N

N

Quantifying the discord: Order discrepancies in Message
Sequence Charts
Edith Elkind, Blaise Genest, Doron Peled, Paola Spoletini

» To cite this version:

Edith Elkind, Blaise Genest, Doron Peled, Paola Spoletini. Quantifying the discord: Order discrep-
ancies in Message Sequence Charts. International Journal of Foundations of Computer Science, 2010,
pp-211-233. hal-00591762

HAL Id: hal-00591762
https://hal.science/hal-00591762

Submitted on 10 May 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00591762
https://hal.archives-ouvertes.fr

Quantifying the Discord: Order Discrepancies in
Message Sequence Charts

Edith Elkind!, Blaise Genest, Doron Peled, and Paola Spoletihi

! Division of Mathematical Sciences, Nanyang Technologditrilersity,
21 Nanyang Link, 637371, Singapore
2 CNRS/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3Department of Computer Science, University of Warwick
Coventry CV4 7AL, United Kingdom

and Department of Computer Science, Bar llan University,

Ramat Gan 52900, Israel
4 DSCPI, Universita dell’Insubria

via Valleggio 11 - 22100 Como, Italy

Abstract. Message Sequence Charts (MSCs) and High-level Messager®equ
Charts (HMSCs) are formalisms used to describe scenariogee$age passing
protocols. We propose using Allen’s logic to represent &émgoral order of the
messages. We introduce the conceptlisEordto quantify the discrepancies be-
tween the intuition and the semantics of the ordering batwaessages in d-
ifferent nodes of an HMSC. We study its algorithmic propestiwe show that
while the discord of a pair of messages is hard to computeniergd the prob-
lem becomes polynomial-time computable if the number ofesoaf the HMSC
or the number of processes is constant. Moreover, for a givd8C, it is always
computationally easy to identify a pair of messages thaitb@shthe worst-case
discord and compute the discord of this pair.

1 Introduction

Message Sequence Charts (MSCs) and High-level Messager8sGharts (HMSCs)
are very useful tools for describing executions of commaitidn protocols. They pro-
vide an intuitive visual notation, which is widely used iraptice and has been formally
described in the MSC standard [13]. Moreover, a relatedtiootavas adopted as a part
of the UML standard. Informally, an MSC is described by a $gtrocessesnd a set
of messagebetween these processes. The notation allows one to spkeifypartial)
order in which each process sends and receives messagéerfmare, MSCs can be
generalized to HMSCs, which are graphs whose nodes arethbéth MSCs. An ex-
ecution of an HMSC is a concatenation of MSCs that appear aattaip this graph.
Using HMSC notation, one can describe alternative behavibsystems, or even use
it as a scenario-based programming formalism [12]. Theaesdeferred to Section 2
for formal definitions.

Besides being used in practice, MSCs and HMSCs have beensesdly studied
from theoretical perspective over the past few years. Tssarch has pointed out sev-
eral difficulties with these formalisms. One such examplénésproblem of detecting

race conditions in MSCs [2], i.e., the possibility that nsegess arrive out of order due to
lack of synchronization. This problem has also been studigte more general context
of HMSCs [16] and sets of MSCs [7]. Another problem is relat@gdlobal choice [4,
3], where some processes behave according to one MSC standrbther processes
behave according to another MSC scenario, resulting in rehaviors.

Continuing this line of research, in this paper we identifiptiher ambiguity of the
MSC notation. Namely, in the definition of an HMSC, a concatam of MSCs along
a path intuitively suggests that messages that appear iarderéSC precede in time
any message that appears in a later MSC. In fact, in some fvarke such adive
sequence chartff] there is a hidden assumption of such synchronizatianiriiple-
mentation would probably require additional mechanismxtraemessages). However,
according to the MSC semantics, this is is not the case: tenation of events accord-
ing to a path in the HMSC graph is done process by process, Tuependence among
events happening in different sets of processes may allossages in later MSCs to
(partially) overlap or sometimes even precede messagegeinops MSCs. Clearly,
this discrepancy between intuition and semantics may tr@swisers misinterpreting
the notation and, as a result, designing protocols that dwaik as intended. Protocol
design could be helped if the user can check his intuition @CMxecutions exhibiting
such discrepencies. Algorithms are thus needed to find {wease) discrepencies. This
is reminiscent of the concept of race conditions: the shitégward visual interpreta-
tion of concatenation is different from the intended sentantHowever, unlike race
conditions, the aforementioned discrepancy has not beerestbefore.

In this paper, we provide a formal treatment of this issue.ivt@duce the notion
of discordof a pair of messages in different nodes of an HMSC. Intuifiibe discord
of two messages is the worst possible discrepancy betwearotiier in an execution
and their “ideal” order, in which the message in the MSC tipggears earlier on the
path precedes the message in the MSC later on the path. Talfperthis intuition, we
need several tools that we introduce below.

We start our study of the message order in MSCs and HMSCs hyinigthe con-
cept of achain Informally, a chain is a sequence of events where any adfjgear of
events is ordered either by being a send-receive pair or lonbmg to the same pro-
cess line. Hence, a chain represents a possible flow of isfitom Clearly, the order
between messages is determined not only by the relevanagesthemselves, but also
by chains between their endpoints. We characterize thelpp@ssessage orders by de-
scribing the possible communication patterns betweemn émeipoints. We then project
each such pattern onto the global timeline, thereby obitgian interval, and classify
the resulting scenarios.

To compare message intervals, we employ a subséilef’s interval logic[1].
Allen’s logic is a formalism for describing the relative erdof time intervals. For ex-
ample, Allen’s logic formuladd B expresses the fact thdthappens during3, i.e., A
starts afterB starts and ends befor@ ends. Allen’s logic has been widely studied in
the context of artificial intelligence and knowledge reprgation, and its expressive
power and computational properties are well understoofl Bidice messages can be
seen as time intervals, it provides a convenient languagddscribing the message
order. Indeed, for any pair of messages, , m-) in an HMSC, we can identify the sub-

set of primitive predicate$(m1,ms) of Allen’s logic (such as “during”, “precedes”
or “overlaps”) such that for any predicatec S(m1,m-) the relationshipn,xms. is
consistent with the HMSC semantics. There is also anotlimitiwe predicate that can
be associated with messages occuring in different nodé®diMSC, namely, the one
that is suggested by the HMSC structure. More specificdlly;i andmo appear in
two HMSC nodes that are connected by a path, the HMSC stmistiggests that one
of them precedes the other (even though this is not necswaplied by the HMSC
semantics).

In this paper, we introduce a natural ordering on Allen’sdgimitive predicates.
We then define thdiscordof a pair of messag€sn;, m-) in an HMSC as the elemen-

t of the setS(m,, ms) that is the furthest away (according to our ordering) from th
primitive predicate suggested by the HMSC structure. Fangde, ifm, appears in
some HMSC node, whilei, appears in a successor node (and thus the HMSC suggests
thatm, precedesn,, written asm;p ms-), the discord betweem, andm, tells us
whether all or part ofn, may appear before; . In the extreme case, when there are no
other events in the system and andm. belong to different processes, it may happen
thatms appears entirely before, . In this case, the discord between the two messages
is described by the Allen’s logic’s primitive predicgie ' (“is preceded by”). To sum-
marize, the discord measures how much the actual order ebagpce of messages can
deviate from the order within the HMSC graph.

We study the concept of discord from the algorithmic perdpecFirst, we show
that computing the discord of a pair of messages is coNP-@mur reduction as-
sumes that both the number of nodes in the HMSC and the nunfilpeocesses are
part of the input. We show that this is inevitable: if eithétleese numbers is fixed, the
discord can be computed in polynomial time. We then focushamaxterizing the glob-
al properties of discord in an HMSC. To this end, we define ikeatd of an HMSC
as the worst possible discord of a pair of messages in this EINBarprisingly, it turns
out that this quantity can be computed in time polynomiahkiotthe size of the HM-
SC graph and the number of processes. Intuitively, the refigdhat is that it is easy
to identify a pair of messages that exhibits the worst-cababior for a given HMSC
and compute the discord of such a pair. Our work also pro\adgsneral study of the
existence of communication chains, which we believe wilubeful in its own right in
studies of layered combination of communication algorghm

A preliminary version of this paper (with Section 5.2 omitend Section 5.1 short-
ened) appeared in ATVAO7 [8].

