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Abstract

An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-
oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to
be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose
pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The
impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected
in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the
effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon
dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments
and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4
mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and
oxidative stress responses.
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Introduction

Singlet oxygen is a major component of reactive oxygen species
(ROS) dynamics in higher plants [1]. It has been shown to be
involved in photo-induced damage of leaf tissues [2]. Moreover,
various herbicides lead to singlet oxygen over-production, with
resulting highly toxic effects [3]. For instance, atrazine (2-chloro-4-
ethylamino-6-isopropylamine-1,3,5-triazine), which is a widely-
used herbicide of the triazine class, inhibits photosystem II (PSII)
by binding to the D1 protein, thus blocking electron transfer to the
plastoquinone pool [3]. This prevents conversion of absorbed light
energy into electrochemical energy and results in overproduction
of triplet chlorophyll and singlet oxygen, oxidative stress and final
bleaching [3]. Thus, herbicide treatments, as well as the use of
specific mutants, such as the flu mutant of Arabidopsis thaliana [4],
are useful to understand the complexity of ROS networks and the
regulation of oxidative stress responses.

Atrazine tolerance can result from activation of detoxification
mechanisms generally consisting in induction of catabolic
pathways or conjugation to glutathione, both leading to stable
and non-reactive compounds. Atrazine tolerance of populations of
the maize weed Setaria faberi was thus shown to result from increase
of monooxygenation reactions and glutathione-S-transferase
activities [5—7]. Windsor et al. [8] also demonstrated that atrazine

@ PLoS ONE | www.plosone.org

tolerance could originate from mechanisms of cell efflux by
overexpression of a membrane transporter (AfPgpl) of the ATP
binding cassette family in Arabidopsis thaliana transgenic lines.
Finally, we have shown that sucrose and, to a lesser extent, glucose
conferred atrazine tolerance to Arabidopsis plantlets [9-11].
Exogenous sugar treatment maintained PSII activity and photo-
trophic growth in the presence of atrazine concentrations that
were otherwise lethal in the absence of exogenous sucrose. This
induction of tolerance, which was also observed in Arabidopsis
accessions exhibiting high endogenous sugar levels, could be
ascribed to interacting effects of sucrose and atrazine on expression
of stress-response genes, resulting in biochemical responses to
stress and enhanced control of oxidative stress [12—14].

The T-DNA-mutagenized Arabidopsis thaliana collection (ecotype
Wassilewskija,Ws) of the Institut National de la Recherche
Agronomique (INRA, Versailles, France) [15] was screened in
the presence of lethal concentrations of atrazine. Whereas atrazine
treatments resulted in growth inhibition, oxidative injury and
bleaching in wild-type (WT) plantlets, some T-DNA-mutagenized
lines showed significant ability to grow and long-term survival
under various conditions of atrazine exposure. The present work
characterizes one such mutant, which presented, in addition to
enhanced atrazine tolerance, enhanced root growth in the absence
of atrazine. The T-DNA insertion is shown to be localised in the

November 2011 | Volume 6 | Issue 11 | e26855



>

aWwWT

oeatt *

w B
1 1

Chlorophyll content
(1g per seedling)
[\S]

0 5 50 100 250 500
[Atrazine] (nM)

o

09+ H VS *
E Vs+Atrazine

Maximum PSll efficiency (Fv/Fm)

WT eat1

Figure 1. Characterization of atrazine tolerance in eat7
Arabidopsis mutant plantlets. Chlorophyll content (A), plantlet
development (B) and PSIl efficiency using Fv/Fm ratio (C) were
compared between the eat? mutant (Ws genetic background) and
the Ws ecotype (WT). Direct exposure to atrazine during germination
and early growth (A) was carried out in the presence of varying
concentrations of atrazine from 5 nM to 500 nM. Chlorophyll contents
(A) were measured on 3 replicas of 2 to 5 pooled plantlets each and
results are given as the mean (* S.E.M.) of these three determinations.
In transfer experiments (B, C), germination and early development were
carried out on 1x MS-agar medium, and 10-day-old plantlets were then
transferred to 1x MS-agar medium containing 1 uM atrazine. Measure-
ments were carried out after 15 days of further growth. Values of Fv/Fm
(C) are the mean (= S.E.M.) of measurements on at least ten 25-day-old
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plantlets. Asterisks represent statistically significant differences (Mann-
Whitney test, P<<0.05) between WT and eat! (A) or between MS and
MS+atrazine treatments (C). These experiments were carried out three
times and results were similar.

doi:10.1371/journal.pone.0026855.9001

upstream region of the APL4 (ADP-glucose pyrophosphorylase
large subunit 4) gene (At2g21590), with consequences on APL4
mRNA levels, carbon partitioning, shoot-root allocation and
relationships, and carbohydrate accumulation. These effects are
discussed in the context of sink and carbon/nitrogen regulation of
photosynthesis and carbon fixation. Moreover, given the effects of
exogenous sugar treatments [9,12] and of endogenous sugar levels
[14] on atrazine tolerance in wild-type Arabidopsis plantlets,
atrazine tolerance of this ap/4 mutant is discussed in terms of
perception of carbon status and of investment of sugar allocation
in xenobiotic and oxidative stress responses, thus highlighting the
specific and non-redundant roles of APL4, relatively to other
ADP-glucose pyrophosphorylase (AGPase) subunits.

Results

Isolation and characterization of an Arabidopsis mutant
showing enhanced tolerance to atrazine

The different lines of the T-DNA-mutagenized Arabidopsis
thaliana collection (ecotype Wassilewskija (Ws)) of the Institut
National de la Recherche Agronomique were grown on Ix
Murashige and Skoog (MS)-agar in the presence of a lethal
concentration of the singlet-oxygen-generating herbicide atrazine
(500 nM). This concentration induces, in W'T' Arabidopsis plantlets,
growth arrest and cotyledon bleaching within 10 days of growth
[9]. Some mutant lines were found to maintain plantlet
development in the presence of atrazine, thus showing a
phenotype of enhanced atrazine tolerance (eaf). Lines for which this
phenotype was maintained in the T2 and T3 generations were
kept for further analysis. One of these lines, named eat, which
showed significant atrazine tolerance, was further investigated.

