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Phylogenetic study of some Aporrectodea species 

based on molecular markers  

 

(Oligochaeta: Lumbricidae) 

Charlène Briard, Jiang-Ping Qiu, Qi Zhao, Muriel Guernion, Daniel Cluzeau 

Abstract. The Nicodrilus genus is not accepted in the nomenclature according to 

ICZN; Aporrectodea term is used. However, according to Bouché, Aporrectodea and Allolobo-

phora genera are not homogeneous and are supposed as polyphyletic genera. The aim is to study 

the phylogenetic structure of Aporrectodea genus in order to verify its cladistic nature and its tax-

onomical validity. In this work, five species, belonging to the Aporrectodea genus, as the most 

common in France are studied. First, we use usual morphological characteristics to identify each 

species. Species life history traits are included among morphological characteristics (e.g. clitel-

lum, puberculum and pores position, Morren’s gland, body size…). Then, we pursue a molecular 

approach on individuals sampled in France. Molecular phylogenetic analyses are based on the se-

quences of nuclear (rDNA 28S) and mitochondrial (COI, rDNA 16S) gene regions and performed 

with maximum likelihood and bayesian inference. Phylogenetic analyses revealed two deep sister 

clades, Aporrectodea caliginosa species complex in one hand, and A. giardi, A. longa and A. noc-

turna in the other hand. The status of A. nocturna is recognized instead of A. longa and A. giardi 

ones. Our study cannot confirm the validity of Aporrectodea genus but highlights different line-

ages within species such as A. longa and A. caliginosa. Markers characterization ensures a molec-

ular genotyping in lumbricids and begins to reveal intra-specific variabilities degrees unsuspected. 

Key words. Phylogeny, COI, rDNA16S, rDNA28S, Aporrectodea. 

Introduction 

Most of the available phylogenetic classifications of Lumbricidae are based on 

morphological studies (BOUCHÉ 1972, SIMS & GERARD 1985). Although the morphology 
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constitutes the base of species identification, these classifications have such particularities 

like a low resolution of phylogenetic relationship leading to uncertain grouping. Taking into 

account the important role which earthworms play as key organisms in terrestrial ecosystems 

functioning, the lack of knowledge in phylogenetic relationship among species can compro-

mise interpretations in studies applied in functional ecology, biodiversity and evolution 

(King et al. 2008). DNA taxonomy and associated molecular tools are a good way to reveal 

the true level of biodiversity (Chang et al. 2009), but the use of molecular tools to study 

earthworm taxonomy has only recently started. Molecular markers, mitochondrial and nucle-

ar, are thus developed (PÉREZ-LOSADA et al. 2009). Lumbricids represent a taxonomical 

diversified group of terrestrial Oligochaeta. Among the five families within Lumbricoidea, 

Lumbricidae family counts around 30 genera; some of them provide very diverse species 

based on their ecological functions. Molecular approaches realized for a few years on Lum-

bricidae confirmed the validity of certains genera as Octodrilus (POP et al. 2007), Den-

drobaena (POP et al. 2007). However, genera as Aporrectodea (NOVO et al. 2010, PÉREZ-

LOSADA et al. 2009) and Allolobophora (POP et al. 2007) remain under discussion. Molecular 

approaches also highlight a cryptic diversity among species such as Allolobophora chlo-

rotica or Lumbricus terrestris (JAMES et al. 2010). Finally, in certain occasions, the lack of 

agreement in their ranking as diagnostic characters for taxonomic and phylogenetic purposes 

has led to situations in which the same species receives different names in different parts of 

the world and may be included in different genera depending on the classification system 

proposed. The problem of the use of different classification system lead to different names of 

species or even genera, for example the Aporrectodea genus which received three different 

names along years as Allolobophora and Nicodrilus.  

Indeed, Nicodrilus genus defined by BOUCHÉ in 1972 comes from the organization of the 

invalid genus Allolobophora. Based on morphological descriptions of species and he 

grouped them into the new Nicodrilus genus as more homogeneous genus for him. Since 

then, he distinguishes Allolobophora sensu stricto containing the type species A. chlorotica; 

and then Allolobophora sensu lato containing different taxonomic units around six species. 

Another way to organize the Allolobophora genus was after OMODEO chose A. chlorotica 

as the type species of the genus. Since then, most of species initially identified as Allolobo-
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phora were excluded, and the new generic name Aporrectodea is used. Aporrectodea is now 

the term used and known and represent around 82 species according to Fauna Europaea 

database (DE JONG 2010). Indeed, Aporrectodea term is used now considering the Nicodrilus 

genus as junior synonym of Aporrectodea. 