2 Preliminaries

2.1 Message Sequence Charts

Following [13], we formally define message sequence chit&(ds), MSC concatena-
tion, and high-level message sequence charts (HMSCs).

Definition 1. AMessage Sequence Ch@SC)is atuple” = (P, E, P, M, <p.pep),
where

— P is afinite set oprocesses

— Eis afinite set okvents

— P : E — Pis afunction that maps every event to the process on whiattiirs;

— M is a finite set of messages. Each message M consists of a pair of events
(s,r) for sendandreceive

— For each procesp € P, <, is a total order on the events of that process.

We define a relation< as <= U,cp <p U{(s,r) | (s,7) € M} and let<* be
the transitive closure ok. We require<* to be acyclic. We assume that MSCs are
FIFO, that is, if two messages, 1) and (s, 72) are between the same processes,
i.e.,P(s1) = P(s2) andP(r1) = P(r2), thens; < so impliesr; < rs.

We will occasionally abuse notation and writee C' instead ofm € M.

Definition 2. LetCy, Cs be two MSCs wher€;, = (P, Et, P, M*, <;1pe7,1), Cy =

(P?,E?, P, M?, <2 cpz) With P! = P? = P and E' N E*> = (. Define their
concatenatioas an MSC(C;Cs) = (P, E, P, M, <,.,cp), WwhereE = E' U E?,
M = M'UM?, the functionP is given byP(e) = P'(e) if e € E' andP(e) = P?(e)
if e € E?, and for eactp € P we define<,=<, U <> U{(e1,€2) | e1 € Ey, e €
EQ,Pl(el) = P2(€2)}.

Notice that there are no messages that are sent in one MSE@agidad in the other
(an extention of the HMSC notation in [11] allows a messagspan several MSC
nodes). Definition 2 can be naturally extended to sequeficgs., . . ., C,, of three or
more MSCs by settingC1; Ca;...; Cp) =((...(C1;C2);C3) ..).

Definition 3. A High-level Message Sequence Chart (HMSC) is a tiiple- (G,C,
Vo, A), whereG = (V, &) is a directed graph with the vertex sEt= {vy,...,v,}

and the edge sef C V x V,C = {C4,...,C,} is a collection of MSCs with a
common set of processes and mutually disjoint sets of eugnes V is a set ofinitial
nodes, and\ : V — (is a bijective mapping between the nodes of the graph and the
MSCs inC. To simplify notation, we assumév;) = C;. Each vertex of is reachable
from one of the initial nodes. Aexecutionof the HMSC is a finite MSQC;; ; C;)
obtained by concatenating the MSCs in the nodes of a path.,v; of the HMSC
that starts with some initial node; € V,. Thesize|H| of an HMSCH is defined as

|H| = |Ei| + -+ |E,| + V] + |€], whereE; is the set of events of the MSG.

Given apathL = (v;,...,v;) in G of length at leas?, we denote b\ (L) the MSC that
is obtained by concatenating the MSCs aldnge.,(C;; . . . ; C;). The set of executions
of an HMSC is also referred to as the set of Mfeseratedy that HMSC.

We can define infinite executions in a similar way. This reggiglefining the con-
catenation of an infinite sequence of MSCs, which is the lofithe sequence of finite
concatenations of prefixes. As the concepts studied in #pgipare defined for finite
executions only, we chose not to present the backgroundimitérexecutions here; the
interested reader is refered to, e.g., [10].

Figure 1 shows an example of an HMSC. The node in the uppezdefier, denot-
ed by M1, is the starting node, hence it has an incoming edge thatisemted to no
other node. Initially, procesB1 sends a message it2, requesting a connection (e.g.,

'

mi|[PL] [P2] [P3]] wmz[[P [P4 [P3
Connect N Approve
m3|[PL] [P2] [P3]] wma[PL] [P2] [P3]
Fail
Req$ervice
Report
Fig. 1. An HMSC

to an internet service), according to the nddé. This can result in either an approval
message fromP2, according to the nodé/2, or a failure message, according to the
node M 3. In the latter case, a report message is also sent ff@nto some supervi-
sory proces$’3. There are two progress choices, corresponding to the tseavarout
of the nodeM 3. We can decide to try and connect again, by choosing the droow
M3 to M1, or to give up and send a service request (from pro£dst® process3),
by choosing to progress according to the arrow frbf8 to A/4. Note how the HM-
SC description abstracts away the internal process comigutand presents only the
communications. Consider the path 1; M 3; M4). According to the HMSC seman-
tics, process”2 does not necessarily have to sendResport message in/3 before
processP1 has progressed accordingié4 to send itsReq_service message. How-
ever, proces®3 must receive th&eport message before tliReq_service message.

An implementation which fully adheres to this HMSC speciiima will thus need,
upon receiving ReqServices, to ensure that all Report rgesszave been received be-
forehand. The usual idea would be that proc@8ss polling on both channel from P1
and from P2, giving the latter the priority. That is, if thésea message in both chan-
nels, then the message from P2 to P3 is first processed. Uné&tely, this idea does
not work out, as it is possible that the last report messagabtbeen yet sent (hence
the channel is empty), while the ReqService has been sertetit3 would process the
message ReqgService before the last Report, which wouldaztiot the HMSC specifi-
cation. A designer which would only follow its (wrong) intigcin (Report is sent before
RegService because it is in a previous node) would miss thig@lgmatic case and may
perform a wrong design using the implementation with théipptechnique described.
Our aim is to detect discrepencies - which is, potential [emis - and provide the de-
signers with warnings (MSC executions of path of the HMS@hsthat he can ensure
that what he is doing adheres with the specification - or thathould change either the
implementation or the specification (e.g. adding an ackadgément message from
P3to P1 after each reception of a report).

2.2 Allen’s logic

Allen’s logic [1] is a formalism that allows one to expresmieoral relationships be-
tween time intervals. It has 13 primitive predicates (tielag) that correspond to possi-
ble relationships between two intervals, such dptecedes3” or “ A happens during
B”. Each primitive predicate describes a total order betwberendpoints of these in-
tervals. When working with MSCs, we normally assume thatwvmévents can happen
at the same time, i.e., no two intervals have a common entdierefore, to represent
relationships between two messages = (s1,71) andms = (sa,72), we will only
use 6 of these primitives, namely:

P — my precedesns (i.e.,s1 <11 < 53 < 13);

p~! —m, is preceded byn, (i.e.,50 < 73 < 51 < 11);
o — my overlapsn, (i.e.,s1 < s < 11 < T9);

o~! —m, is overlapped byn; (i.e.,52 < 51 <12 < 11);
d —myisduringms (i.e.,s50 < 51 <11 < 13);

d—! — m, containsms (i.e.,s1 < 89 < 79 < 71).

Observe that fot € {p,o0,d} the predicateit B is equivalent taBt 1 A.

Fig. 2. Allen’s logic relationshipsApB, AoB, andAd ™' B

An Allen’s logic formula is a concatenation of one or more bégse six letters,
and is interpreted as a disjunction of the correspondindipages. For example, the
formula Apod !B says that eitherd precedesB, or A overlapsB, or B happens
during A. Given the semantics of the primitive predicates, it is etasgee that this
formula says that! starts before3, but may end beforep), during (), or after d—1)
B. There are several operations that can be performed on'altggic formulas, such
as composition and intersection. However, in this paper mig ase the Allen’s logic
as a means to describe the relationships between the duddtinessages. Therefore,
we will not formally define these operations.

3 Relationships between Messages

In this section, we will show how to use Allen’s logic to reasbout the relationship
between a given pair of messages.