In order to characterize the level of atrazine tolerance, eatl
mutant plantlets were grown on lx MS-agar medium in the
presence of 5nM to 500 nM atrazine. Whereas atrazine
significantly decreased chlorophyll contents of WT plantlets at
100 nM, the chlorophyll contents of eat! plantlets were not
affected by the herbicide at the concentrations tested (Figure 1A).
Higher concentrations of atrazine, such as 1 pM, resulted in
bleaching of eat! plantlets (data not shown), to the same extent as
in the case of WT plantlets [9], when atrazine exposure started at
the onset of germination. However, eat/ plantlets, which had been
initially grown in the absence of atrazine, were found to escape
inhibition when transferred on medium containing 1 uM atrazine
(Figure 1B, C), thus resulting in leaf development, photosynthesis
activity, root growth and eventually floral bolt formation. This
higher tolerance related to the mode of atrazine application was in
line with previous studies [14]. In contrast, W'T plantlets subjected
to the same treatment showed inhibition of photosynthesis, growth
arrest, and bleaching (Figure 1B, C).

The eat] mutant also exhibited a phenotype of enhanced root
growth (Figure 2A), enhanced root biomass (Figure 2B), and
enhanced leaf biomass (Figure 2B) in the absence of atrazine
treatment. The root:shoot ratio (fresh weight/fresh weight) was
found to increase from 0.0761 in Ws to 0.0894 in the eat/ mutant.
Finally, enhanced root growth of eat/ was maintained under
xenobiotic and oxidative stress conditions in the presence of
sublethal (250 nM) and lethal (500 nM) herbicide concentrations
(Figure 2C).
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Figure 2. Plantlet growth of the eat7 Arabidopsis mutant. Plantlet development (A), shoot and root fresh weight (B) and length of primary roots
(C) were compared between the eat! mutant (Ws genetic background) and the Ws ecotype (WT). Seeds of the eat! Arabidopsis mutant line were
germinated on 1x MS-agar medium in the absence (A, B) or in the presence of 250 nM to 500 nM atrazine (C). Plantlet development was carried out
for 15 days. Values are the mean (= S.E.M.) of measurements on at least sixteen 15-day-old plantlets (B, C). Asterisks represent statistically significant
differences (Mann-Whitney test, P<<0.05) between WT and eat1. These experiments were carried out three times and results were similar.
doi:10.1371/journal.pone.0026855.9g002
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Characterization of the T-DNA insertion in the enhanced-
atrazine-tolerance mutant

Position of the T-DNA insertion in the genome of the eat]
mutant was determined by isolating the genomic DNA fragments
flanking T-DNA borders, using the PCR walking method
described by Devic et al. [16]. Results of amplification product
sequencing and of sequence alignments revealed that the T-DNA
insertion was located on a genomic region of chromosome II,
corresponding to bacterial artificial chromosome (BAC) clone
F2G1, between the 37791 and 37818 positions, thus indicating
that the T-DNA insertion had induced a 27 bp deletion in
genomic DNA (Figure 3A). Moreover, sequencing results showed
that an unknown sequence of 21 bp (GAATAGTTGTGTG-
CAAATATC) was inserted upstream of the T-DNA insertion at
position 37818 of the F2G1 BAC clone. Genomic DNA sequences
flanking both sides of the insertion corresponded to T-DNA left
borders (LB), whereas only T-DNA sequence was amplified with
primers corresponding to the T-DNA right border (RB), thus
suggesting that the insertion consisted of two T-DNAs joined side-
by-side in inverse orientation, so that only left borders were
directed towards genomic DNA (Figure 3A). Southern blot

A
HindIIl

HindIIl
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analysis, using DNA probes corresponding to T-DNA LB and
RB sequences, confirmed the localization and structure of the
insertion previously suggested by sequencing results (Figure S1).

The T-DNA insertion was located downstream of a gene
(At2g21580) encoding a 40S ribosomal protein S25 (RPS25B) and
upstream of a gene (4t2g21590) encoding a large subunit (APL4) of
AGPase (Figure 3A). The At2g21590 gene is one of the six AGPase
subunit genes involved in the formation of AGPase heterotetra-
meric complexes that catalyse the synthesis of ADP-glucose from
glucose-1-phosphate and ATP, and which constitutes the first step
of starch biosynthesis in photosynthetic and non-photosynthetic
organs [17-20].

The enhanced-atrazine-tolerance mutant is affected in
APL4 mRNA expression

The At2g21580 gene was found to be similarly expressed in WT
and in the eat/ mutant (data not shown), thus indicating that the T-
DNA insertion downstream of At2g21580 (Figure 3A) did not
affect expression of this gene. In contrast, At2g21590 gene
expression was significantly reduced in the eat/ mutant in
comparison to WT, whether in MS-agar or soil culture conditions

At2g21580 e At2g21590
| R ATy —
39465 38242 37870| 37506 0.5 kb 33548

37818 37791

B &
7{ mWT meat?
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& 81
2 5]
&
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Figure 3. Characterization and effect on gene expression of the T-DNA insertion in the eat7 Arabidopsis mutant. T-DNA insertion was
localised between the At2g27580 and At2g21590 genes (black bars), which encode, respectively, the 40S ribosomal protein S25, and an ADP-glucose
pyrophosphorylase large subunit, recently characterized as APL4 [21] (A). The grey bar at the 5’ end of insertion represents a 21 bp unknown
sequence and the flag corresponds to the BH755830 line [52]. The positions of the At2g21580 and At2g21590 genes, of the mutant line and of the T-
DNA, on the F2G1 BAC clone are given. Expression of At2g21590 gene in plantlets cultivated on MS-agar medium and on soil was analysed by real-
time RT-PCR (B). Total RNA was isolated from 30-day-old plantlets grown on 1x MS-agar medium and from 5-week-old plantlets grown for 15 days on
1x MS-agar medium, transferred to soil and further grown under controlled conditions (16-h light at 22°C and 8-h dark at 18°C). The Ws ecotype was
used as WT. At2g21590 mRNA levels were normalized with respect to housekeeping genes ubiquitin5 and fi—tubulin. Values are the mean (£ S.E.M.) of
six measurements. Asterisks represent statistically significant differences (Mann-Whitney test, P<0.05) between WT and eat1. These experiments were
carried out twice and results were similar.

doi:10.1371/journal.pone.0026855.9g003
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(Figure 3B). These results demonstrated that the T-DNA insertion,
located 285 bp upstream of the transcription start and 1165 bp
upstream of the initiation codon (Munich Information Center for
Protein Sequence), affected expression of the APL4 gene.

