycemia [3-5]. Liver pathology shows
the presence within the cytoplasm of numerous lipaplets, which leave the nucleus in the center of

the hepatocyte [3, 21, 42, 62]. Besides lipid aadation, hepatic cytolysis and increased plasma



transaminases can also be observed to a varialgeeedleExamples of drugs able to induce
microvesicular steatosis are given in Table 1 [, 45-68].

Drug-induced microvesicular steatosis can be agsatiwith severe hypoglycemia and abnormal
levels of plasma KB [3-5]. Hypoglycemia could beedo impaired gluconeogenesis and/or to higher
extra-hepatic utilization of glucose [3, 69]. Altlgiu hypoketonemia has been observed with VPA,
pirprofen and ibuprofen, high levels of plasma KBswalso reported experimentally with amineptine,
amiodarone, salicylic acid, tetracycline and tiamept[3, 4, 21, 24, 39, 42, 70]. Drug-induced
hyperketonemia could be related to a severe inbibibf peripheral KB utilization [3, 4]. Finally,
microvesicular steatosis can be associated witta@umulation of acyl-carnitine derivatives and

dicarboxylic acids in plasma and urine [3-5].

Inhibition of MtFAO and Steatosis Induced by Other Xenobiotics

Although beyond the scope of this review, it isevadrthy that non-pharmaceutical compounds are
able to inhibit mtFAO and induce hepatic lipid acculiation, especially as microvesicular steatosis. It
is for instance the case with alcohol, cocaineflpamooctane sulfonate (a persistent organic pafit)t

triptolide (a diterpenoid epoxide isolated from lai@se woody wine plant), and hypoglycine (a toxin

present in the unripe fruit of Jamaican ackee i&€e)5, 72, 72, 73].

Factors Favoring Drug-Induced Mitochondrial Dysfunction

At least three factors could favor drug-induced amment of mtFAO and MRC activity. Importantly,
these factors are not mutually exclusive and tb@mbination is likely to induce severe mitochondria
dysfunction and microvesicular steatosis in soniepes.

1) Drug structure and biotransformatiomiodarone, perhexiline and tamoxifen are ampihipph
drugs harboring protonable amine moieties that rfateir accumulation inside the mitochondrial
matrix [3, 7, 11, 26, 28]. For amiodarone, the lmdnmnyl-phenylmethanone moiety could be the
chemical structure responsible for mitochondriasfdyction [74, 75, 74. VPA is a branched-chain
fatty acid that freely enters the mitochondria, vehie is activated by CoA and undergdesxidation
[3, 6, 40]. However, the two-step biotransformatioinVPA by CYPs and3-oxidation generates
reactive metabolites that irreversibly inactivat®Q- enzymes and induce cytotoxicity [3, 30, 77].
Regarding the role of CYPs, it is noteworthy th&A®-induced dysfunction of liver mitochondria
could depend, at least in part, on the presenc8Y#2E1 within these organelles [32]. Finally, the
antiretroviral nucleoside reverse transcriptasebitdris (NRTIS) are able to inhibit mtDNA replicatio

and cause severe mtDNA depletion owing to theurcsiiral analogy with the natural nucleosides [3,
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6]. In this pharmacological class, drugs such ddtahine (ddC), ddl and d4T are significantly more
toxic to mitochondria than others (AZT and lamivug)i [78].

2) Drug dosage and duration of treatmes@linical reports in the 50’s and 60’s indicatéuhtt
severe microvesicular steatosis induced by tetiaeyand its derivatives was clearly dose-dependent
[3]. In particular, most cases of steatosis wergeoled in patients receiving large intravenous gesa
(>1.5 g/day) of tetracycline derivatives [3]. Howeey tetracycline-induced steatosis is no longer
observed since such huge intravenous doses have dixadoned. Long-lasting administration of
NRTIs also increases the risk of mitochondrial ¢tyiin liver and other tissues [15, 79].

3) Genetic predispositionsSeveral congenital defects in mtFAO and OXPHO3yeres have
been detected in patients with VPA-induced hepatoity [3, 5, 80]. A mutation in the gene encoding
DNA polymerasey (POLG) could favor mitochondrial toxicity inducday NRTIs, possibly by
enhancing the probability of their incorporationtiim the mtDNA molecules and the subsequent
arrest of mtDNA replication [5, 81]. Intriguinglyputations in the POLG gene could also favor VPA-
induced hepatotoxicity [8, although this cannot be explained by the incaapon of VPA within
mtDNA. Finally, interindividual differences in mitbondrial antioxidant enzymes such as MnSOD

could enhance the risk of mitochondrial toxicityddiver injury [83, 84].