Given an MSCC, achainfrom an event: € E to an evenyy € E is a sequence
of events(z = e, es,...,ex—1,ex = y) suchthae; € Eforj=1,...,k, and every
adjacent paife;, e;41) in the chain is either (i) a send and the corresponding receiv
or (ii) e; appears before (above),; in the same process line. Clearly,<* y if and
only if there is a chain of messages framo y. Now, consider a pair of messages
(s1,7r1) and(s2, 72). By definition, there is always a chain frasn to 7y and froms, to

Fig. 3. Impossible relationship between messages

ro. Moreover, for anya, b) € {s1,r1} x {s2,r2}, we have one of the following three
cases: (1) there is a chain of messages fidmb; (2) there is a chain of messages from
b to a; (3) there is no chain in either direction. As there are foairgof points, this
corresponds t8* = 81 combinations. However, not all of them are possible, as MSCs
do not admit cycles (see Figure 3). In fact, for two messalgeretare exactly twenty
possible combinations of orders between their endpoints.li8Y them in Figure 4.

In these figures, the two messages correspond to the fuit@earrows. Other arrows
correspond to chains of messages that begin and end at theietsbf these messages.
Dotted arrows represent redundant information, i.e.,rchéiat can be inferred from
other chains (denoted by the dashed arrows).

(@) (b) (© (d) (e)
)) (h) @ 0 (k)

Fig. 4. The possible orders between messages (up to symmetry)

The patterns in Figure 4 correspond to the following Allelogic relationships:
(@pp~'oo~'dd™; (b)p; (c)pod~; (d) po; (€)o; () d~'; (g)od™"; (h)poo~'dd~;
(i) od; (j) opd; (k) oo~ *dd . Except for cases (a) and (k), both of which are sym-
metric, each other case has a symmetric twin that can benglotaly swapping the left
and the right message.

Given two messages, we can decide according to which of thierpa they are
ordered by calculating the transitive closure relatioh While in general transitive

closure algorithms run in cubic time [9, 18], it has been obsé [2] that in the MSC
case one can be more efficient since each event has at most¢aessors. Formally,
we have the following proposition.

Proposition 1. [2] Given an MSCM with messagesi, - - - ,my, one can decide in
time O(¢?) the relation between every;, m;, 1 <i,j < t.

We will now derive a corollary that will be useful in bounditige running time of
our algorithms.

Corollary 1. Given an HMSCH = (G,C, Vo, A), |C| = n, one can compute the re-
lation <* for all MSCs inC in time O(|H|?). Moreover, one can compute in time
O(n|H|?) the relation<* for all concatenated MSCs of the for(@;; C;), as well
as every Allen’s logic relationship for all pairs of message € C;, m' € C;, where
C;,Cj €C.

Proof. Let E; be the set of events of the MSG. By Proposition 1, we can compute
<* for C; in time O(|E;|?). Therefore, computing:* for all C;, i = 1,...,n, takes
time O(|Byf? + -+ |En[?) = O((|Ex| + -~ + |Ea)?) = O(IH?).

Similarly, computing the relatior.* for (C;; C;) can be done in timé&((|E;| +
|E;j)?). As (|Ei| + |E;|)? < 2|E;|? + 2| E;|*, computing<* for all MSCs of the form
(Ci;C)),i,j=1,...,n,canbe doneintim@(n(|E,|> +-- -+ |E,|?)) = O(n|H|?).
Now, fix 1 < 4, j < n. Given the relation<* for (C;; C;), the Allen’s logic relationship
for any pair(m,m’), m € C;, m' € C;, can be computed in constant time. As there
areO(|E;||E;|) such pairs, computing the Allen’s logic relationship fdradithem can
be done in timeD(|E;||E;|) = O((|E;| + |E;|)?). Summing over alf,j = 1,...,n,
we obtain the bound aP(n|H|?), as claimed. 0

4 Definition of Discord

Concatenating two MSC€'; andC, does not necessarily mean ttedt messages of
C1 precede in time all messages@©@f: for example, ifC; consists of a single message
from p; to po, andCs consists of a single message frgmto p4, the relation< does
not provide any information about the relative order of hégo messages. In what
follows, we propose an Allen’s logic-based formalism thiékdvas us to quantify the
ordering discrepancies that occur when concatenating M@@sstart by considering
sequences of MSCs, and then extend our analysis to HMSCs.

Consider a concatenated M$C, ; C»). For any two messages, = (s1,71) € C;
andms = (s2,72) € Co, we know thats; < r andss < r2. Now, the scenario that
best matches our intuition about concatenation is when edlsages ii; precede all
messages ify. In this case, we also have < s», and thus we obtaisy, < r; < s2 <
ro. This corresponds to case (b) in Figure 4. Note that thises@eis only possible
whenC; has a unique maximal evesitC- has a unique minimal eveat, ande ande’
occur on the same process, i.B(e) = P(¢').

Conversely, the most unintuitive situation is when thetrete<* for (C,; C2) pro-
vides no information about the relative order of some message C, and another

messagen; € C,. Thatis, for somen; € Cy andms € C,, the situation is described
by case (a) in Figure 4, or by the Allen’s logic formuta pp~'oo~'dd~! ms. In this
case, the Allen’s logic formula allows. to actually precede:, since the disjunction
permits in particular thatn,; p~'m,. We consider this case to be th@rstamong all
orders betweem; andms, because it can be the most deceiving when observing the
structure of the HMSC, and hence leads to design errors. f&,iwhere the problem

of conflictsis identified and diagnosed, these are potential probleatstise from the
HMSC semantics. All remaining scenarios lie, as will be falated below, between
these two cases. We will now introduce a measure of discogparhich we call the
discord that allows us to order them more precisely.

Given a concatenation of two MSC€';; Cs), two messagesi; = (s1,71) € C;
andmsy = (s2,72) € Co are said to beut of orderif 7, does not preceds,, i.e.,
—mypms. In Figure 4, this happens in cases (a), (c), (d), (h), andN@}e that in our
setting, the cases (e), (f), (9), (i), and (k) are impossilleeach of these cases, there
are chains of messages starting from eventagfand ending in events ofi;, which
cannot happen under concatenation.

We now classify all primitive Allen’s logic predicates acdang to how well they
order the endpoints of the projected intervals, i.e., regmethe order between the events
of the two messages); andm.. Recall that in the ideal case, i.e., when the order
between the intervals is described by Allen’s logic prettiga we haves; < r; <
s2 < rq. In this case, there are zero eventg i, r»} that precede those ifsy,r; }.

In the worst case, i.e., ifi5 fully precedesny, there are four inversions: namedy, <

s1, 12 < 11, T2 < s1 andsy < ri. We thus order the predicates according to how
many of these four relationships are inverted. In case o, ave give preference to the
relationships that involve; to those that involve, .

Definition 4. The total order< is the transitive closure of the partial ordet, given
by <o= {(p,0),(0,d™1),(d7!,d),(d,07 %), (0", p~!)}. We denote bynax=.A the
maximum element of the sdtwith respect to<.

Remark 1.0bserve that the number of inversionspn! is 4, as explained above, in
o litis3,ind andd~! itis 2, inoitis 1, and inp it is 0. Therefore, our decision
thatd—! < d may appear quite arbitrary. We made this choice for two nesasirst,
we do think that the time when the messages are sent is moretamp than the time
when they are received, as the designer has more controtteyéormer, and second,
it is convenient to have a total order to work with.

Definition 5. Consider a sequence of MS%, . . ., C};) and a pair of messages; €

Cy, m2 € C such that in the MSC' = (Cy;. . .; Cy) we haven, Rma, whereR is a
(possibly non-primitive) Allen’s logic predicate. THiscordofm, andms with respect
to C'is the largest possible primitive predicate, according<di.e., the “worst”) that
appears inR, i.e., discordc(my, ms) = t, wheret € {p,p ',0,0 1, d,d" '}, ¢t

appears inR, and for allt’ that appear inR we havet’ < t.

Let us now apply this definition to the six cases that can ofmua pair of mes-
sages in a concatenated MSC, as illustrated in Figure 4 s @ the messages are in
relationshippp~!oo~'dd~!. The worst primitive predicate in this formulajs!, so

we conclude that the discord between the messages'isFor case (b), there is only
one relationp. Similarly, for case (c) the discord &!, for case (d) it iso, for (h) it
iso~t, and for (j) it isd. We conclude that the value dfscordc (m1,m») can beany
primitive Allen’s logic predicate.