In parallel, a T-DNA-mutagenized line of the SIGnAL
collection (Columbia ecotype, Col-0), BH755830, was found to
present a T-DNA insertion at position 37870 in the F2G1 BAC
clone, 52 bp upstream of the T-DNA insertion of the eat/ mutant
(Figure 3A). Phenotype characterization showed that 10-day-old
plantlets of the BH755830 line exhibited, in comparison with the
corresponding Col-0 WT background, the phenotype of atrazine
tolerance when transferred on 1 uM herbicide, with maintenance
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Figure 4. Phenotype characterization of the BH755830 T-DNA
insertion line. The response to atrazine was measured using
chlorophyll contents (A) and PSII efficiency (B) as markers. Germination
and early development of WT (Col-0 ecotype) and BH755830 (Col-0
genetic background) were carried out on 1x MS-agar media, and 10-
day-old plantlets were then transferred to 1x MS-agar media containing
1 UM atrazine. Measurements were done at the time of transfer (MS)
and after 15 days of further growth (MS+Atrazine). Chlorophyll contents
(A) were measured on 3 replicas of 2 to 5 pooled plantlets each and
results are given as the mean (£ S.E.M.) of these three determinations.
Values of Fv/Fm ratio (B) are the mean (* S.E.M.) of measurements on at
least twelve plantlets. Asterisks represent statistically significant
differences (Mann-Whitney test, P<<0.05) between chlorophyll content
before transfer (MS) and at the end of transfer (MS+atrazine). These
experiments were carried out twice and results were similar.
doi:10.1371/journal.pone.0026855.g004
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of high chlorophyll level and photosynthetic activity (Figure 4).
The BH755830 line also showed a phenotype of enhanced root
biomass and shoot biomass (Figure S2). These results confirmed
that observed phenotypes in the eat/ mutant could be ascribed to
the insertion in the upstream region of the APL4 gene and to
consequent modifications of gene expression (Figure 3B).

Expression patterns of APL3 and APL4 genes in relation
with source-sink relationships and with responses to

abiotic stresses

AGPase is a heterotetrameric enzyme composed of two small
(APS) and two large (APL) subunits. The Arabidopsis genome
contains four APL genes (APLI to APL4) and two APS genes (APS1,
APS2). While the main catalytic subunit is APS1 [18-21], the
association of APL subunits with APS1 leads to the formation of
functional AGPase complexes. In contrast, the APS2 subunit is
considered to be inactive and unable to form functional AGPase
complexes [20]. APS2 may be a pseudogene [20]. Expression
profiles of APL genes and regulatory properties of APL/APS
heterotetramers have shown that APL subunits had specific tissue
localizations and specific regulation roles [18-20]. APLI, and to a
lesser extent APL2, are largely associated with source tissues and
exhibit both regulatory and catalytic properties. In contrast, APL3
and APL4 subunits only exhibit a regulatory role and are mainly
found in sink tissues, including roots.

Considering sink-related APL subunits, the APL4 (A4t2g21590)
protein, which possesses a characteristic NTP-transferase domain
(pfam 00483.11), is 84% identical to the sequence of APL3
(At4g39210), whereas it shows significantly lower homology to
APLI1 and APL2. However, in contrast with the protein sequence,
the 5’ regulatory regions of At2¢21590 and At4¢39210 show
significant divergence, with only 47% identity.

Electronic fluorescent pictography, comparing relative expres-
sion level of APL4 gene to that of APL3 gene, was carried out using
Arabidopsis Developmental Map [22] and Tissue-specific [23,24]
microarray data series (Figure 5). APL5 and APL4 genes exhibited
distinct temporal and tissue-specific expression patterns in
Arabidopsis plants. Moreover, APL4 gene expression seemed to be
preferentially associated with root and shoot apex sink tissues in
comparison to APL3 gene (Figure 5).

Expression of APL3 and APL4 genes under conditions of light
treatments, of abiotic stress and of chemical stress was also
investigated using Pearson correlation coefficients (Table 1).
Considering light treatment, photoperiod regime did not seem to
influence strongly the regulation pattern of APL3 and APL4 genes
(Table 1). For the three conditions tested, long day (16 h light),
short day (8 h light) and 12 h light, coregulation of expression was
observed with a Pearson correlation coefficient varying between
0.67 and 0.86. In contrast, abiotic and chemical stress treatments
resulted in various regulation patterns. In shoot, APL3 and APL4
gene expression exhibited overall positive correlation (Table 1).
Except for oxidative stress and cold stress (correlation coefficient
close to 0), the two genes were weakly (wounding, drought, and
UV-B stress) to highly coregulated, with correlation coefficients
(0.95-0.97), that reflect similar expression patterns under salt stress
and under osmotic stress (T'able 1). Regulation of expression of
APL3 and APL4 genes was different in root tissues. Whereas these
genes appeared to be partially coregulated under conditions of
osmotic, oxidative and heat stress, they mainly exhibited inverse or
independent regulation patterns. In particular, complete inverse
regulation of APL3 and APL4 genes was found under conditions of
genotoxic stress, not only in roots, but also in shoots (Table 1).
Finally, photosynthesis inhibitor treatment on whole seedlings
gave a correlation coefficient of —0.86 [59], thus also reflecting
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Figure 5. Electronic fluorescent pictography comparing relative expression levels of APL4 and APL3 genes. These pictures were
obtained from the Arabidopsis eFP Browser tool at the Bio-Array Resource for Plant Biology website, using Developmental Map (A) and Tissue-specific
(B) data series as data sources, and a threshold of 4.0. Colour scale represents Log,(transformed ratio of APL4 relative to APL3 signals).

doi:10.1371/journal.pone.0026855.9g005

inverse regulation of APL3 and APL4. These results therefore
indicated that APL3 and APL4 genes may play non-redundant
roles in source-sink relationships and in responses to abiotic
stress.