This work aims to specify lumbricids taxonomy establishing phylogenetic relationship 

among Aporrectodea species. The first objective is to study the phylogenetic structure of 

Aporrectodea genus. Furthermore, we attend to verify the species status within Aporrectodea 

genus and to study the species complex of A. caliginosa (A. caliginosa / A. tuberculata / A. 

trapezoides). Results obtained are used to describe phylogenetic relationship among species, 

and discussed according to recent results presently known. 

Material and methods  

Sampling. A total of 41 specimens of five species of Aporrectodea commonly found in 

France were collected in different sites during spring 2009 and 2010 in France: Aporrectodea 

giardi, A. longa, A. nocturna, A. trapezoides and A. caliginosa. Sequences from GenBank® 

database of each species collected are also used to implement the dataset, as well as sequences of 

Aporrectodea tuberculata, A. icterica, A. rosea and Allolobophora chlorotica. The Lumbricus 

genus is added to be used as outgroup, represent by three species (L. rubellus, L. castaneus and L. 

terrestris) coming from fresh material. The specimens were described focusing on morphological 

characteristics described by QIU & BOUCHÉ (1998) and SIMS & GERARD (1985). Taxa names were 

accepted according to BLAKEMORE (2006A).  

DNA extraction, polymerase chain reaction (PCR) and DNA sequencing. The total 

DNA was obtained from a muscular tissu section of each individual in the caudal region, avoid-

ing the digestive tube to eliminate bacterian DNA present. DNA was extracted using the Chelex 

protocol according to ESTOUP ET AL. (1996), and then each entire individual is conserved in pure 

ethanol. The phylogenetic analysis was supported with the variation of (i) a fragment of the mito-

chondrial gene (631 bp) coding the first subunit of cytochrome oxidase (CO1), (ii) a fragment of 

the mitochondrial gene 16S (435 bp) and (iii) a fragment of the nuclear genes 28S (570 bp). 

Oligonucleotids used to perform the amplification by PCR (Polymerase Chain Reaction) are for 
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CO1 fragment, the universal primers HCO2198 and LCO1490 (FOLMER et al. 1994), for rDNA 

16S fragment, the primers 16SarL (THOMAZ et al. 1996) and 16SbrH (PALUMBI et al. 1991), and 

for the DNA fragment 28S, the primers 28S-F1  and 28S-R1 (PÉREZ-LOSADA et al. 2009). Each 

PCR was conducted in a 25 µl reaction volume containing 12.5 µl of Mix [Bioline] (containing 

the Taq polymerase, dinucleotides dNTPs, MgCl2 and tampon solution), 0.5 µl of each primer 

and 1.25 µl of DNA extracted. PCR was performed using, for 16S rDNA and CO1, an initial 

denaturation of 2 min 30 seconds at 94°C, followed by 35 cycles of 30 seconds denaturation at 

94°C, 30 seconds annealing at 52°C, and at 48°C respectively for each marker, 45 seconds exten-

sion at 72°C, and a 10 min final extension at 72°C; for 18S DNA, an initial denaturation of  5 

minutes at 95°C, followed by 35 cycles of 30 seconds denaturation at 95°C, 30 seconds annealing 

at 55°C, 1min30 extension at 72°C, and a 8 minutes final extension at 72°C; for 28S rDNA, an 

initial denaturation of  3 minutes at 96°C, followed by 35 cycles of 30 seconds denaturation at 

95°C, 45 seconds annealing at 50°C, 1minute extension at 72°C, and a 5 minutes final extension 

at 72°C. Double strand sequences were obtained by direct manual sequencing of the PCR prod-

ucts using an automated sequencer (PE Applied Biosystems 310 Genetic Analyser, UMR 6553; 

plateforme de séquencage génotypage OUEST-Genopole®).  