We now extend the definition of a discord to messages in HMSCs.

Definition 6. Given an HMSCH = (G,C, V), \) and a pair of messages; € A(v),
my € A(v'), letdiscord g (my, m2) = max={discordyz)(mi,m2) | L = (v,...,v")}.

Consider now the HMSC in Figure 1. For the péii1; A/2), the discord ip, since
the maximum event o/ 1, which is a receive, precedes the minimum evend&f,
which is the send of messagpprove. On the other hand, for the path/1; M/3; M 1),
theReport message ol 3 corresponds to th€onnect message o/ 1 as in case (h)
of Figure 4, which means a discordef!. The discord of M3; M 4) is d due to the
relative ordering betweeReport in 1/3 andReqService in M 4.

We will now state an observation that allows us to compliteord s (m, ms).
Recall that given a grap = (V,€), a path(vy,...,v) in G is calledsimpleif it
contains no cycles, i.ev; # v; foranyl < < j < t. Similarly, a cycle(vy, ..., v =
v1) in G is calledsimpleif v; # v; foranyl <i < j <t,(i,7) # (1,1).

Claim 1 Consider an HMS@ = (G,C, Vo, A). For anyv,v' € V, v # o', and any
my € A(v),mz € A(v'), we haveliscord g (m1, m2) = max={discordy(z)(mi,m2) |

L = (v,...,v") is asimple path. Also, for two messagesi;, m» € A(v), we have
discordg(m1,ms) = max~{discordyz)(m1,m2) | L = (v,...,v) is a simple cyclg.

Proof. Clearly, removing a cycle from a path betweemandv’ can only worsen the
discord betweemn; andms, as this may eliminate some of the chains between the
endpoints ofn; andms. Hence, the path that exhibits the worst-case discord ie€yc
free. The same argument applies for two messages in the sateeohan HMSC. O
Observe that Claim 1 implies that the discord of the HMB@n Figure 1 iso~!.

5 Computing the Discord of a Pair of Messages

3

m1 € Mv), my € A(v') is easy. Namely, first we run the transitive closure algatith
to determine the causal relationships between the endpoint; andm,. We then
identify the corresponding scenario of Figure 4 and apptydhse analysis presented
after Definition 5. The running time of this algorithm is quatic in the total number
of messages in(L).

For HMSCs, Definition 6 and Claim 1 suggest a straightforvedgarithm for com-
puting the discord: given two messages € A\(v), ma € A(v'), we can consider each
simple path from to v’ (or each simple cycle, if = v'), compute the discord along this
path, and output the maximum discord obtained in this wais mhive algorithm runs
in exponential time in the input size. In the next subsectoa show that this is per-
haps inevitable: we prove that in general the problem of aging Discord g (1, m2)
is coNP-hard. However, we will now provide an alternativeywd verifying whether

For a simple patil = (v = vy,...,vx = '), computingdiscordyz)(m1,m2) for

10

Discordg (m1,m2) = t, wheret € {p,p~',0,07!,d,d"!}. As we will see later,
this can be used to construct an efficient algorithm for camgiscord g (m1, m2)
in the important special case when the number of processes&ant.

We will first define a related problem that will be useful foatitg our results.

PATH WITH NO CHAIN: Given an HMSCH = (G = (V,€),C, Vo,), a pair of
nodesy,v' € V, and a pair of eventse A(v),e’ € A\(v'), is there a pattL fromwv to v’
in G such that in the MSQ(L) there is no chain of events froato e'? We will write
PNCg (e, e') = 1 if such path exists anBNCp (e, e’) = 0 otherwise.

Proposition 2. Givenan HMSCH = (G = (V,£),C, Vo, A), apair of nodes, v’ € V,
and a pair of messages, = (s1,71) € A(v), ma = (s2,7r2) € A(v'), we have

— discordg (my,ms2) = p ifand only if PNCg (71, s2) = 0.

— discordg (my,m2) = o if and only if PNCg(r1,s2) = 1, PNCg(s1,s2) = 0,

andPNCH(T1, 2)

— discordg (m1,ms) =
0.

— discordg (my,m2) = d if and only if PNCg(s1,s2) = 1 and for any pathl =
(v,...,v") in G, the MSCA(L) contains a chain froms; to s, or a chain from
tors.

— discordg (my,m2) = o™t if and only if there exists a path = (v, v')ing
such that the MSQ(L) contains no chain from; to s, and no cham fromrl to
T2, andPNCH(Sl,TQ) =

— discordy (my,ms) = If and only if PNCg(sy,72) = 1.

Lifand only if PNCg (r1,72) = 1andPNC g (sq, s2) =

Proof. The analysis fop, o, andp—! is straightforward.

If discordy(my,m2) = d~%, then there is a pat, = (v,...,v') that satis-
fiesdiscordy) (mi,ma) = d~!. Clearly, \(L) contains no chain from; to r,, so
PNCg(r1,72) = 1. Also, forany path’ fromv tov', we haveliscord () (m1,ms2) €
{p,0,d'}, so L’ contains a chain from; to s5. Hence,PNCg(s1,s2) = 0. Con-
versely, if PNCg(r1,72) = 1, then there is a patih from v to v’ with no chain
from 7, to 75, so it cannot be the case thditcordy()(m1,m2) € {p,o}. Hence,
discordy (g (m1, ma) = d~!. On the other handNC (s1,s2) = 0 means that any
pathZ’ fromw to o' contains a chain from to s», So we haveiscordy /) (m1,ma) ¢
{d,o~!,p~1}. Other cases can be analyzed similarly. O

Note that to check ifliscordg (m1,ms) = t fort € {p,p~!,d !, 0}, it suffices
to make a small number of calls RNCy. However, to check ifliscord g (my,ms) =
t for t € {d,o !}, calling PNCy is not enough. Indeed, to verify, e.g., whether
discordg (m1,ma) = d, we have to check that any path between the corresponding
nodes containsitherone of two chains: a chain from to s, or a chain fromr to r5,
and this check cannot be simulated by call®dC .

5.1 Computational hardness

We will now show that for HMSCs the problem of upper-boundiixgord g (m1, ms)
is coNP-complete. Formally, we consider the following peot:

11

1
ada

DISCORD(H, t, m1,m2): Given an HMSCH, a predicate¢ € {p,p~',0,0~
d~!'}, and two messages;, m» in H, is it the case thatiscord g (m1,m2) < t?

Theorem 1. The problenDISCORD(H, t,m1,m2) is cONRcomplete.

Proof. To see that DsCORD(H, t,m1,m2) is in CONP, observe that the complementary
problem of checking whethetiscordy (m1,m2) = t is in NP: a certificate can be
provided by a patt. such thatdiscordy(z(m1,m2) > t. In particular, fort = p a
certificate is a path with no chain from to s, for t = o itis a path with no chain from
ry tory, fort = d ! itis a path with no chain from; to s, fort = d it is a path with
no chain froms; to s, and no chain from, tor,, and fort = o~ it is a path with no
chain froms; tors.

The coNP-hardness proof is by reduction from 3SAT. Supplosevte are given

a 3CNF formula with a set of variables, ..., z, and a set of clauses,...,cy.
Letl},13,13 be the literals that appear in theh clause, i.e.¢; = 1j VI3 VI3, 1} €

{z1,...,%n, F1,..., %, }. We construct an HMSE as follows. Se?® = {p1, ps, ps3,
Day Dy s Pivs -+ 3 Pan s Pons Ders - - -5 Doy - The HMSCH has the following structure. Its
underlying graplty has a source nodsg, a sink nodes;, andn + m gadget subgraphs,
namelyn variable gadget&, ..., X,, andm clause gadgefs, , . .., Y,,. The variable
gadgetX; consists of four vertices?, u}, u?, u? and four edgesu?, u}), (u?,u?),
(u},u?), (u?,u?). The clause gadg#f consists of five vertices?, w}, w?, w?, w} and
six edgegw?, w}), (w?,w?), (W, w?), (w}, w}), (wi, w}), (w?,w). The source, the
vertex gadgets, the clause gadgets, and the sink are aléctathin series as depicted
in Figure 5. More precisely, there is an edge frognto the vertexu?, for all i =
1,...,n — 1 thereis an edge from to u{, ,, there is an edge froma} to w?, for all

i =1,...,m — 1there is an edge from} to w?H, and finally there is an edge from
w towv;.

el e))
Vo Vi

Fig. 5. The high-level structure of the HMSH used in the proof of Theorem 1.