Analysis of APL3 and APL4 gene expression in the context of
atrazine sensitivity and tolerance was also studied in the Col-0
ecotype (Table 2). Whereas the APL3 gene exhibited a significant
plasticity of expression in response to sucrose and atrazine 24 h-
treatments, APL4 transcript levels did not show any differential
expression. In fact, APL3 transcript level increased in response to
sucrose supply, and inversely decreased in the presence of atrazine
(Table 2), which could correspond to redirection of carbon fluxes
from starch synthesis to soluble sugars in relation with the
development of stress responses [12—14]. However, the plasticity of
APLS3 expression did not seem to compensate the decrease of APL4
mRNA levels insofar as the apl4 regulatory mutants (eatl;
BH755830) showed significant phenotypic traits (Figure 1-4;

and chemical stresses.

Figure S2), thus confirming that APL3 and APL4 played distinct,
non-redundant roles.

Effects of the apl4 regulatory mutation on carbohydrate
allocation and accumulation

Carbohydrate partition and organ allocation were compared in
15-day-old plantlets of the eat/ mutant and of the corresponding
WT (Ws background). Plantlets were grown under a 12-h light
period regime in order to increase the difference of starch-related
phenotype between WT and mutant lines [25,26]. Such light
conditions did not influence the regulation of expression between
APL4 and APL3 genes (Table 1). Starch, glucose and sucrose levels
were determined at three time points of the photoperiod, i.e. at the
end of the night (End of Night), in the middle of the day (Middle of
Day), and at the end of the day (End of Day), separately in roots
and in shoots (Figure 6).

Table 1. Pearson correlation coefficients of APL4 to APL3 gene expression vectors in response to light treatments and to abiotic

Photoperiod 16 h 8h 12 h
Seedlings 0.67 0.86 0.76
Stress Salt Osmotic Oxidative Heat UV-B Drought Cold Wounding Genotoxic
Root Shoot —0.04 0.23 0.40 0.40 —0.16 -0.32 —0.41 —0.41
0.97 0.95 —0.03 0.68 0.37 0.31 —0.05 0.18

doi:10.1371/journal.pone.0026855.t001

@ PLoS ONE | www.plosone.org

Gene expression data were extracted from the publicly available database of the AtGenExpress Consortium. Pearson correlation coefficients of APL4 to APL3 gene
expression were calculated using the Light series from Blasing et al. [60] and Michael et al. [61], and the Abiotic Stress [59] and Chemical [59] series from the
AtGenExpress Consortium data. Vector values are log,(transformed ratio of gene expression level relative to its control value) for each photoperiod or stress experiment.
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Table 2. Microarray analysis of APL3 and APL4 gene expression in response to atrazine and sucrose treatments.

Accession number Gene product

Expression comparison log,(expression ratio)

regulatory subunit

Suc/Mtl Mtl-Atrazine/Mtl Suc-Atrazine/Mtl
At4g39210 APL3 : Large non-catalytic 1.23 —1.15 —-1.19
regulatory subunit
At2g21590 APL4 : Large non-catalytic not differentially expressed not differentially expressed not differentially expressed

being not differentially expressed [63].
doi:10.1371/journal.pone.0026855.t002

Considering roots, the apl4 regulatory mutant (eat!) showed a
significant decrease of starch accumulation (Figure 6A), in
accordance with the expression of APL4 gene in roots (Figure 5),
with the involvement of APL4 subunit in the AGPase complexes of
sink tissues [18-20] and with the low-starch phenotypes shown by
other ap/ mutants, such as adg?-1, which is affected in the APLI
gene [27,28]. Although the photoperiod-related pattern of starch
dynamics remained similar to that of W, starch levels in roots of
the eat/ mutant were significantly weaker at the end of the night
and at the end of the day, thus confirming the involvement of
APL4 in starch biosynthesis within root tissues (Figure 6A). These
low levels of starch were concomitant with a significant increase of
glucose and sucrose levels in roots of the apl4 regulatory mutant
(eatl), in comparison with those of WT plantlets, whatever the time
of the photoperiod. This increase was stronger during the light
period than at the end of night, in parallel with the extent of starch
decrease (Figure 6).

In contrast, the shoots of the eat/ mutant showed much higher
levels not only of sucrose and glucose, but also of starch, in
comparison with shoots of WT plantlets, especially during the light
period (Figure 6). The photoperiod-related dynamics of these
compounds remained similar to that of WT.

Thus, major modifications resulting from the ap/4 regulatory
mutation, in comparison with WT plantlets, consisted in changes
of starch-sucrose partition between roots and shoots in plantlets.
However, quantitatively, decrease of starch levels in roots was
associated with a 6-fold increase of starch levels in shoots during
the light period, concomitantly with a large increase of sucrose and
glucose levels in roots and in shoots. In particular, eqat/ mutant
roots exhibited an 8-fold increase of sucrose levels in the light
period (Figure 6). Considering the overall levels of carbohydrates
in both roots and shoots, the eat/ mutant thus showed a phenotype
of enhanced carbohydrate accumulation in comparison with WT
(Figure 6).

