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Abstract 

Advanced oxidation processes are efficient for the removal of recalcitrant compounds, like 

azo-dyes. However, the intermediates produced during their degradation can be more toxic 

than the parent compounds. Improving the knowledge concerning the degradation pathways 

may be therefore helpful to optimize the process. In this aim, HPTLC and Direct Analysis in 

Real Time-Of-Flight Mass Spectrometry (DART-TOF-MS) were considered and applied to 

analyze the sono-oxidation of an azo dye, methyl red sodium salt (MRSS) as a model 

compound. Initial and final UV-Vis spectra showed a clear disappearance of the maximum 

absorption peak, but shows limit since it cannot allow by-products identification. MRSS 

degradation was confirmed by HPTLC, which also confirmed that MRSS degradation was 

mainly due to oxidation, while in the considered experimental conditions the sonication effect 

appeared negligible. The analysis by DART-TOF-MS of the MRSS is characterized by a peak 

at m/z = 279.137. Three major peaks were observed after the MRSS oxidation: m/z=139.002, 

m/z=223.073 and m/z=279.137. Relative abundance of m/z=139.002, which was much higher 

after oxidation, tends to prove that a large proportion of initial oxydized MRSS was 

fragmented. The coupling of HPTLC and DART-TOF-MS may be subsequently considered to 

identify the oxidation reaction products. 
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1. Introduction 

 

Organic dyes constitute one of the larger groups of pollutants in wastewater. These 

effluents may cause environmental, visual and chemical pollution. Amongst the 10
6
 tons per 

year of dyes annually produced, about 60-70 % were azo-dyes (Neamtu et al., 2002), which 

constitute therefore the largest group of dyes used in industry, and about 15 % are released in 

the environment. This class of dyes is characterized by an azo linkage N=N, a visible light 

chromophore. They are potentially toxic, as well as their by-products, including aromatic 

amines (Arslan et al., 2000. Dominguez et al., 2005); they can also perturb aquatic life since 

some azo-dyes and their degradation products are highly carcinogenic (Brown and De Vito, 

1993). For instance, the anionic dye, Methyl red, is used in paper printing and textile dyeing ( 

Lachheb et al., 2002), as well as in the food industry (Muthuraman and Teng, 2009. 

Kucharska and Grabka, 2010); its impact on human health is irritation of eye, skin and 

digestive tract if inhaled or swallowed (Robinson et al., 2001). 

Physical techniques can be used to remove these recalcitrant pollutants (Vandevivere 

et al., 1998; Chaudhuri and Sur, 2000) among them: adsorption, flocculation, electro-

flocculation, reverse osmosis, ultrafiltration, coagulation have been applied. The main 

drawback is the frequent need for expensive regeneration and post-treatment processes, owing 

to the non destructive characteristic of these processes. Indeed, the pollutant is only 

transferred to another phase (Arslan et al., 2000; Stock et al., 2000; Comninellis et al., 2008). 

Advanced Oxidation Processes (AOP) appear as an interesting way for the treatment of this 

pollution (Bizani et al., 2006;  Brosillon et al., 2008. Chebli et al., 2010; Kayan et al., 2010). 

An alternative method is the sonocatalytic degradation in the presence of Fe
2+

/H2O2/ S2O8
2- 

(Grcic et al., 2010) or in the presence of CeO2/TiO2 (Wang et al., 2010). 



Several analytical methods have been published for the determination of azo-dyes and 

their degradation by-products based on UV (Brosillon et al., 2008. Muthuraman and Teng, 

2009), HPLC (Scarpi et al., 1998. Kucharska and Grabka, 2010; Kayan et al., 2010), capillary 

electrophoresis (Borros et al., 1999) and HPTLC (Kucharska and Grabka, 2010).  

Thin Layer Chromatography Technique is the easiest one, because there is no need to 

expensive and complex apparatus (Somsen 1995; Lavastre et al., 2003). HPTLC is a powerful 

analytical technique because of its reliability, simplicity, reproducibility and rapid 

measurement. This method is economical as it requires small amounts of solvents with 

minimum sample clean up, and its main advantage is that a large number of samples can be 

simultaneously analyzed (Kotiyan and Vavia, 2000; Neamtu et al., 2002; Chopra et al., 2006). 