It remains to define the MSCs that are placed in the verticés dhe MSC invg
consists of a single messa@®, ;) from p; to p,. The MSCs in the vertices!, u?,
w}, wj areempty forali = 1,...,n,j =1,...,m. Fori = 1,...,n, the MSC inu;
consists of a message from to p,,, and the MSC inu? consists of a message from
patopz,.Forj=1,...,m,k=1,2,3, the MSC inw;.c contains a message fropp;
to pc;, Wherel§C is thekth literal of ¢;. Finally, the MSC inv; hasm + 1 messages: a
message fromeagh,, j = 1,...,m, to p3, and a message. = (s2,72) from p; to
p4 thatis sent after all messages frompal| are received.

We claim that the original 3CNF formula is satisfiable if anayoif the tuple
(H,p,m1,m9) constitutes a “no”-instance of IBCORD(H, p, m1,m=2), i.e., there is
a pathL from vy to v, such that the MSQ (L) contains no chain from, to s-.

12

[~ [w}
P, Ry
PZ Px‘
uf ~] |
w?
up ' / u? w? R, R wf
I~
[~
w
P K PP
@ (b)

Fig. 6. (a) The gadgeX;; (b) The gadgeY;

Indeed, suppose that our formula is satisfiable, andlet (t1,...,t,), t; €
{T, F'} be a satisfying assignment for it. Consider a phtthat satisfies the follow-
ing conditions:

— L starts atg and ends aty ;

- LnX;={ud,u},ul}ift; = FandL N X; = {ul, u?,ui}if t; =T,

- LNnY; = {w],w},wj} for somek € {1,2,3} such that} is true underT, i.e.,
I¥ =z, andt. = T orl¥ = z. andt. = F. Note that sucti’ is guaranteed to
exist sincey has to satisfy:;.

First, note that in the corresponding MSCL) there is no chain from; to any event
of any of the processegs,, j = 1,...,m. Indeed, the only message receivedpbyin
A(L) is from somep; such thaﬂ;.c is true undefT . Sincel;.c is true underT, in A(L)
the procesg; receives no messages whatsoeverpAAsnly receives messages from

Pe;rJ = 1,...,m, we conclude that in\(L) there is no chain from; to s.

Conversely, suppose that there is a paguch that in the corresponding MSCL)
there is no chain from; to s,. Consider a satisfying assignmeht= (¢y,...,t,)
such thatt; = Fif LN X; = {uf,u},ul} andt; = Tif LN X; = {u,u?, u}}.
Note that for anyj = 1,...,m, if LNY; = {w,w},wj} for somek = 1,2,3, it
must be the case thp,tjf receives no message frgmin A\(L), because otherwise there
would be a chain of messages framto s». Hence, the Iiterad;.c is true undefT, i.e.,
¢; is satisfied. As this holds for any= 1,...,m, we have successfully constructed a

satisfying assignment for our instance of 3CNF.
O

Remark 2.Clearly, the proof of Theorem 1 implies thaam™ wITH NO CHAIN is NP-
hard. Moreover, we can consider a weaker version fdoRD, in which the Allen’s
logic predicate is not part of the input. Namely, foe {p,p !,0,071,d,d '}, let
DiscorD(H,m1,ms) be the problem of checking whethéiscord g (m1, ms) < t.

13

Obviously, fort = p~! this problem is trivially in P: the answer is always “yes”.é'h
proof of Theorem 1 shows that this problem is coNP-hardtfer p. To show that it
is hard fort = o, we can modify the reduction by changing the directiomaf (i.e.,
settingP(s1) = p2, P(r1) = p1) and adding to the MSC iy a messager| = (s}, 1)
from p; to py with 1 <, s}. Then in any path irf{ there is a chain from; to ro,
and there is a path with no chain fram to s» if and only if the 3CNF formula has a
satisfying assignment. Similarly, to show thatsBORD4-1 (H, m4, ms) is cONP-hard,
we change the direction ofi;, to show that DSCORDy(H,m1,m2) is cONP-hard,
we change the direction efi,, and to show that BCORD,-1 (H, m,ms) iS CONP-
hard, we change the direction of both andms. We conclude that all five non-trivial
versions of the problem are coNP-hard.

5.2 Polynomial-time algorithms for bounded number of proceses

In our hardness result, both the size of the grgmnd the number of processPsare
unbounded. It turns out that this is necessary: if eithehe$é& parameters is constant,
there is an algorithm whose running time is polynomial indkieer parameter.

This is easy to see if the size of the graph is constant. Irnqodat, the naive al-
gorithm described in the beginning of this section will rumgolynomial time: in a
graph with a constant number of vertices, there is a constamber of simple paths
and cycles, and one can compute the discord along a pathyingrolal time.

The case when the number of processes is constant is caatsliglenore compli-
cated. Our algorithm for this setting is based on Dijksts&isrtest path algorithm com-
bined with dynamic programming approach. The underlyiregids that given a pair
of eventse € A\(v), ¢’ € A(v') and a subset of process8swe can check if there is a
pathL fromv to v’ such that the set of processes reachable fram\ (L) is exactlysS.

A generalization of this idea allows us to compute the didadrany pair of messages
in an HMSC in polynomial time for any fixed value ¢P|. Formally, we prove the
following result.

Theorem 2. Itis possible to computdiscord g (1, m2) in timeO (n>2*/P|| H|?), which
is polynomial inn = |V| and|H| for any fixed value ofP|.

We start by describing an algorithm foa™ wiTH NO CHAIN. Next, we show
how to generalize it to compuidiscord g (m1, ms). Note that just like in Dijkstra’'s
algorithm, we simultaneously check whether there is a péthmo chain from a given
evente € C' = A(v) to all other events. Therefore, this algorithm can be easigpted
to compute the discords for all pairs of messageH im time O(n?247/|H|?).

Let K be a strict upper bound on the number of events on any processlany
MSC in H. Re-number all events so thd‘t k=1,...,K —1,isthekth event on the
process ling; in the MSCC;. For the purposes of the algorithm, we will introduce two
dummy events‘;}}“ ande;"#* on each process line of every MSChh The evente?j}“
precedes all evema:’;’j, and the eveng;”7> follows all eventSef’j. It is important to
note that these are not send or receive events, so they haffenbon the information
flow in H. However, we will occasionally talk about chains to and fribrese events,
where a chain is defined in the same way as for regular evertsawthat a procegs

14

is reachablefrom e along a pathy = (v, ...,v;) ifin the MSC(C;...;C;) there is a
chain frome to e;"**.

The outline of the algorithm is presented in Figure 7. Fisteach MSQC; and all
l=1,...,|P|, the procedur€nput eX() checks whether there is a chain fr@m“
to all other events in this MSC. More precisely, for=1,..., K — 1, Conput eX()
setsX (i, j,k,l) = 1ifin C; there is a chain frone}"/" to e} ; and X (i, j, k,1) = 0
otherwise. Also, it setX (¢, j, K,1) = 1 if in C; there is a chain from?}}“ to e},
andX (i, j, K,1) = 0 otherwise. Note that fof # [there can be no chain froajﬁ‘}“ to
e;{‘}“. By Corollary 1, we can impleme@nput eX() intime O(|H|?).

PNCy (e, ef;);
Conput eX() ;
Conput eY();
forall ¢ such that (vy,v;) €&
forall SCP
if Y[S,i] =0 break;
forall p,eP\S
if X(i,5, k1) =1 break;
return ‘‘yes’'’;

NGO~ WONE

Fig. 7. The algorithm folPNC (e, e ;), with Comput eY() given in Figure 8.