Relationships between modifications of starch synthesis
and atrazine stress responses

Both the eat/ mutant and the BH755830 line showed enhanced
tolerance to atrazine exposure (Figure 1 and Figure 4), under
conditions where atrazine treatment causes a major oxidative
stress resulting from singlet oxygen production [13]. In accordance
with the effects of exogenous sucrose [9,12] and of natural
variation of endogenous sugars [14], the phenotype of enhanced
atrazine tolerance could have been due to modification of carbon
dynamics resulting in higher levels of soluble sugars. Other starch
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Microarray data for APL3 and APL4 were extracted from our previous work [12], which was carried out under similar conditions of plant growth and plant treatment as
those described in Materials and Methods. The characterization of At4939210 and At2g21590 gene products was derived from previous studies [20,21]. Arabidopsis
plantlets (Col-0 wild ecotype) were transferred to MS-agar medium in the presence of 80 mM mannitol, 80 mM sucrose, 80 mM mannitol and 10 uM atrazine, or 80 mM
sucrose and 10 uM atrazine. Transcriptome analysis was carried out on pairwise comparisons [12]. Relative expressions of genes after 24 h of treatment are given as
their log,(expression ratio) for sucrose versus mannitol (Suc/Mtl), mannitol plus atrazine versus mannitol (Mtl-Atrazine/Mtl) and sucrose plus atrazine versus mannitol
(Suc-Atrazine/Mtl) comparisons. Statistical analysis was carried out as previously reported [12]. Genes with a Bonferroni P-value higher than 5% were considered as

synthesis mutants, such as adg/-1 [29,30], adg2-1 [27,28] and pgm
[31], which are respectively mutated in the APSI gene, the APLI
gene and the PHOSHOGLUCOMUTASE gene, were subjected to
atrazine stress (Figure 7). Chlorophyll levels were used as marker
to monitor the effects of atrazine stress, as described previously
[9,13-14]. The behaviour of the adg2-1 and pgm mutants
confirmed that decrease of starch synthesis and increase of soluble
sugars [25,27,31] were related to enhanced atrazine tolerance.
However, this was not the case for the adg/-I mutant (Figure 7).

Discussion

The enhanced atrazine tolerance phenotype of the eat/ mutant
and of the BH755830 line could be ascribed to insertional
mutations in the promoter region of the 4¢2g21590 gene (Figure 3),
which encodes the APL4 large subunit of AGPase [18-20].

In higher plants, AGPase complexes are heterotetrameric
combinations of small and large subunits presenting catalytic or
regulatory functions and tissue specialisation [18-20]. The small
APS subunits are clearly not redundant, with APS1 being catalytic
in all plant tissues, and APS2 appearing to be non-functional
[18,19]. It has been recently shown that APL1 and APL2 subunits
were also clearly distinct from APL3 and APL4 subunits on the
basis of catalytic and regulatory properties and of differential
involvement in starch synthesis between source (leaf) and sink
(root) tissues [20,32]. Moreover, the four genes encoding large
subunits, APLI to APL4, clearly exhibit different expression
patterns depending on organ, cell type and culture conditions
[19,33,34]. Crevillén et al. [19] have thus shown that APLI was
the most highly expressed APL gene in leaves, whereas APL3 and
APL4 genes were the most highly expressed APL genes in roots.
Nevertheless, some functional compensations are possible since
analysis of adg2-1 mutant showed that trehalose induction of APL3
could complement APLI deficiency in leaves [34]. The present
characterization of the eat/ mutant and the comparison of
microarray data (Figure 5, Tables 1 and 2) show that APL3 and
APL4 are not redundant, in terms of expression patterns, despite
the important plasticity of APL3 expression (Table 2) [34]. The
consequences of the eat/ mutation on the functioning of AGPase
subunits are summarized in the hypothetic scheme of Figure 8.
This scheme is based on the present characterization of the eat/
mutant and on existing literature [19-20].

AGPase is a key step in the regulation of photoassimilate
partitioning [35] and consequently of carbon allocation within the
plant [17-20,36]. Thus, mutations of key components of AGPase
[27-30], or of chloroplastic phosphoglucomutase [31], result in
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Figure 6. Carbohydrate partitioning in the eat? Arabidopsis
mutant. Starch (A), glucose (B), and sucrose (C) contents (ug.g_1 fresh
weight (FW)) were quantified in roots and shoots, at the end of the night
(End of Night), at the middle of the day (Middle of Day), and at the end of
the day (End of Day). Seeds of WT (Ws ecotype) and eat1 Arabidopsis lines
were germinated on 1x MS-agar medium and plantlet development was
carried out for 15 days under a 12-h light period regime. Results are the
mean (+ S.E.M.) of three measurements realized on three independent
extracts of root and shoot samples from at least 20 WT or eat1 plantlets
each. Asterisks represent statistically significant differences (Mann-Whitney
test, P<<0.05) between WT and eat1 at a given time of measurement.
doi:10.1371/journal.pone.0026855.9g006

significant modifications of assimilate partitioning and carbon
allocation, with starch deficiency and increased levels of soluble
sugars [25,31]. A similar trend of starch deficiency and high-
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Figure 7. Effects of atrazine on chlorophyll levels of adg7i-7,
adg2-1 and pgm mutants. The response to atrazine was measured
using chlorophyll content (ug.mg ™" fresh weight (FW)) as marker. Seeds
of the WT (Col-0 ecotype) and of the adgi-1, adg2-1 and pgm starch-
deficient or low-starch mutants (Col-0 genetic background) were
germinated on 0.5x MS-agar medium [34] in the absence or presence
of varying concentrations of atrazine from 0.5 uM to 1 uM. Plantlet
development was carried out for 15 days under a 12-h light period
regime. Chlorophyll contents were measured on 4 replicas of 2 to 5
pooled plantlets each and results are given as the mean (= S.E.M.) of
these four determinations. Asterisks represent statistically significant
differences (Mann-Whitney test, P<<0.05) relatively to WT at a given
atrazine concentration. These experiments were carried out twice and
results were similar.