Drug-Induced Macrovacuolar Steatosis and Steatohepatitis

With some drugs, liver triglycerides accumulateadsrge (often single) lipid vacuole displacing the
nucleus close to the plasma membrane. This lesicammonly referred to as macrovacuolar steatosis
and can be induced by other factors such as highiedeeding and ethanol intoxication [4, 83, 85].
Examples of drugs able to induce macrovacuolatesgisaare indicated in Table 1 [4, 5, 86-88].

The prevalence of drug-induced macrovacuolar steatoay be underestimated, mainly because
this liver lesion is benign, at least in the shertn. However, this lesion can progress in the l@mm
to steatohepatitis, which is characterized by r@sranflammation and some fibrosis. Moreover, some
drugs such as amiodarone, perhexiline, tamoxifehdalanosine (ddl) can also induce cirrhosis after
long-term treatment (Table 1)[15].

In contrast to microvesicular steatosis that candresidered as laona fidemitochondrial disease,
several mechanisms seem to be involved in the patlesis of drug-induced macrovacuolar steatosis.
These mechanisms include moderate inhibition ofAtFenhancedie novolipogenesis and reduced
secretion of VLDL [5, 59, 60]. Importantly, thesdferent mechanisms are not mutually exclusive,
and for instance some drugs can inhibit both mtiah@ VLDL secretion [5, 60].

It is also noteworthy that some drugs can inducé batrovesicular and macrovacuolar steatosis

(Table 1). Although the exact reason of this obdewmais unclear, it is conceivable that
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microvesicular steatosis could occur when mtFAOséverely inhibited, whereas macrovacuolar
steatosis could take place if mitochondrial functis relatively preserved [5]. The differenceshe t
severity of drug-induced mitochondrial dysfuncticen be explained by several factors, as discussed
in the previous section.

Although the pathophysiology of drug-induced sthafmtitis is not fully understood, some data
suggest that reduced MRC activity could be involpedb, 26, 89]. Indeed, MRC inhibition could not
only contribute to fat deposition but also to ATEfidiency, which can cause necrosis. Moreover,
MRC impairment can be associated with ROS overptol, a key event involved in the progression
of fatty liver to steatohepatitis whatever its &gy [5, 9, 89]. Importantly, ROS overproductionan
cellular environment enriched in fat can triggepidi peroxidation and the production of reactive
aldehydes that induce many deleterious effectan [5, 9, 89, 90]. Although drug-induced inhiloiti
of MRC and B-oxidation mostly leads to the hepatic accretionsaturated fatty acids, some
polyunsaturated fatty acids can also accumulatgufficient quantity to generate lipid peroxidation-

derived reactive aldehydes in the presence of RQFE [

Drug-Induced Inhibition of mtFAO and Aggravation of NAFLD

Obesity is often associated with metabolic dis@deich as nonalcoholic fatty liver disease (NAFLD),
dyslipidemia and type 2 diabetes [5, 9]. During NAX insulin resistance and adaptive
hyperinsulinemia favor fat deposition in liver, iparticular via SREBP1c-mediatedle novo
lipogenesis [9]. However, there is a compensatbnyuation of mtFAO in order to limit fat accretion
[9, 85, 91]. Thus, any significant impairment of FAD is likely to aggravate NAFLD in obese
individuals. Moreover, drugs that alter MRC acinatre also likely to promote the progression afyfat
liver to nonalcoholic steatohepatitis (NASH) by anbing ROS generation and oxidative stress [59].

Drugs that are suspected to aggravate NAFLD in elhesients are tamoxifen, raloxifene,
irinotecan, methotrexate and NRTIs such as staeudind didanosine [9, 59, 92]. Interestingly,
inhibition of MtFAO has been documented with selvefahese drugs, namely tamoxifen, raloxifene
and NRTIs [3, 28, 93, 94]. Moreover, drugs suchiaamsoxifen, methotrexate and NRTIs can inhibit
MRC activity and favor oxidative stress [3, 16, 88, 96]. However, for some of these compounds,
aggravation of preexisting NAFLD could also be setay to other mechanisms. For instance,
tamoxifen could also inhibit VLDL secretion andnstilatede novdipogenesis [28, 59, 97].

We took advantage of the present article to dete¥nwhetherf3-oxidation of palmitoyl-L-
carnitine could be more severely inhibited by soofethe afore-mentioned drugs when liver
mitochondria were isolated from ob/ob mice comparedwild-type mice. Although irinotecan,

methotrexate and tamoxifen impaired palmitoyl-Lrstine [3-oxidation, this inhibition was not
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statistically different between wild-type and ob/oker mitochondria (Table 2). Nevertheless, furthe
investigations will be required to determine whetlelronic administration of these drugs could
aggravate fatty liver in ob/ob mice. In contraghes drugs were able to inhibit palmitoyl-L-carngi

[3-oxidation more strongly on ob/ob liver mitochoradras discussed below.