Further, for anyS C P let Y (S,4) be a variable that indicates whether there is a
pathL in G from v to v; such that in\(L) none of the processeshis reachable from
e. We setY (S,i) = 1if such a path exists antl(S,i) = 0 otherwise. The values
of Y (S,) are computed by the procedu@enput eY() given in Figure 8. We will
discuss how to impleme@onput eY() later on.

Now, assume that we have compufgdsS,i), X (4,5, k,1), forallS C P, i =
1,...,n,4,j=1,...,|Pl,k=1,...,K. Then there is a path with no chain franto
ef’j if and only if the conditions in the lines 3-7 hold, i.e., thés a pathL of the form
(v,...,vs,v;) and a setS C P such that for any procegs that is reachable frora
alongL’' = (v,...,vy) (i.e., a process ifP \ S), there is no chain from} " to e ;.
For a fixed event! ; this condition can be verified in time2!”1|P|.

It remains to argue that the proceddxenputeY() in Figure 8 correctly computes
the values oft’(S,4). The procedure starts by initializing the variabids, i] (lines
1-6). Fori # 1, itsetsY[S,i] = 0forall S C P. Fori = 1, it computes”(S, 1) (recall
thatY'(S,1) = 1ifand only if there is no chain frormato ey’$* for anyp; € S) and sets
Y[S,i] = Y (S,). The algorithm then repeats a Dijkstra-like “relaxatiotésn times.
During each step, the value of eaf]$, /] may be changed from O to 1.

The correctness of the algorithm follows from two simplerola

Claim 2 IfY(S,i) = 0, we havel[S, i] = 0 atany pointin the execution 6bmputeY().

Proof. The proof is by induction on the execution of the algorithrheTclaim is
clearly true after the initialization step. Now, supposat tt some point we change the

15

Conput eY();

1. forall i=2,...,n

2. forall SC7P

3. set Y[S,i] =0;

4. Set So={p;| there is no chain frome to el’j*};
5. forall SCP

6. if SCSo then set Y[S,1]=1 el se set Y[S,1]=0;
7. Repeat n tinmes

8. forall i=1,...,n

9. forall SCP

10. if Y[S,iq =1 break;

11. forall 4 such that (vy,vi) €&

12. forall & such that SCS&' and Y[§',i]=1
13. forall p;es§

14. forall peP\S

15. if X(i, j, K 1)=1 break;
16. Set Y[S,i]=1;

17. return;

Fig. 8. The implementation o€onput eY()

value ofY[S, i] from O to 1 for someS, i. This means that we have discovered some
i',S8' such that(vy, v;) € &, Y[S',i'] = 1. By inductive assumption, this means that
there exists a path from v to v; such that in the MSCC; .. .; Cy) there is no chain
from e to any of the processes &1. Moreover, we also hav& (i, j, K,1) = 0 for any

p € P\S andanyp; € S, i.e, inthe MSC(C;...;C;;C;) there is no chain from
e;‘jli“ to "™, Now, suppose that i0C; ...; Cy; C;) there is a chain frone to some

p; € S. As there are no events that are sent in one MSC and are rddaiamother
MSC, this chain would have to go through soaig*, ej*, I = 1,...,|P|. lf p € &,

this means that there is a chain(i;...; C;) from e to p;, a contradiction. On the
other hand, ify, € P\ &', there is a chain frona;f‘li“ to ™2, a contradiction again. We

i, !
conclude that’(S,i) = 1. O

Claim 3 If for someS, i, there exists a pattw, ..., vy, v;) of lengthl such that in the
MSC(C;...;Cy; C;) there is no chain froma to any of the processes & then afterl
stepsConput eY() setsY[S,i] = 1.

Proof. The proofis by induction oh The claim is obviously true far= 1. LetS’ be
the set of all processes that are not reachable &rafong(C, ..., Cy). By inductive
assumption, aftdr—1 steps we have[S, i'] = 1. Also, by construction, ifC;...; Cy)
there is a chain from to e’ for anyl € P \ §'. Hence, we havel (i, j, K,1) = 0
foranyp, € P\ S, p; € S. Therefore, during théth step, our algorithm will set
Y[S,i] = 1. O
It is not hard to verify that the running time 6bmputeY() is O(n|E|22/P!|P|?).
Indeed, the running time of this procedure is dominated leydycle in lines 8-16,
which is repeated times. During each such cycle, we consider each edgesxfactly

16

once (in lines 8 and 11), for each such edge we consider twesessilof?, and for
each choice of these subsets we consider a pair of procasdetnaa constant-time
check for this pair. The overall running time of our algonititan then be expressed as
O(n|&)22PI|P]2 + |H|?) = O(n?22IPI H|?).

Now, suppose that we are given a pair of messages= (s1,71) € A(v), ma =
(s2,72) € A(v"). By Proposition 2, we can check whethBscordg (my,ms) = t for
t € {p,o0,d™!,p~!} by making at most three calls ®NCg (). However, to decide
betweendiscord g (m1,m2) = d anddiscordg(m1,m2) = o~!, we need additional
tools. Fortunately, it turns out that one can modiiC () to solve this problem.

To verify whetherdiscord g (my,m2) = d, we first comput®NCg (sq, s2). If we
havePNCg(s1,s2) = 0, thendiscordy(my,m2) < d, so the answer is negative.
Otherwisediscord g (m1,m2) # d if and only if G contains a pati fromv to v’ such
that in A\(L) there is no chain from; to s and no chain from to . To find such
a path, we first comput& (i, j, k, 1) usingConput eX() . We then defin&” (S, S', i)
as follows: for anyS,S’ € P and anyi = 1,...,n, setY’(S,S8,i) = 1 if there is
a pathL from v to v; such that in\(L) none of the processes &is reachable from
s1 and none of the processesShis reachable from. It is straightforward to modify
Comput eY() so that it compute¥”’(S,S’,) instead ofY' (S, 7). The running time of
the modified version i®)(n|£]2417!|P|?), as we have to consider all possilplairs of
subsets of? in adjacent nodes.

Now, suppose that we have compuléds, §’,4) forall S,8' CP,i=1,...,n.
Assume that' = v;- ands, = ek ;,ry = ekl , We havediscordp (m1,my) > d if
and only if there exists a tripl§, S’, i’ such that

(1) (vir,vix) € &;

(2) Y'(S,8"i") =1,

(3) foranyp, € P\ S we haveX (i*, 4. k,1) = 0;
(4) foranyp, € P\ S' we haveX (i*,5',k',1) =0

These conditions can be verified in tif@én22/”!|P|). Hence, the overall running time
of our algorithm isO(n®24/P1| H|?), which proves Theorem 2.

6 From Pairs of Messages to HMSCs

It is desirable to be able to characterize the discord of arBEMvith a single param-
eter rather than list the discords for all pairs of messagekis HMSC. To this end,
we extend the definition of discord from pairs of messagesitoeeHMSCs by defin-
ing the discord of an HMSQ to be the worst discord over all pairs of messages in
H. Formally, we seDiscord(H) = max~{discordg(mi,mz) | m; € A(v),my €
A(v'), (v,0v") € £*}, wheref* is the transitive closure of the edge Set

According to this definition, one can compubéscord(H) by computing the dis-
cords for all pairs of messageskih However, in general, computirlgscord g (11, ms)
is coNP-hard, so this method is not efficient. Quite surpghi, it turns out that there
exists a different approach that allows us to comfiteord(H) in polynomial time.
Itis based on the fact that while it may be hard to check whdtteze exists a chain be-
tween two events, it is easy to prove that there is no chaimd® twoextremalevents,
for a suitable definition of extremality.

17

In the rest of the section, we describe polynomial-time atgms for checking that
Discord(H) =t fort € {p,p~',0,07!,d~'}. To check whethebiscord(H) = d,
we can simply run all these algorithms and return “yes” ifadithem return “no”. We
analyze the efficiency of these algorithms in termsiof |V|, |P| and|H|; observe
that we can assume= O(|H|), |P| = O(|H|).