doi:10.1371/journal.pone.0026855.g007

sucrose content, and to a lesser extent high-glucose content, was
found in the roots, but not in leaves, of the eat/ mutant (Figure 6).
These results thus associated APL4 gene with the functioning of a
sink tissue, in line with previous studies [18-20], and highlighted
its important and non-redundant role in roots. Moreover, they
suggested that, in accordance with expression patterns (Figure 5),
APL3 and APL4 genes and/or subunits may not be submitted to
similar regulation, and that the APL4 subunit significantly
contributed to the regulation of root starch biosynthesis. Such
differential involvement of APL3 and APL4 genes, confirmed by
data of Tables 1 and 2, was consistent with significant divergence
in their 5’ regulatory regions (data not shown). However, further
work will be required to determine whether APL4 is associated
with specific cell types, and to what extent specific regulations
controlling its expression are important relatively to common
APL3/APL4 regulations [19]. Finally, these changes of carbon
partitioning and the consequent increase of soluble carbohydrates
could be related to the increase of root growth in the eat/ mutant
(Figure 2). Decrease of storage function and enhanced carbon
allocation to the roots has indeed been hypothesised to drive root
growth, as shown in the case of the adgl-1, adg?-1 and pgm starch-
deficient mutants and by the effects of trehalose on AGPase
activity and plantlet growth [33,34,37].

In parallel with the modifications of carbon partitioning in
roots, the eat! mutant showed strikingly high levels of photo-
assimilates (starch, sucrose, glucose) in leaves (Figure 6). On the
one hand, the absence of starch decrease in shoots of eat/ mutant
and the contrast with the situation in roots was consistent with the
involvement of APL1 and APL2 large subunits in source tissues
[18-20], which should not be affected by the mutation of the APL4
gene. On the other hand, the increase of carbon assimilates
(starch, sucrose, and glucose) in shoots indicated strong interac-
tions between root and shoot carbon dynamics and an indirect
impact of the apl4 regulatory mutation on carbohydrate
accumulation and carbohydrate allocation at whole plantlet level.
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doi:10.1371/journal.pone.0026855.9008

Chiou and Bush [38] have shown that sucrose treatment
through the xylem sap acted as a signalling molecule leading to
strong decrease of phloem loading and of carbohydrate allocation
to the roots. The discrepancy between roots and shoots in the apl4
regulatory mutant (eat/) may thus be a consequence of increased
soluble carbohydrates in roots leading to decreased allocation from
shoots to roots and overaccumulation of photoassimilates in leaves
in the presence of active APLI/APS1 AGPase complexes
(Figure 8). Moreover, Crevillén et al. [19] showed that long-term
treatment with 100 mM exogenous sucrose highly induced APL3
and APL4 expression in leaves. The increase of starch accumu-
lation in leaves of the apl/4 regulatory mutant (eat/) may therefore
be due to the induction of the APL3 gene in response to higher
endogenous levels of glucose and sucrose and formation of APL3/
APS1 complexes besides APL1/APS1 complexes, as summarized
in the hypothetic scheme of Figure 8. This would also suggest that
APL3 and APL4 play redundant roles in source tissues, in contrast
with the situation of non-redundancy in roots. Taken together,
these results therefore indicate that APL4 is particularly important
for regulating starch/sucrose partitioning in roots and that both
APL3 and APL4 play important roles in carbon allocation.

@ PLoS ONE | www.plosone.org

Besides transcriptional regulations, changes of starch-sucrose-
glucose partition in eat/ mutant may also cause sugar-induced
post-translational modifications of AGPase complexes [39]. In
particular, high levels of sucrose or glucose have been found to
induce redox activation of AGPase through, respectively, SnRK1-
and HXK-dependent signalling pathways [40-42]. Reversible
phosphorylation of APS and APL subunits has been hypothesized
to regulate AGPase activity [39]. The SNFl-related kinase
SnRK1, as protein-kinase and as key component of sugar
signalling pathways, could be a common element for all these
steps of starch synthesis regulation. The high-sucrose and low-
starch partition in roots of eat/ mutant may also reflect the role of
APL4 in such post-translational regulations. This potential role
will require further analysis.

The phenotype of highly-enhanced carbohydrate accumulation
in both roots and shoots of the eat/ mutant (Figure 6), associated
with enhanced root and shoot biomass (Figure 2), may indicate
enhanced photosynthesis and carbon fixation. Arabidopsis trans-
genic lines expressing antisense chloroplastic fructose-1,6-bipho-
sphatase show similar pattern of carbohydrate accumulation, with
plantlets exhibiting high levels of starch, sucrose and total sugars,
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and concomitant increased level of photosynthetic rate [43].
However, high levels of soluble sugars in leaves are expected to
regulate negatively carbon assimilation-related processes [44]. On
the other hand, increased root growth of the eat/ mutant (Figure 2)
may reflect modifications of the perception of carbon/nitrogen
balance at root level, and, under conditions of high nitrogen
availability given by the MS medium, increased root growth is in
turn likely to improve nitrogen nutrition, with changes of shoot-
root signalling resulting in enhancement of photosynthesis and
carbon fixation [45,46]. Thus, nitrogen supply in roots increases
the levels of cytokinins, which move in the transpiration stream
from roots to shoots and stimulate photosynthesis gene expression
[45]. The positive effects of apl/4 mutation at root level on
carbohydrate accumulation at shoot level (Figure 6) could be
ascribed to this kind of root-shoot interaction, which has been
indicated in the hypothetic scheme of Figure 8. It was also likely
that the integration of all of these effects affecting metabolism,
growth and development was related to the increase of root:shoot
ratio in the eat/ mutant (Figure 2B). APL4 activity and starch
partitioning in roots may therefore play important roles in the
connections between carbon/nitrogen perception at root level,
root growth and root regulation of photosynthesis [45].