Phylogenetic analysis. Nucleotide sequences from each gene region were aligned using 

ClustalW program (version 1.7, THOMPSON et al. 1994). MrAIC program (version 1.4.2, 

NYLANDER 2004) was used to select the best fitted model of sequences evolution for each gene 

partition under the Akaike Information Criterion (AIC, AKAIKE 1973) and the Bayesian Infor-

mation Criterion (BIC, SCHWARZ 1978). Gene regions were analyzed both in combination as a 

single dataset and as multiple concatenated partitions. Maximum Likelihood (ML) analysis of the 

concatenated dataset (3 partitions) was performed in RAxML (STAMATAKIS 2006) using 1000 

RA, under the general time reversible model of sequences evolution and a gamma distribution in 

height categories (GTR+�). Clade support under the ML approach was assessed using the non-

parametric bootstrap procedure (FELSENSTEIN 1985) with 1000 bootstrap replicates. The Consense 

program from Phylip (version 3.6) (FELSENSTEIN 2004) was used to build the consensus tree from 

the 1000 bootstrap replicates. The dataset was also analysed using bayesian methods coupled 

with Markov chain Monte Carlo (MCMC) inference as implemented in MrBayes v. 3.1.2 

(RONQUIST & HUELSENBECK 2003). Four chains of MCMC analyses were run and each Markov 

chain was started from a random tree and run for 2 million generations, sampling every 100 gen-
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erations. The first 2000 trees were taken away from final analysis corresponding to the burn-in 

period. 

Results 

According to the concatenated dataset analysis, the phylogenetic tree shows six 

taxonomic units with all a strong support, posterior probabilities above 0.9 (Fig. 1). The tree 

topology is not different between the ML and BI analyses methods. The first taxonomic unit 

contains most of the individuals initially identified as A. giardi (AG). Aporrectodea giardi 

appear to be monophyletic (Fig. 1-A; pp=1.00, bp=99.8). The second taxonomic unit con-

tains all of our A. nocturna (AN) individuals with a probability equal to 1 (Fig. 1-B1; 

pp=1.00, bp=99.1), but also contains the A. longa species from GenBank (Fig 1-B2; 

pp=1.00, bp=79.5). Concerning the A. longa (AL) species, our specimens are close-related 

but not with the A. longa from GenBank (Fig. 1C; pp=1.00, bp=98.3). This problem can 

come from a misidentification of the specimen either by us or from GenBank specimen. 
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Fig. 1. Phylogenetic relationship obtained from Bayesian Inference analysis on 3 genes concatenat-

ed (CO1, 16S & 28S; 1636 nt). Numbers at nodes refer, from left to right respectively, to posterior probabili-

ties in Bayesian analysis and to bootstrap percentages in ML analysis (not shown within species). Dataset was 

analyzed with the GTR + G model applied to each partition. 
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The A. caliginosa group (AC), also well supported (Fig. 1-D; pp=1.00, bp=61.0) is clearly 

separated from ATr, AL and AG species. But in this group, we can clearly see two well 

supported taxonomic units.  

The first one contains our A. caliginosa but also one A. tuberculata (ATu) (Fig. 1-E; 

pp=1.00, bp=65.8). The identification on morphological characters is quite difficult in order 

to distinguish these two species. A wrong identification cannot be rejected but the close 

relationship between them shows that maybe we have two subspecies and not two species. 

The data need to be completed by sequences from others A. tuberculata species. The second 

taxonomic unit also contains what we identified as A. caliginosa (Fig. 1-F). But this group is 

clearly a new lineage of A. caliginosa with a strong support (pp=1.00, bp=74.7). 

The well-supported and close-related clade to “A. caliginosa group” contains four individ-

uals identified as different species (OTU1, Fig. 1-G; pp=1.00, bp=60.7): three A. giardi 

which are not close-related with the others A. giardi, but also they are close related to A. 

caliginosa species with a strong support only by the Bayesian analysis (Fig. 1-H; pp=0.91). 

Phylogenetic analyses reveal two deep sister clade: A. caliginosa group is clearly separat-

ed from ATr, AL, AN and AG. AG is sister of AN, then both are sister of AL. Although 

species relationship can be described, different lineages seem to be revealed within each 

species as well. 

Discussion and conclusion 

The phylogenetic structure of Aporrectodea genus is studied focusing on five spe-

cies commonly found in France. ML and BMCMC phylogenetic analyses based on three 

different mitochondrial and nuclear genes revealed two deep sister clades. One is composed 

of A. caliginosa, A. tuberculata, and another taxonomic unit containing A. giardi specimens 

(OTU1); and another is composed of A. trapezoides, A. nocturna, A. longa and A. giardi. A. 

caliginosa, A. tuberculata, and A. nocturna formed monophyletic assemblages, but A. giardi 

and A. longa resulted paraphyletic. The A. caliginosa group (AC) is clearly separated from 