Choosing the appropriate mobile and stationary phases is the sole difficult of the method. For 

a qualitative determination of a mixture of dyes, the TLC method is the best solution 

(Kucharska and Grabka, 2010). 

High Performance Thin-Layer Chromatography is a derivative of TLC. This method is 

based on the use of appropriate plates, which ensures a better separation of the analyzed 

compounds, leading to satisfactory results on the shortest developing distance.

In addition, Direct Analysis in Real Time-Of-Flight Mass Spectrometry DART-TOF-MS was 

introduced in 2005 (Cody, 2005). This method is interesting because of its ability to analyse 

very different samples with minimal destructive sampling and without sample preparation and 

chromatography (Hajslova and Zrostlikova, 2003; Morlock and Ueda, 2007; Cajka et al., 

2008; Curtis et al., 2009). DART-MS technique is an emerging tool for diverse application, as 

food quality and safety control (Hajslova et al., 2011; Kim et al., 2011; Chernetsova and 

Morlock, 2012), biological fluids and tissues, drugs, narcotics (Cody, 2005; Navare et al., 

2010; Chernetsova et al., 2011; Zeng et al., 2012; Shena et al., 2012), printing and writing 

paper (Adams, 2011) and phtalic acid ester in poly(vinyl chloride) samples (Kuki et al., 



2011). The results show DART-MS to be a very promising tool for the rapid analysis of 

important markers in crude products (Shena et al., 2012). 

 The aim of the present work was to use HPTLC and Direct Analysis in Real Time 

(DART) for study chemical degradation of organic compounds. HPTLC and DART were 

considered and applied to analyze the sono-oxidation of an azo dye, methyl red sodium salt 

(MRSS) as a model compound. Like for other oxidative processes, the intermediates produced 

during the photocatalytic degradation of dyes with or without addition of H2O2 and K2S2O8 

can be more toxic than the parent compounds (Bizani et al., 2006). Improving the knowledge 

concerning the degradation pathways may be therefore helpful to optimize the process by 

identification of the by-products and hence help in the determination of the metabolic 

degradation pathways  

 

2. Materials and methods 

 

2.1 Chemicals  and reagents 

 

The chosen azo dye, methyl red sodium salt (MRSS) (Colour Index Number 13020), 

was purchased from Sigma Aldrich (Isle d’Abeau Chesnes, France) and used without further 

purification, owing to its high purity, at least 99%. The molecular structure of the dye is 

given in Fig.1. Purified water (Elix Millipore equipment, Guyancourt, France) was used to 

prepare the colored solution. 

Hydrogen peroxide 100 volumes and potassium peroxydisulfate were purchased from 

Merck (Darmstadt, Germany) and VWR (Fontenay sous Bois, France), respectively. 



Dichlormethane, ethyle acetate, acetonitrile, toluene, heptane, n-hexane, chloroform, 

1,4-dioxane and methanol were of analytical-reagent grade. Plate prewashing was performed 

with methanol of HPLC-grade (Carlo Erba, Val de Reuil, France). 

As stationary phases, the following plate (Merck) was used: silica gel glass HPTLC 

plate 60 F254 (10×10cm). 

 

2.2 Sono-oxication 

 

Ultrasonic apparatus (Vibra cell, Sonics & Materials Inc., Danbury, CT., USA) was 

adopted to irradiate the MRSS solution. It was carried out at an ultrasonic frequency of 20 

KHz and an output power of 40 W through manual adjustment according to the available 

related literature (Hajslova et al., 2011); pH (Eutech Instruments, Thermo-Fisher Scientific, 

Illkirch, France) and temperature were monitored during experiments. 

Dye solutions were prepared at 100 mg L
-1

 and stored at 4°C, in the dark. The 

sonocatalytic degradation of MRSS (100 mL) was performed using hydrogen peroxide (30% 

w/w) and potassium peroxydisulfate, each at 10 mmol.L
-1

 final concentration during 2 hours 

at room temperature under magnetic stirring (250 rpm). Before analysis, oxidation samples 

were filtered through a Millipore filter (Millex
®
-HV–0.45 μm) to avoid particles entering the 

analytical apparatus. 