Conclusion and Outlook

As discussed in this review, inhibition of mtFAO askey mechanism whereby drugs can induce
steatosis and actually drug-induced microvesicstaatosis can be considered as a mitochondrial
disease [3-7]. Moreover, long-term impairment of ®Rctivity could be an important mechanism
leading to drug-induced steatohepatitis, in paldicas a result of mitochondrial ROS overproduction
[5, 26, 89]. It is also noteworthy that some dragpde to induce mitochondrial dysfunction could be
more toxic in obese patients with preexisting NAFLW®hich could be aggravated during the
treatment. Indeed, drug-induced mtFAO impairment @apede a key compensatory metabolic
pathway set up during NAFLD in order to limit hepafat accumulation [9, 59, 91], whereas MRC
impairment is able to major oxidative stress apillperoxidation [26, 89].

Although numerous drugs can induce steatosis [H4],3their ability to inhibit mtFAO is still
unknown for a majority of them. Thus, high-throughpcreening can be suited in order to determine
whether inhibition of mtFAO is a frequent featuteserved with all the steatogenic drugs. Importantly
such screening could also assess the ability afetldeugs to impair MRC activity [2298]. These
investigations can also be performed on liver ntoaria isolated from obese and wild-type mice in
order to determine whether “obese” mitochondria rame sensitive to drug-induced mitochondrial
dysfunction. Table 2 gives some examples of steatoggrugs and their ability to inhibit (or not)
mitochondrial respiration assessed with glutamad&ta and palmitoyl-L-carnitine/malate on liver
mitochondria isolated from lean and ob/ob mice.

These investigations provided some new interesfindings. For instance, diclofenac and
ibuprofen-induced inhibition of mtFAO was strongéth ob/ob mitochondria (Table 2). Importantly,
this stronger impairment was not due to lower bagghen consumption with palmitoyl-L-carnitine
since it was increased by 62% in ob/ob mitochondsacompared to wild-type mitochondria, in
keeping with previous investigations [9, 91]. Morenvdiclofenac induced a stronger inhibition of
glutamate/malate-driven respiration on ob/ob mitochi@. It would be interesting to determine
whether these two NSAIDs could worsen fatty liverab/ob mice, or in other murine models of
obesity and NAFLD. Our investigations also revedleat irinotecan strongly inhibited mtFAO and
MRC activity (Table 2). Although more investigat®will be needed, these novel data could explain

why this antineoplastic drug is able to induce tstie@patitis in some patients (Table 1) [2, 99]. Fna
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we found that AZT inhibited palmitoyl-L-carnitine{den respiration at concentrations below those
required to impair MRC (Table 1). Interestingly,ns® investigations already showed that this
antiretroviral drug was able to directly impair MR(Ctivity (e.g. complex II), in addition to its Ign
term deleterious effect on mtDNA replication [1%hus, AZT could also directly inhibit mtFAO in
liver, in addition to its detrimental effects on /@Ractivity.
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Tablel
Examples of drugs inducing microvesicular steafosiacrovacuolar steatosis, steatohepatitis or
cirrhosis in treated patients.

Drug Therapeutic class Liver lesions
Acetaminophen (overdose) Analgesic, antipyretic MiSt*, MaSt
Amineptine Antidepressant MiSt

Amiodarone Antianginal, antiarrhythmic MiSt, MaSt, StH, Cir
Aspirin (and salicylic acid) NSAID MiSt
Carbamazepine Antiepileptic MasSt, StH, Cir
Diclofenac NSAID Mas, Cir
Didanosine (ddl) Antiretroviral (anti-HIV) MiSt, MaSt, StH, Cir
Enalapril Antihypertensive (ACE inhibitor) | MiSt

Fialuridine (FIAU) Antiviral (anti-HBV) MiSt

5-Fluorouracil Antineoplastic (colorectal cancer)| MaSt, Cir
Glucocorticoids Anti-inflammatory MaSt

Ibuprofen NSAID MiSt, MaSt, Cir
Indinavir Antiretroviral (anti-HIV) MiSt

Interferona Antiviral (anti-HCV and anti-HBV)| MaSt

Irinotecan Antineoplastic (colorectal cancer)| MaSt, StH
Methotrexate Antipsoriatic, anti-rheumatoid MaSt, StH, Cir
Nifedipine Antianginal, antihypertensive MasSt, StH
Panadiplon Anxiolytic MiSt

Perhexiline Antianginal MasSt, StH, Cir
Pirprofen NSAID MiSt

Raloxifene SERM, anti-osteoporotic MaSt

Stavudine (d4T) Antiretroviral (anti-HIV) MiSt, MaSt, StH, Cir
Tamoxifen SERM, antineoplastic (breast can{ MaSt, StH, Cir
Tetracycline and its derivatives (high dosesAntibiotics MiSt