For the cases € {p,o,d~'}, we will make use of a sef* C V x V, con-
structed as follows(v,v') € &£* if and only if (v,v') € &£ or there exists a path
(v = v1,v9,...,05-1,v; = v') such that forj = 2,...,k — 1 the MSCA\(v,) has
an empty message set. Note tlgdt is a subset of the transitive closure &f i.e.,
(v,v") € £&* implies that inG there is a path from to v'.

To construct™, we can run the depth-first search from each nodg bhcktracking
as soon as we discover a node whose MSC has a non-empty mestagkearly, this
algorithm finds a path from to v’ if and only if (v,v') € £*. Moreover, as the depth-
first search runs in timé@(|V|+|€|) = O(|H|), the total running time of this procedure
isO(n|H|).

Discord(H) = p We will show thaDiscord(H) = p if and only if for any(v, v') €
£ and anym; € A(v), my € A(v") we havediscord x(y);a(vr)) (M1, m2) = P.

Indeed, if for some suchn, , m» we havaliscord s (y);a(v)) (M1, m2) # P, then ob-
viously Discord(H) # p. Conversely, consider any pair of messagas= (s1,r1) €
A(v), ma = (s2,72) € A(v') and any pattl = (v = vy,...,v, = v'). We show by
induction onk that if our condition holds thediscordyr)(m1, m2) = p. The proofis
based on the fact that for any three time intenl$3, C, we havedpB A BpC —
ApC. For k = 2, the statement is obvious. Now, suppdse> 2. If for eachj =
2,....k — 1, the MSCA\(v;) has an empty message set, then we Have') € &*
andA(L) = (A(v); A(v')), sodiscordy(ry(m1,m2) = p. Now suppose that for some
j €42,...,k — 1} the MSCA(v;) has a non-empty message set and consider some
m = (s,r) € Mv;). SetL' = (v1,...,v;), L" = (vj,...,v;). By the induction hy-
pothesisdiscordy(z:)(m1,m) = p, discordy(z)(m,m2) = p, S0 INA(L') there is a
chain fromr; to s, and inA(L") there is a chain from to s,. We conclude thatin(L)
there is a chain from; 1o s, i.e.,discordy(z)(m1,m2) = p.

This algorithm can be implemented in tirtkn| H|?) as follows: we first construct
&* (as shown above, this can be done in tifWe:|H |)), and then for eactw,v') € £*
we compute the relatior* for the concatenated MSQ\(v); A(v')) (this can be done
intime O(n|H|?) for all (v,v") € £* by Corollary 1) and use it to check the discord of
all pairsm; € A(v), ma € A\(v') (again, by Corollary 1 this takes tinge(n|H|?)).

Discord(H) = o The algorithm and the analysis are similar to the previoseca
Namely,Discord(H) = o if and only if Discord(H) # p (which can be verified in
polynomial time, as described above) and for &ny’) € £* and anym; = (s1,71) €
A(w), ma = (s2,72) € A(v') we havediscord(y(y);x(v)) (M1, m2) € {p,o0}. The
running time of this algorithm i® (n|H|?).

The proof is based on the fact that for any pdth= (v = vy,...,0 = V'),
any (L',L") such thatl’ = (v1,...,v;), L" = (vj,...,vx) and anym = (s,r) €
A(vy), if discordy(rr)(mi,m) € {p,o} anddiscordy(y)(m,m2) € {p,o} then

18

discordy(z)(m1,m2) € {p,o}. To see this, note thaliscordy) (m1,m) € {p,o0}
implies that\(Z') has chains from; to s and fromr; tor, anddiscord) (m,m2) €
{p, o} implies that\(L") has chains froma to s, and fromr tor-. Hence, in\(L) there
are chains froms, to s, and fromr; tory, i.e.,discordy () (m1,m2) € {p,o}.

Discord(H) = d—! The algorithm and the analysis are similar to the previows tw
cases. NamelyDiscord(H) = d~! if and only if Discord(H) # p,o (which can
be verified in polynomial time, as described above) and fgr(@anv’) € £* and any
my = (s1,71) € A(v), ma = (s2,72) € A(v") we havediscord (y);a(wry) (M1, m2) €
{p, 0,d™'}. The running time of this algorithm 8 (n|H|?).

The proof uses the fact that for any pdth= (v = vy,...,v, = '), any(L', L")
such thatl' = (v1,...,v;), L" = (vj,...,vx) and anym = (s,7) € A(v;), if
discordy()(m1,m) € {p,o,d™'} anddiscordy,y(m,m2) € {p,0,d~'} then
discordy(z,)(m1,m2) € {p,0,d"'}. Indeeddiscordy () (m1,m) € {p,0,d "'} im-
plies that\(L’) contains a chain from, to s, anddiscordyz,»)(m, msy) € {p,0,d'}
implies that\(L") contains a chain from to s,. Hence, in\(L) there is a chain from
5110 59, i.e.,discordy(z) (m1, m2) € {p,0,d™'}.

Discord(H) = p~! If Discord(H) = —1, there exists a pair of nodesv’ € V, a
pair of messagesi; = (s1,71) € A(v), ma = (s2,72) € A(v') and a pathl. = (v =
v1,- .., v = ') such thatliscordy)(1,m2) p !,i.e., in\(L) there is no chain

froms; tors. LetC = A(v), C' = A(v'), andC = A(va, ..., vk 1)-

Let s be a maximal send event {i@'; C') such there is a chain from to s, and let
r be the corresponding receive. $et= P(s), ¢ = P(r). Itis easy to see that iA
there is no chain from to r,, or, equivalently(s, r)p~—!ms. Therefore, without loss
of generality we can assume, = (s,7), i.e.,s; is a maximal send event i{C; C).
This implies that inC; C) there are no send events pthat happen after;, and there
are no send events grthat happen after; (for any such event, there would be a chain
from s; to this event). Moreover, i there is no chain from any eventpbr g tors.

This suggests the following algorithm. For each paiv’ € V and each pair of
messages; = (s1,71) € Av), ma = (s2,72) € A(v') do the following. Sep =
P(s1), q = P(r1). Let H(v,v', p,q) be the HMSC obtained by deleting frofa all
nodes other tham, v’ that have send events pror q. Output “yes” if all of the following
four conditions hold:

(1) in A(v) there are no send events pafters;;

(2) in A(v) there are no send events @afterr;

(3) in\(v") thereis no chain from any eventpbr ¢ tor, (in particular,P(rs) # p, q);
(4) the HMSCH (v,v', p, q) contains a path from to v'.

If (1)—(4) are all true, then the paim,, m,) provides a witness théliscord(H) =
p~!. Conversely, by the reasoning aboveDifscord(H) = p~!, then there is a pair
(m4, ms) that satisfies (1)—(4).

The running time of this algorithm can be bounded®yH|?). To see this, note
that there ar@(|H|?) pairs of messages; € A(v), ma € A(v'). For each such pair,

19

conditions (1)—(3) can be verified in tin@(|H|) assuming that the relation* for
A(v") has been precomputed (by Corollary 1, we can precomptifer all MSCs that
appear inH in time O(|H|?)). Condition (4) corresponds to solving a single instance
of reachability problem, so it can be checked in tim@H|) as well.

We can change the order of operations so that the algoritheintimeO (|P|2|H|?).
This is more efficient if P|? < |H|, which is likely to be the case in practice. First, we
compute the transitive closure of each MSCHn by Corollary 1, this can be done in
time O(|H|?). Then for eachy € V, each event in A\(v), and eaclp € P, we use the
information about the transitive closure to check whethex(v) there is a chain from
any event ofp to e. There areD(|H|) events,|P| processes, and for each p§ix e),

e € E;, this computation take@ (| H|) steps, so this can be done in ti®¢|P|| H|?).

For any pairp,q € P setV(p,q) = {v € V | A(v) has no send events @ng}.
Consider a modified version of the depth-first searcly ahat backtracks as soon as it
reaches a node W\ V°(p, q). This algorithm discovers a path framo o' if and only if
the HMSCH (v, v', p, ¢) contains a path from to v'. From any given, it runs in time
O(|H]). For eachv; € V we find the last send event gnidentify the corresponding
receive and check whether it is grand there are no send eventsqoafter it. This can
be done in timeD(|H|). Then we run fromy; the modified version of the depth-first
search described above. For anydiscovered during this search and for each receive
event ofC; = A(v;), we check if it is not reachable from any evengodr ¢ using the
precomputed information.