ATr, AL and AG species as it has been already shown by previous studies of A. caliginosa 
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species complex (PÉREZ-LOSADA et al. 2009). Results show that the phylogenetic relation-

ship between species is difficult to assess because of the non-verified status of species. In-

deed, results clearly show that A. nocturna species is well recognized, only if we ignore the 

A.longa specimen coming from GenBank which belongs to the same clade as our A. noctur-

na specimens. In this case, a wrong identification could be possible. In the other hand, A. 

giardi, A. longa and A. caliginosa are revealed as polyphyletic. Although the species status 

of A. longa has been widely accepted because of its morphological differences, molecular 

analyses revealed the paraphyly of this species (PÉREZ-LOSADA et al. 2009). A. longa is also 

taxonomically considered the closest species to A. trapezoides and A. nocturna (BLAKEMORE 

2006b, GATES 1972). Molecular trees seem to support this relationship. A. giardi is com-

posed by two subclades, which are not related by species location. Thus, concerning A. giar-

di and A. longa species, others specimens must be added to confirm our grouping. The spe-

cies complex A. caliginosa (A. caliginosa / A. tuberculata / A. trapezoides) is not resolved 

yet. Three subclades are revealed, close-related to OTU1 and two of them are well-supported 

(Fig. 1E, 1F). Those different lineages observed are not related to species locations because 

specimens mixed in the same group come from different locations. A. tuberculata and A. 

trapezoides specimens should be added to visualize their positions within the A. caliginosa 

species complex. More populations from different locations should also be studied (only 

three populations are shown here). 

The OTU1 contains four individuals identified as different species (Fig. 1-G; pp=1.00, 

bp=60.7): three A. giardi which are not close-related with the others A. giardi, and one A. 

caliginosa. OTU1 is close-related to A. caliginosa species with a strong support only by the 

Bayesian analysis (Fig. 1-H; pp=0.91). This OTU1 can come from a misidentification of 

specimens but A. giardi and A. caliginosa are morphologically easy to distinguish. It is diffi-

cult to confuse knowing that those species belong to different ecological categories; their 

pigmentation and size are also clearly different. Molecular mistakes cannot be rejected or 

phenomema as length branch attraction can be assumed during the phylogenetic analyses. 

This grouping remains unresolved and need more focus to understand it. 

The integrative approach of species delimitation can greatly be helpful to species identifi-

cation (PUILLANDRE et al. 2009, ROE & SPERLING 2007). Actually, in order to really study the 
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variability within a species, the strategy should be first to increase the number of specimens 

by species as well as the number of locations where specimens are collected. Then, microsat-

ellites markers could be used instead as they are usually used for intraspecific level study as 

well as barcoding techniques. Indeed, very highly divergent lineages within earthworm spe-

cies were reported analyzing mitochondrial COI and 16S genes as well; for example within 

Aporrectodea longa, A. rosea, Allolobophora chlorotica and Lumbricus rubellus (KING et al. 

2008) or Lumbricus terrestris (JAMES et al. 2010). The existence of multiple cryptic species 

within these taxa is suggested. Our results support this pattern, hence suggesting an unprece-

dented diversity within Lumbricidae earthworms (KING et al. 2008). 

Finally, our study cannot confirm the validity of Aporrectodea genus. Indeed, only five 

species are studied here. Others species should be added (as A. tuberculata, A. velox, A. 

gognus also present in France) in order to have the majority of species and obtain a global 

view of this genus. This study also needs to include others Aporrectodea species as A. icteri-

ca, A. handlirshi, A. jassyensis, A. limicola, less common in France. Some of them were 

collected this year and this work is expected to be improved. 

Our work constitutes a preliminary study since additionally information brought by others 

markers could be necessary to confirm our results on three markers analyses. The study on 

species complex Aporrectodea caliginosa (PÉREZ-LOSADA et al. 2009) does not count less 

than six molecular markers (mtDNA and nuDNA). CO2, 12S rDNA, 28S rDNA and 16S 

rDNA were used to try to light taxonomic problems on this complex, unresolved with mo-

lecular markers as 16S rDNA and COI used (POP et al. 2007) until now. This kind of study 

underlines the importance of using multiloci data to delimitate earthworm species and to 

estimate phylogenetic relationship. Markers characterization ensures a molecular genotyping 

in lumbricids (CHANG et al. 2009) and begins to reveal intra-specific variability degrees 

unsuspected, which result in some cases, from cryptic speciation, defined as morphological 

similar species but genetically distinct (RICHARD et al. 2010, KING et al. 2008, NOVO et al. 

2010, JAMES et al. 2010). 
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