Tianeptine Antidepressant MiSt

Toremifene SERM, antineoplastic (breast can{ MaSt

Troglitazone Antidiabetic MiSt

Valproic acid Antiepileptic MiSt

Zidovudine (AZT) Antiretroviral (anti-HIV) MiSt

Abbreviations in the table: ACE: angiotensin-conivey enzyme; Cir, Cirrhosis; HBV, hepatitis B virus
HCV, hepatitis V virus; HIV, human immunodeficienayrus; MaSt, macrovacuolar steatosis; MiSt,
microvesicular steatosis; NSAID, nonsteroidal ameammatory drug; SERM, selective estrogen recepto
modulator; StH, Steatohepatitis. Drugs in italiesébeen shown to impair mitochondfabxidation and/or
other key mitochondrial functions such the MRCatti Information concerning liver lesions can loeifd
mainly in references [1-7] and [100].
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Table?2

Drug-induced inhibition of mitochondrial respiratiowith glutamate/malate and palmitoyl-L-

carnitine/malate in liver mitochondria isolatedrfréean and ob/ob miée

Drugs L ean mice Ob/ob mice
Glutamate Palmitoyl-L -car nitine Glutamate Palmitoyl-L -carnitine
+ malate + malate + malate + malate

Acetaminophen (APAP >400° >400 >400 >400
Carbamazepine >400 >400 379 341
Diclofenac 35 47 16* 11*
Ibuprofen 107 287 99 80*
Irinotecan 10 6 25 10
Methotrexate 53 44 40 42
Salicylic acid >400 >400 >400 >400
Tamoxifen 42 4 72 11
Zidovudine (AZT) 309 79 144 83

"Measurement of oxygen consumption in the presemc&Dd® (state 3) and the different substrates was
carried out on the Mitologics' screening platfowms, previously described [¢R Whereas glutamate/malate-

driven mitochondrial respiration assesses the MRty from complex | to complex IV, palmitoyl-L-

carnitine/malate-driven respiration evaluates LGR#AO. “Numbers in this table correspond to the effective
concentrations (ipuM) inducing 20% of the maximal effects (kfCas described in [#3. Values are means

for 3 to 5 different mitochondrial preparationBifferent from lean miceR<0.05).
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Legend to Figure 1

Mitochondrial B-Oxidation and main mechanisms whereby drugs can impair this metabolic
pathway. Adapted fronBegriche et al. [5]. Whereas short and mediumscifetty acids (SCFAs and
MCFAs) freely enter mitochondria (not shown), therg of long-chain fatty acids (LCFAS) within
these organelles requires a specific shuttle systeniving four steps. (1) LCFAs are activated into
LCFA- CoA thioesters by long-chain acyl-CoA syntsss (ACS). (2) The LCFA-CoA is converted
into an acyl-carnitine by carnitine palmitoyltraesise-1 (CPT1) located in the outer mitochondrial
membrane. (3) The acyl-carnitine is transferrecbsrthe inner mitochondrial membrane into the
mitochondrial matrix by carnitine-acylcarnitinenshocase. (4) Finally, carnitine palmitoyltranstra
2 (CPT2), located on the inner side of the innetoafiondrial membrane, transfers the acyl moiety
from carnitine back to coenzyme A (CoA). Acyl-Colidesters are then oxidized into acetyl-CoA
moietiesvia the 3-oxidation process, irrespective of their chaingtén Acetyl-CoA moieties can then
generate ketone bodies (mainly acetoacetate fahgdroxybutyrate), which are liberated into the
plasma and used by extra-hepatic tissues for enagiuction. mtFAO generates NADH and FARH
which transfer their electrons’(do the mitochondrial respiratory chain (MRC), threégenerating
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NAD" and FAD used for otheB-oxidation cycles. Within the MRC, electrons areysentially
transferred to different polypeptide complexes (bared from | to IV) embedded within the inner
membrane. The final transfer of the electrons tygex takes place at the level of complex IV
(cytochromec oxidase). Importantly, the flow of electrons witlthe MRC is coupled to the extrusion
of protons (H) from the matrix to the intermembrane space, whickates the mitochondrial
transmembrane potentidiip,,. When energy is needed, these protons re-entendlvex through ATP
synthase (complex V), thus liberating energy tisatused to phosphorylate ADP into ATP. The
mitochondrial DNA (mtDNA) encodes 13 polypeptidesiich are inserted within complexes I, 111, IV
and V. Drugs can impair mtFAO through different mm&gisms such as: 1) direct inhibition [@f
oxidation enzyme(s), including ACS, CPT1 and ddferacyl-CoA dehydrogenases; 2) sequestration
of the mtFAO cofactors L-carnitine and CoA; 3) inition of MRC activity, either directly or
indirectly by way of mtDNA depletion; 4) impairmeot PPARx expression and activity (not shown).
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