The study is based on four conditions: MRSS in ultrapure water (condition n°1), MRSS in 

ultrapure water after sonication treatment (condition n°2), MRSS with K2S2O8 + H2O2 before 

sonication treatment (condition n°3) and MRSS with K2S2O8 + H2O2 after treatment by 

sonication (condition n°4). 

 

2.3 Sample analysis 



 

2.3.1 Spectrophotometer 

 

MRSS oxidation was followed by means of a UV–Vis Thermospectronic Helios 8 

spectrophotometer (Bioblock scientific, Illkirch, France) at the maximum absorption or 

isobestic wavelength of MRSS. 

 

2.3.2 HPTLC 

 

 HPTLC plates were prewashed with methanol and dried in a current air under the 

extractor hood for 20 min. 

Narrow bands of 8 mm in length were sprayed using the Automatic TLC sampler 4 (ATS4, 

CAMAG). Pre-recorded application parameters for water and nozzle temperature of 40 °C 

were employed.  

15 µL of each MRSS conditions were sprayed on the plate. After drying the starting zones for 

1 min, the silica gel plate was developed with each solvent according to the CAMAG method, 

in order to find the best eluent. Development was performed in the Twin Trough Chamber 

(TTC 20×10 cm, CAMAG) up to a migration distance of 70 mm measured from the lower 

plate edge. After drying for 10 min, densitometry was performed via absorbance measurement 

at wavelength 466 nm corresponding to the isobestic point, the point at which the spectra 

recorded for various pH cross each other, and wavelength 501 nm corresponding to the 

maximum absorbance, with TLC Scanner 3 (CAMAG); evaluation was performed via peak 

height. Owing to the pH effect on the absorbance previously observed for MRSS (Chebli et 

al., 2010), the isobestic point was mainly considered in this work instead of the maximum 

absorption point. 



 

For digital documentation, the Digistore 2 Documentation System (CAMAG) 

consisting of illuminator Reprostar 3 with digital camera Baumer optronic DXA252 was 

applied in the reflectance mode at UV 254 nm. Exposure time was set for 400 ms and gain at 

1. Data obtained were processed with WinCATS software, version 1.4.2 (CAMAG). The 

exact zone positions were marked. 

For calibration curves of MRSS, two solutions of MRSS (0.1 µg µL
-1

 and 1 µg µL
-1

) 

were prepared in ultrapure water. Different volumes of the two stock solution were sprayed 

on three HPTLC plates to obtain masses of 0.1, 0.5, 1.5, 10, 15, 20, 25 µg spot
-1

 of MRSS. 

The data of peak areas at 466 nm plotted against the corresponding concentrations were 

treated by a polynomial analysis. 

 

2.3.3 DART-MS 

 

Samples were automatically introduced into the excited gas stream of DART (IonSense, 

Danvers, MA, USA) which was installed on a JMS-T100LC (AccuTOF-LC) [Jeol (Europe), 

Croissy sur Seine, France]. Helium was used as gas with a flow rate of 2.5 L/min and the gas 

heater was set to 250°C. The distance between the first orifice lens and the exit of the DART 

gas flow was fixed to 15 mm. The needle voltage of the dart was 2 kV. For positive-ion 

detection the potentials of the second perforated electrode and the grid electrode were biased 

to positive potentials of 11 V and 250 V, respectively. The first orifice lens, that is, the 

interface for atmospheric pressure state, was set to 35 V, the spectra recording interval was 

0.5 s. The mixture solution of polyethylene glycol PEG 600 was used as calibrant for the mass 

scale. The resolution of mass spectrometer (AccuTOF CS) was 6000 DA at full width of the 

peak at half its maximum height. For the data acquisition and processing, MassCenter 1.3 



software was used. When a sample was introduced in the DART gas stream, the peaks of the 

target compound appeared immediately on the TIC or mass chromatograms. 

 

3. Results and discussion 

 

3.1 Oxidation study of MRSS by UV-vis absorption spectra 

 

MRSS UV-VIS spectrum is displayed in Fig.2. As shown, maximum absorption 

wavelength was observed at 501 nm, in agreement with a previous report (Chebli et al., 

2010). 

Both sonication and oxidation, as well as their combination, were tested for MRSS 

degradation. 