For each triplép, ¢, v), we traverse each edge®ht most twice, and do a constant-
time computation for each event &f. Hence, the computation that has to be done for
each triple(p, ¢, v) takesO(| H|) steps, and the total running time of our algorithm is
O(|P||H|? + |P|?*n|H|) = O(|P|?|H|?), as claimed.

Discord(H) = o~ ! Suppos®iscord(H) = o !. Then there exists a pair of nodes
v,v" € V, a pair of messages; = (s1,71) € A(v), ma = (s2,72) € A(v") and a path
L= (v=uwy,...,v =) such thatliscordy(z, (m1,mz) = 0~ ', i.e., inA(L) there

is a chain froms; to r, but no chain froms; to s2 and no chain fromr, to . Let

C = Aw),C" = \'), andC = (v, ..., vk_1).

Observe thatiiC; C') there is no chain from; to any send event Indeed, suppose
such a chain exists, and tebe the receive that corresponds to this send. Mib) there
is no chain froms to 7, we would haves, 7)p ! (s, r2), a contradiction. On the other
hand, a chain from, to s together with a chain fromto r, gives a chain from tor,
in A\(L), a contradiction again. By a similar argument(d; C') there is no chain from
any receive eventto ss.

Setp = P(r1), ¢ = P(s2). It follows that inC there are no send events pmfter
r1, in C' there are no receive events giefores,, and inC there are no sends gn
and no receives o Obviously, inC' there is no chain from; to any event of;, and
in C' there is no chain from any event pfto 7. Moreover, it cannot be the case that
p=4q,q9=P(s1) orp= P(rs).

Consequently, we have the following algorithm for checkiigetheDiscord(H) =
o~ L. First check thaDiscord(H) # p~. Then for each paiv, v’ € V, and each pair
of messagesn; = (s1,71) € A(v), ma = (sa2,72) € A(v') do the following. Set

20

p = P(r1),q = P(s2). Let H(v,v', p, ¢) be the HMSC obtained by deleting frofh
all nodes other than andv’ that have send events @ror receive events o Output
“yes” if the following six conditions hold:

(1) we havep # q,q # P(s1),p # P(r2);

(2) inC there are no send events pafterr,;

(3) in C' there are no receive events @beforess;

(4) inC thereis no chain from; to any event ofj;

(5) in C' there is no chain from any eventpto r»;

(6) the HMSCH (v,v', p, q) contains a path from to v'.

Suppose that for some v’ € V, m; € A(v), ma2 € A(v') the conditions (1)—(6)
are all true. By (6), there exists a path= (v = v1,...,vx =v') in H(v,v', p, q). Set
A(w) = C,A(v") = C",C = A(va, . ..,v_1). Suppose that(L) contains a chain from
s1 10 s2. Asq # P(s1),p, this chain must contain a receive eventpBy (3), there is
no such event i@, and by construction off (v,v', p, ¢), there can be no such eventin
C. Finally, by (4) there is no such eventdh Hence, in\(L) there is no chain frona;
to so. Similarly, a chain from; to o must contain a send event pnand there is no
such event irC' (by (2)),C" (by (5)), orC (by construction off (v,v', p, q)). Hence,
the pair(m,ms) provides a witness thdiscord(H) = o~ !. Conversely, by the
reasoning above, if for some pdin, , m,) we havediscordy (m;,m2) = o™, then
our algorithm succeeds. As in the previous case, this algorcan be implemented in
time O(|H |?) or, by changing the order of operations(|P|?| H|?).

7 Conclusions

We proposed using Allen’s logic for detecting and measuni@gsage order discrepan-
cy in HMSCs. We believe that Allen’s logic can be a versatilel for other message
order-related problemsin MSCs and HMSCs, such as, e.g@.caadlitions and message
overtake. Allen’s logic is very well studied from algoritimperspective [14]; while in
this paper we did not use these results, they may be veryldsefother applications
of Allen’s logic for message order analysis.

We introduced the notion of discord, which measures theadifice between the
message order in an HMSC and the “ideal” message order foHMSC. We have
shown a coNP-hardness result for computing the discord @firagb messages in an
HMSC, as well as polynomial-time algorithms for restrictegsions of this problem.
In contrast, we showed how to find the worst-case discord ¢{&C in polynomial
time. We believe that the concept of discord will be usefuhuoiding design errors
in HMSCs. In particular, it can be applied when one wants witgan a large HMSC
into smaller components: one should prefer partitions wittall discord. Another po-
tential application of this work is in the area of MSC-basedgramming approaches,
such as, e.g., the “play-in, play-out” framework of [12], ialh assumes synchronous
MSC concatenation. Calculating discords allows one to tiiyehe potential for relax-
ing the synchronization assumption and check for possiakatds. This may increase
concurrency and efficiency of the implementation and thushe useful in protocol
design.

21

7.1 Acknowledgements

Part of this work was done when the fourth author was visifag llan University
and the first author was a Lady Davis Fellow at Hebrew Unitgisi Jerusalem. This
research is partially supported by the ESF project Automdtie ANR project DOTS,
and an NRF Research Fellowship.

References

1.

2.

3.

11.

12.

13.
14.

15.

16.

17.

18.

J. F. Allen, Maintaining Knowledge about Temporal InsdsvCommunications of ACM
vol. 26:11, pp. 832—-843, 1983.

R. Alur, G. Holzmann, D. Peled, An Analyzer for Messageugege ChartsSoftware
— Concepts and Toolk?7, pp. 70-77, 1996.

R. Alur, K. Etessami, M. Yannakakis, Realizability andriffeation of MSC Graphs.
Theoretical Computer Scien881(1): pp. 97-114, 2005.

. H. Ben-Abdallah, S. Leue, Syntactic Detection of Prodes&rgence and Non-local

Choice in Message Sequence ChartsSTACAS'97LNCS 1217, pp. 259-274, 1997

. D. Brand and P. Zafiropulo, On Communicating Finite-SMéehines. Journal of the

ACM, 30(2), pp. 323-342, 1983.

. W. Damm, D. Harel, LSCs: Breathing Life into Message SegaeCharts. Formal

Methods in System Desid®(1), pp. 45-80, 2001.

. E. Elkind, B. Genest, D. Peled, Detecting Races in Ensesntl Message Sequence

Charts, INTACAS'0O7LNCS 4424, 2007.

. E.Elkind, B. Genest, D. Peled, P. Spoletini, QuantifytimgDiscord: Order Discrepancies

in Message Sequence Charts ARVA'07, LNCS 4762, 2007.

. R. W. Floyd, Algorithm 97 (Shortest Path), Communicasiofithe ACM 1962, 356.
. B. Genest, M. Minea, A. Muscholl and D. Peled. Specifyang Verifying Partial Order

Properties using Template MSCs. FDSSACS’'04ALNCS 2987, pp. 195210, 2004.
Elsa L. Gunter, Anca Muscholl, Doron Peled: Composélanessage sequence charts.
STTT 5(1): 78-89, 2003.

D. Harel, R. Marelly, Come, Let's Play: Scenario-BaseagPamming Using LSCs and
the Play-Engine. Springer Verlag, 2003.

ITU Z120 standard recommendation, 1996.

A. Krokhin, P. Jeavons, P. Jonsson, Reasoning aboutdrairRelations: The Tractable
Subalgebras of Allen’s Interval Algebra. J. ACM 50(5), pp15640, 2003.

M. Lohrey and A. Muscholl. Bounded MSC communicatitnformation and Computa-
tion 189, pp. 160-181, 2004.

A. Muscholl, D. Peled. Message Sequence Graphs and i@ecRroblems on
Mazurkiewicz Traces. IMFCS’99 pp. 81-91, 1999.

D. Peled. Specification and Verification of Message Secpi€harts. IFORTE'0Q IFIP
CP 183, pp. 139-154, 2000.

S. Warshall, A Theorem on Boolean Matricésurnal of the ACM(1), pp. 11-12, 1962.

22