Variations of carbon supply and allocation have been shown to
be involved in abiotic stress responses [47], especially through
carbohydrate-modulated induction of defence-related genes
[12,48-50]. In the present work, enhanced tolerance to atrazine-
mediated stress was shown not only by structural mutants of starch
synthesis (adg2-1, pgm), but also by both apl4 regulatory mutants,
eat! and BH755830. This enhanced tolerance to atrazine-
mediated stress could be ascribed to increased levels of soluble
carbohydrates in these mutants [25-27,29,31] (Figure 6), in
accordance with the effects of exogenous sucrose on atrazine stress
responses [9,12-13] and with the enhanced atrazine tolerance of
high-sucrose natural accessions [14]. However, the reason why the
adgl-1 starchless mutant did not show any enhanced tolerance to
atrazine in contrast with the pgm mutant remains unknown.
Further work will be required to determine whether these different
mutants of starch synthesis and starch-sucrose partitioning differ in
the spatio-temporal dynamics of soluble carbohydrates and how
they differ in terms of transcriptome profiling. The involvement of
APS1, which is encoded by ADG1 [30] in other functions related
to regulation of antioxidant responses could also be envisaged.
This should contribute to understand which sugar and stress
signalling pathways are perturbed in the various starch-synthesis
mutants and explain the differential effects on stress tolerance. The
relationships between carbon partitioning, carbon/nitrogen bal-
ance, shoot-root development and stress responses are likely to be
important for plant breeding in the context of global change and of
rising demands for food, bioenergy and ecological engineering
[14,51]. The characteristics of the eat/ mutant indicate that novel
regulations of root:shoot ratios remain to be investigated and that
for instance the regulatory subunits of AGPase and the mutations
and polymorphisms affecting their regulation could be interesting
targets of plant breeding.

Materials and Methods

Plant material and growth conditions

Seeds were surface-sterilized for 5-10 min in 50% bayrochlore/
50% ethanol, rinsed twice in absolute ethanol and dried overnight.
Surface-sterilized seeds were plated on square Petri dishes for
germination, and growth was carried out under axenic conditions.
Petri dishes were sealed with Parafilm and placed in a cold
chamber at 4°C during 48 h in order to break dormancy and
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homogenize germination. Petri dishes were then transferred to a
control growth chamber and placed vertically at 22°C under a 16-
h light period regime at 85 umol m™? s™' unless otherwise
specified. Seed germination and plantlet growth took place directly
in the media under study, unless otherwise specified. Growth
medium consisted of 0.8% (w/v) agar in 0.5x or 1x Murashige and
Skoog (MS) basal salt mix (M5519, Sigma, www.sigmaaldrich.
com) adjusted to pH 5.7. After dissolution in appropriate diluted-
MS basal salt mix, atrazine was sterilised by microfiltration
through 0.2 um cellulose acetate filters (VWR, http://fr.vwr.com)
and axenically added to melted agar-MS medium prior to pouring
into Petri dishes. Atrazine stress experiments consisted in direct
exposure to atrazine during germination and early growth or in
transfer experiments where 2-week-old plantlets were transferred
to atrazine-containing medium, as described in Ramel et al. [14].
The apl4 regulatory mutant was obtained by screening of the T-
DNA-mutagenized Arabidopsis thaliana collection [ecotype Wassi-
lewskija (Ws)] of the Institut National de la Recherche Agrono-
mique (INRA, Versailles, France) [15] on 1x MS-agar in the
presence of lethal concentrations of atrazine. Mutant plantlets
were then transferred to soil and grown under controlled
conditions (16-h light at 22°C and 8-h dark at 18°C) to ensure
seed set. The EMBL accession BH755830 line is an Arabidopsis T-
DNA-mutagenized line of the Columbia (Col-0) ecotype [52] and
was obtained from the Nottingham Arabidopsis Stock Centre
(NASC, http://arabidopsis.info; NASC ID: N552250; SALK_
052250). The pgm mutant was kindly provided by Dr Yves Gibon
(INRA Bordeaux, University of Bordeaux 1&2, UMR 619 Fruit
Biology, Villenave d’Ornon, France). The adgl-1 and adg2-1
mutants were a kind gift from Dr Jychian Chen (Institute of
Molecular Biology, Academia Sinica, Taipei, Taiwan).

Growth and development

Shoot biomass (fresh weight), root biomass (fresh weight), and
primary root length of plantlets were measured after 15 days of
cultivation on 1x MS-agar vertical plates. Chloroplastic pigments
were extracted by pounding aerial parts of plantlets in 80%
acetone, and absorbance of the resulting extracts was measured at
663 nm and 646 nm. Chlorophyll levels in these extracts,
expressed as g mL ™!, were determined from the equations given
by Lichtenthaler and Wellburn [53].

Photosynthesis

Chlorophyll fluorescence and maximum PSII efficiency (F,/F,,)
were measured with a PAM-210 chlorophyll fluorometer system
(Heinz Walz, http://www.walz.com). After dark adaptation for at
least 15 min, minimum fluorescence (Fp) was determined under
weak red light. Maximum fluorescence of dark adapted leaf (F,,)
was measured under a subsequent saturating pulse of red light,
and variable fluorescence (¥, = F,,—F) was determined [9].

Carbohydrate analysis

Fifteen-day-old plantlets were sampled at the end of the night
(End of Night), at the middle of the day (Middle of Day), and at the
end of the day (End of Day). Roots and shoots were rapidly
separated and frozen in liquid nitrogen. Samples were ground to
powder in liquid nitrogen and then extracted in 80% ethanol
containing 4 mM HEPES-KOH, pH 7.5, at 80°C for 30 min.
Samples were then centrifuged for 15 min at 11 000 g. This initial
supernatant was collected and stored on ice. The pellets were
resuspended in 80% ethanol containing 4 mM HEPES-KOH
(pH 7.5), and incubated at 80°C for 30 min. After centrifugation
of the extracts, for 15 min at 11 000 g, the supernatant was
collected and stored on ice. This hot extraction of the remaining
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pellets was repeated further, once with 50% ethanol in 4 mM
HEPES-KOH (pH 7.5) and once with 4 mM HEPES, pH 7.5. All
of the resulting supernatants were then pooled and assayed for
soluble sugars [54]. Quantification was carried out spectrophoto-
metrically by enzyme-based assays using ENZYPLUS® kit
(RAISIO Diagnostic, http://www.raisiodiagnostics.com).