Ultrasound has been therefore combined to oxidation involving H2O2 and S2O8
2-

. Dye sono-

oxidation was carried out for 2 h, but did not allow to improving the degradation yield (30 %) 

at 501 nm, if compared to the direct oxidation. Initial and final UV-Vis spectra showed a clear 

disappearance of the maximum absorption peak, at 501 nm (Fig.2), which corresponded most 

likely to the main chromophore, the azo-linkage. The peak recorded at 300 nm corresponded 

most likely to the naphthalene ring, as well as the benzene ring peak observed at 221 nm 

(Chebli et al., 2010) (Fig.2). 

 

 3.2 Oxidation study of MRSS by HPTLC 

The spectrophotometric method (UV-Vis) shows limit, since it cannot allow by-

products identification. To improve the identification of sono-oxidation by-products, more 

fine analytical techniques should be considered. In this aim HPTLC has been considered. 

 



Development of the optimum mobile phase 

 

The first step consisted in the development of the method. The HPTLC procedure was 

optimized according to the ―Camag method‖. It consists in developing plates with each pure 

solvent. The most appropriate protocol is to test one or two solvents from eight classes of the 

Snyder triangle. The solvents that move the compounds onto the plate were selected; and then 

mixtures of solvents were tested until the best eluent was found. 

15 µL of the MRSS dye (condition n°1) was sprayed on fourteen silica gel HPTLC plates 

and they were developed with the following solvents (Table 1). Finally, the mobile phase 

consisting of chloroform (100 %) gave a sharp and well-defined peak at Rf = 0.10 (Fig.3). 

Well-defined spots were obtained when the chamber was saturated with the mobile phase for 

30 min at room temperature. Diffuse spots were obtained with others solvents. 

 

Calibration curves 

 

The developed HPTLC method for the determination of MRSS showed a correlation 

coefficient r
2
 = 0.9896 in a mass range of 0.1- 25 µg spot

-1 
with respect to the peak area at 466 

nm (Fig.5), showing an easy and quantitative monitoring of the target compound removal.  

 

3.3 Oxidation study of MRSS 

 

In a first step, 15 µL of the MRSS dye were also sprayed (condition n°3 – MRSS with 

oxidants before sonication) on the same type of plates in order to confirm if 100 % 

chloroform is an appropriate eluent in both conditions. Unfortunately, MRSS dye (condition 

n°3) did not migrate with chloroform 100 %. Therefore, the same pure solvents were tested in 



order to select the most appropriate eluent for this experimental condition. However, none of 

the tested solvents appear really relevant; and hence chloroform 100 % was considered for the 

four experimental conditions. 

 

In a second step, the four conditions were sprayed on the HPTLC plate, showing that the 

sonication had no effect on the MRSS dye. Indeed, on one hand pure MRSS (condition n°1) 

and sonicated (condition n°2)  led to similar spots (Fig.5), while on the other hand MRSS 

oxidated (condition n°3) and sono-oxidated (condition n°4) led to similar spots (Fig.5).Two 

conditions were then considered: MRSS in ultrapure water (condition n°1) and MRSS with 

K2S2O8 + H2O2 (condition n°3). HPTLC analysis allowed to characterize MRSS degradation 

after the addition of K2S2O8 + H2O2. Indeed, the Rf value for the condition n°1 was 0.10, 

while no migration was shown for the plate corresponding to the condition n°3, which stayed 

at the start zone.  

 

The above results clearly showed that in our experimental conditions, there is no clear 

impact of the sonication, which was also confirmed for decreasing working volumes (in the 

range 100 to 25 mL – data not shown). Indeed, to remain economically relevant low output 

power (40 W) and frequency (20 kHz) was considered. In addition, a partial degradation may 

be expected from the use of a low energy level, leading to a significant residual organic 

content available for a subsequent biological treatment (Chebli et al., 2010). Obviously in 

these conditions, there is no acoustic cavitation or the short lifetime of 
•
OH radicals did not 

allow to react with polar organic compounds like the considered azo dye; a large fraction of 

the formed radicals recombine at the interface of the bubble before reacting with hydrophilic 

substances (Torres et al., 2008). Some authors advocate the combination of sonication and 

advanced oxidation processes (Stock et al., 2000; Grcic et al., 2010; Wang et al., 2010). In 



this early study, to avoid a too complex and energy consuming process, only oxidants (Grcic 

et al., 2010) were added in combination with sonolysis. 

 

3.4 Oxidation study of MRSS by DART-TOF-MS 

 

The use of DART-TOF-MS appears as a first insight to the MS analysis of the phenomena 

occurring during experiments.  Indeed, the DART method allows an easy check of target 

compound degradation owing to its direct, rapid and gentle characteristics (Morlock and 

Ueda, 2007;  Navare et al., 2010; Chernetsova et al., 2011). The purpose was to assess this 

analytic method for the monitoring of any modification occurring during sonication and/or 

oxidation of MRSS; at this stage of the study the objective was not to present a 

comprehensive scheme of the reaction or the fragmentation induced by the method. 

Preliminary results are presented here, and further study will be subsequently conducted. 

 

We considered as a reference the spectrum of MRSS in water, which is presented in Fig. 

6a. We got only one peak of high intensity at m/z = 270.078, and a lower one at m/z = 

271.074. The molecular weight of MRSS is 291.28 g.mol
-1

, but since the salt was dissolved in 

water, Na
+
 cation cannot be considered in DART; indeed, alkali metal cation attachments are 

never observed by this method (NIST Mass Spectrometry Data Center Collection, 2008). 

Hence the molecular weight to take into account was 268.29 g.mol
-1

. Our peak at 270.069 

could consequently be interpreted as [M+2H]. After sonication, the spectrum remains almost 

unchanged, which may mean that the sonication did not provoke any major fragmentation of 

MRSS (data not shown), in agreement with the above results recorded by means of UV and 

HPTLC analysis.  



Concerning the spectra obtained from oxidized MRSS, the scheme is totally different; it 

confirmed that MRSS was not any more in its original state after oxidation, even without 

sonication. Indeed, the three major peaks observed, m/z=139.002, m/z=223.064 and 

m/z=279.127 respectively, (Fig.6b) do not lead to obvious assignation neither regarding 

MRSS structure nor the products of the oxidation reaction. Relative abundance of 

m/z=139.002, which was much higher after sono-oxidation, tends to prove that a large 

proportion of initial oxidized MRSS was fragmented. However, sonication seems to increase 

the recombination process within the solution or induced by the DART ionization method. 

That may be an interpretation for the high m/z peaks exhibited by sono-oxidated MRSS 

(m/z=371.19, m/z=415.224, m/z=459.248 and m/z=503.272 respectively). Indeed, the results 

recorded by the DART method differ significantly from other ionization processes, like 

Electron Ionization (EI-MS) for instance. Examination of the spectrum of Methyl Red (i.e. 

MRSS with bonding hydrogen instead of the Na
+
 counterion) obtained by EI (NIST Mass 

Spectrometry Data Center Collection, 2008) leads to two remarks (Fig.7): the spectrum 

possess a larger number of peaks and most of these peaks match the masses of fragments 

classically observed in MS, as shown in Table 2 

Sonication induces radical formation as follows (Sivasankar and Moholkar, 2009): 

H2O              H
•
 + OH

•
     (1) 

H
•
 + O2              O

•
 + OH

•
     (2) 

H
•
 + O2            HO2

•
     (3) 

 

Direct sonication of MRSS did not show significant dye removal. Indeed, sonochemical 

reactions are not always quite efficient for the degradation of organic compounds, since in 

most cases total mineralization is not achieved. This might be attributed to the higher polarity 

of the organic compounds, the low availability of OH
•
 radicals or a lack of power dissipation. 



To overcome these disadvantages, the sonochemical treatment can be combined with 

oxidation or advanced oxidation (Grcic et al., 2010; Joseph et al., 2009). 

In this aim, hydrogen peroxide and potassium peroxydisulfate have been tested as oxidants for 

direct azo-dye degradation or in advanced oxidation process (Kayan et al., 2010). The main 

purpose was to combine two oxidants in order to achieve better mineralization extent due to 

consequent generation of various non-selective radicals, like OH
•
, SO4

-•
 (Huang et al., 2002;  

Bizani et al., 2006; Grcic et al., 2010; Kayan et al., 2010). 

The persulfate has a high oxidation potential as seen in equation (4); however, the reaction is 

irreversible and proceeds at low rate. 

S2O8
2-•

 + e
-
         SO4

2-•
 + SO4

-•
    (4) 

E = 2.0 eV versus NHE. 