Starch insoluble pellets were dissolved for 30 min at 60°C under
agitation in dimethylsulfoxide/8M hydrochloric acid (4:1, v/v).
Samples were centrifuged for 15 min at 12 000 g and supernatants
were used for starch determination after fixing pH at 4.5. Starch
levels were determined according to Bergmeyer et al. [55] using
Boehringer Mannheim enzymatic kits (ENZYPLUS®, RAISIO
Diagnostic, http://www.raisiodiagnostics.com). Starch was first
degraded to D-glucose by amyloglucosidase and starch concen-
trations were determined by quantification of the resulting D-
glucose units. The D-glucose was phosphorylated to glucose-6-
phosphate, and oxidized in the presence of nicotinamide adenine
dinucleotide phosphate (NADP") to form both gluconate-6-
phosphate and NADPH. The amount of NADPH was then
determined spectrophotometrically at 340 nm.

Analysis of genomic DNA

Genomic DNA was extracted using the Wizard® Genomic
DNA Purification kit (Promega, www.promega.com). Genomic
DNA fragments flanking the T-DNA right (RB) and left (LB)
borders were amplified by the PCR walking method described by
Devic et al. [16]. Resulting PCR products were separated by
electrophoresis, stained with ethidium bromide, and visualized
under ultraviolet light. The amplification products were then
cleaned up from agarose gel with the Nucleospin® Extract kit
(Macherey-Nagel, http://www.mn-net.com), cloned into pGEM-
T® (Promega, www.promega.com) and sent for sequencing at
Macrogen (http://www.macrogen.com). The BLAST search
program using default parameters [56] was used for sequence
alignments.

Southern blot analysis was carried out as described by Hummel
et al. [57]. Genomic DNA (5 pg) was independently digested with
HindIIl and Ndel restriction enzymes. T-DNA RB (591 bp) and
LB (986 bp) probes were obtained by PCR of the pDB10 plasmid
(Institut National de la Recherche Agronomique, Versailles,
France) using respectively CGCCGATGCAGATATTCGTAA-
T/AGTTCATAGAGATAACCTTCACCCG and TCGTCAA-
CCACTACATCGAGAC/CAGGATATATGCCAACGTAA as
primer pairs. The resulting PCR products were sequenced
and used to generate digoxigenin (DIG)-labelled DNA pro-
bes [57]. Immunodetection of hybridised probes was carried
out as described in Hummel et al. [57]. Hybridization tempera-
tures were fixed at 46°C and 50°C, respectively, for RB and LB
probes.

Quantitative RT-PCR analysis

Total RNA were extracted from plantlets using the RNAgents®
Total RNA Isolation System kit (Promega, www.promega.com).
One microgram of each RNA sample was reverse transcribed into
¢DNA with SuperScript™ II Reverse Transcriptase (BioRad,
http://www.bio-rad.com). Real-time PCR amplification was
carried out using a Chromo4 Real-Time PCR Detection System
(Bio-Rad, http://www.bio-rad.com) and the iQ SYBR Green
Supermix (Bio-Rad, http://www.bio-rad.com) as recommended
by the manufacturer. Primers were designed, using Primer3
software, to be specific of A4t2g21590 ¢cDNA sequence and to
amplify a sequence of approximately 150 bp. For quantification,
the ubiquitind (GenBank accession number: AY084978) and f-
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tubulin (GenBank accession number: AY059075) genes were used
as internal controls [58]. The following pairs of primer were used:
GATTCTTCTTACTCCTTTGCCTTG/CGTGCTTGAA-
CTTTTGATTCC for the At2¢21590 gene, CCAAGCCG-
AAGAAGATCAAG/TCAAAATGACTCGCCATGAA for the
ubiquitind gene, and ACCTTATCCCATTCCCAAGG/CAGCG-
GATGCAGTCAAGTAA for the f-tubulin gene.

Microarray data mining and analysis

Microarray data sets were obtained from databases at The
Botany Array Resource (http://bar.utoronto.ca) and come from
data of the Arabidopsis Developmental Map [22], of the Tissue-
specific root cell types [23,24], and of the Abiotic Stress [59] and
Chemical series from the AtGenExpress Consortium data. Light
series from Blasing et al. [60] and Michael et al. [61] were also
used. For analysis of APL4 and APLS gene expression data across
the different experiments, the electronic Fluorescent Pictograph
(eFP) Browser tool [62] at the Bio-Array Resource for Plant
Biology website, and the Pearson correlation coefficient were used.
The Pearson correlation coefficient measures the degree of
assoclation between two expression vectors. Its value is comprised
between —1 and +1, inclusive, +1 meaning that the two series are
identical, 0 that they are completely independent, and —1 that
they are perfect opposites. Microarray analysis of APL3 and APL4
expression in Columbia ecotype (Col-0) under conditions of
atrazine, sucrose, and atrazine plus sucrose treatment was
extracted from our previous work [12]. These data are deposited
in the ArrayExpress database (E-MEXP-411) according to the
MIAME standards proposed by the Microarray Gene Expression
Data society.

Supporting Information

Figure S1 Localization of T-DNA insertion in eatl
mutant line by Southern blot analysis. Five ug of genomic
DNA from eat! mutant were separately digested with HindIII and
Ndel and resulting DNA fragments were separated by agarose gel
electrophoresis and then blotted onto a nylon membrane.
Hybridization was carried out with specific DIG-labelled probes
corresponding to T-DNA left and right borders. Southern blot
analysis was carried out as previously described [57].

(PPT)

Figure S2 Enhanced biomass phenotype of BH755830
Arabidopsis mutant line. Root and shoot fresh weights are
given. Seeds of the BH755830 Arabidopsis mutant line were
germinated on 1x MS-agar medium in the absence of atrazine,
and plantlet development was carried out for 15 days. Values are
the mean (= S.E.M.) of measurements on at least sixteen 15-day-
old plantlets. Asterisks represent statistically significant differences

(Mann-Whitney test, P<0.05) between WT (Col-0) and
BH755830.

(PPT)
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