Hydrogen peroxide has a smaller oxidation potential than persulfate (E = 1.77 eV versus 

NHE). 

Free radicals are formed in aqueous solution after heating the persulfate solution: 

S2O8
2-

 + heat              2 SO4
-•
    (5) 

Hydroxyl radical and sulphate radical anion are powerful oxidants, which can degrade dye 

(Dhananjeyan et al., 2000): 

Dye + OH
•
            degradation product   (6) 

Hydroxyl radical OH
• 

(E° = 2.80 eV) is the main responsible for initial breakdown of dye 

molecules into several differentiated substituted aromatic compounds (Grcic et al., 2010). 

The pH of MRSS in ultrapure water was 6.0, while in presence of oxidative reactants, namely 

K2S2O8 and H2O2, it decreased to 3.8. Indeed, in agreement with the following relations (7,8), 

the addition of these oxidants causes a significant pH decrease (Kayan et al., 2010): 

S2O8
2-

 + M         2SO4
-•
 + M

• 
   (7) 

(M represents organic compounds)  



SO4
-•
 + H2O             SO4

2-
 + OH

•
 + H

+ 
   (8) 

It is in agreement with the low direct degradation of another azo-dye, Acid Red 97, using 5 

mM of H2O2 and S2O8
2-

 each, after 60 minutes treatment at room conditions (Kayan et al., 

2010). 

To complete this study using DART-TOF-MS, further investigations are needed which are in 

progress to fully understand the consequences of the sono-oxidation process and that of the 

ionization method, and to discriminate between both. However, at this stage, we can only 

conclude that effects of none of the two processes can be neglected.  

To complete this study using DART-TOF-MS, further investigations are needed which 

are in progress to fully understand the consequences of the sono-oxidation process and that of 

the ionization method, and to discriminate between both. However, at this stage, we can only 

conclude that effects of none of the two processes can be neglected. 

 

4. Conclusions 

 

The above results showed that in the tested experimental conditions there was no clear impact 

of the sonication; the azo-dye degradation resulted mainly from oxidation after addition of 

H2O2 and K2S2O8. Indeed, pure and sonicate MRSS led to similar results on one hand, while 

oxidated and sono-oxidated MRSS le to similar results on the other hand, as confirmed from 

UV spectra and HPTLC analysis. 

 These results were confirmed by DART-TOF-MS analysis, since three major peaks 

were observed after MRSS oxidation, m/z=139.002, m/z=223.073 and m/z=279.137, while 

pure MRSS led to a peak at m/z = 270.078. The results show DART-MS to be a very 

promising tool for the rapid analysis. Further experiments are however needed to identify the 

fragments and propose a degradation pathway.  



 This work showed that the considered analytical tools appeared relevant for a fast 

control and monitoring of target compounds degradation; this would be especially helpful in 

case of experiments on real effluents. 
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Figure captions 

 

Fig. 1 Chemical structure of the Methyl Red Sodium Salt. 

 

Fig. 2 UV-VIS spectroscopic analysis of the MRSS solutions before (a) and after oxidation 

using H2O2 and S2O8
2-

 (b). 

 

Fig. 3 Chromatogram of MRSS (15 µL i.e. 1,5 µg) : peak 3 (Rf = 0,09 ± 0,03) mobile phase: 

chloroform 100 % ; detection wavelength : 466 nm, silica gel glass HPTLC plate 60 F254 

(10×10cm) 

 

Fig. 4 Calibration curve for pure MRSS 

 

Fig. 5 HPTLC plate of sonication and sono-oxydation of MRSS, mobile phase: chloroform 

100 % ; detection wavelength : 466 nm, silica gel glass HPTLC plate 60 F254 (10×10cm) 

Legend:1: condition n° 1, 2: condition n° 2, 3: condition n° 3, 4: condition n° 4  

 

Fig. 6 Spectra obtained by Direct Analysis in Real Time-Of-Flight Mass Spectrometry 

(DART-TOF-MS) of the MRSS before (a) and after oxidation using H2O2 and S2O8
2-

 (b). 

 

Fig. 7 Methyl Red spectrum obtained by Electron Ionization – Mass Spectrometry method 

(NIST – [36]). 

 

 

 


