
HAL Id: hal-00526387
https://hal.science/hal-00526387

Submitted on 14 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced list scheduling heuristic for task scheduling
with communication contention for parallel embedded

systems
Pengcheng Mu, Jean François Nezan, Mickael Raulet, Jean-Gabriel Cousin

To cite this version:
Pengcheng Mu, Jean François Nezan, Mickael Raulet, Jean-Gabriel Cousin. Advanced list scheduling
heuristic for task scheduling with communication contention for parallel embedded systems. Science
China Information Sciences, 2010, 53 (11), pp.2272-2286. �10.1007/s11432-010-4097-3�. �hal-00526387�

https://hal.science/hal-00526387
https://hal.archives-ouvertes.fr


SCIENCE CHINA

? 2010 Vol. ? No. ?: 1–14
doi:

Advanced List Scheduling Heuristic for Task Scheduling with
Communication Contention for Parallel Embedded Systems

MU PengCheng1∗, NEZAN Jean-François2, RAULET Mickaël2 & COUSIN Jean-Gabriel2

1Ministry of Education Key Lab for Intelligent Networks and Network Security,
School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China,

2IETR/Image and Remote Sensing Group, CNRS UMR 6164/INSA Rennes, 35043 RENNES Cedex, France

Received September 18, 2009; accepted April 2, 2010

Abstract Modern embedded systems tend to use multiple cores or processors for processing parallel applications. This paper
indeed aims at task scheduling with communication contention for parallel embedded systems and proposes three advanced
techniques to improve the list scheduling heuristic. Five groups of node levels (two existing groups and three new groups) are
firstly used as node priorities to generate node lists. Then the critical child technique improves the selection of a processor in the
scheduling process. Finally, the communication delay technique enlarges the idle time intervals on communication links. We also
propose an advanced dynamic list scheduling heuristic by combining the three techniques. Experimental results show that the
combined advanced dynamic heuristic is efficient to shorten the schedule length for most of the randomly generated DAGs in the
cases of medium and high communication. Our method accelerates an application up to 80% in the case of high communication
and can also reduce the use of hardware resources.

Keywords list scheduling, communication contention, node level, critical child, communication delay

Citation Mu P C. Advanced List Scheduling Heuristic for Task Scheduling with Communication Contention for Parallel Embedded Systems.

1 Introduction

The recent evolution of digital communication and video compression applications has dramatically increased
complexities of both the algorithm and the embedded system. To face this problem, System on a Chip (SoC),
which embeds several cores (e.g. multi-core DSPs) and several hardware accelerators (e.g. Intellectual Properties),
becomes the basic element to build complex embedded systems; and dataflow programming has been proposed for
multiprocessor programming[1]. Task scheduling of a dataflow program over a multi-component embedded system
is becoming more and more important due to the growing requirements of applications. However, task scheduling
is not straightforward; when performed manually, the result is usually a suboptimal solution. Scheduling on general
parallel computer architectures has been actively researched, but task scheduling on parallel embedded systems[2]

is different from the general scheduling problem. Communications between cores have a very important impact on
the scheduling and the resulting use of the hardware resources. Hence, it is necessary to find new task scheduling
methodologies which produce optimal or near optimal results for parallel embedded systems.

In the task scheduling problem, the program is represented as a task graph modeled by Directed Acyclic Graph
(DAG)[2,3], where nodes represent tasks (i.e. computations) and edges represent dataflows (i.e. communications)
between tasks. The objective of task scheduling is to respectively assign computations and communications to

∗Corresponding author (email: pengchengmu@gmail.com)



2 Mu P C, et al.

processors and buses (communication links) of the target system in order to get the minimum schedule length
(makespan). The scheduling could be static (done at compile time) or dynamic (done at run time). Static schedul-
ing is more suitable than dynamic scheduling for deterministic applications in parallel embedded systems by lead-
ing to lower code size and higher computation efficiency. This paper tackles the static scheduling problem for
programming on parallel embedded systems, and all the task scheduling heuristics in the following parts are done
at compile time.

The general task scheduling problem is proven to be NP-hard[3,4]; hence, many works try to find heuristics
to go up to the optimal solution. Early task scheduling heuristics do not consider communications between
tasks[5,6]. As communications increase in modern applications, many scheduling heuristics have to take them
into account[3,7−10]. Most of these heuristics use fully connected topology structures of systems in which all com-
munications can be concurrently performed. Different arbitrary processor networks are then used in refs. [11-15]
to accurately describe real parallel systems, and the task scheduling takes into account communication contentions
on communication links.

Most of the above heuristics are based on the approach of list scheduling. Basic techniques are given in ref.
[16] for list scheduling with communication contention. This paper will give an advanced list scheduling heuristic
with several advanced techniques for task scheduling with communication contention in parallel embedded sys-
tems. Three new groups of node levels will be firstly defined and used as node priorities to generate node lists in
addition to the two existing groups; secondly, a technique of using a node’s critical child will be given to improve
the performance for selecting a processor for a node; and thirdly, the communication delay technique delays a
communication when necessary in order to enlarge idle time intervals on communication links. This paper will
finally combine these three techniques and show the efficiency of the results.

The paper is organized as follows: Section 2 firstly introduces the necessary models and definitions, then the
task scheduling problem with communication contention is described in this section. Different node levels are
given in section 3 by considering the communication contention. Section 4 gives the list scheduling heuristics
including the classic static heuristic and our advanced heuristic. Experimental results to compare our heuristic to
the classic one are given in section 5. The paper is concluded in section 6.

2 Models and Definitions

The program to be scheduled is called an algorithm and is modeled as a DAG in this paper. The multiprocessor
parallel embedded system is called an architecture and is modeled as a topology graph. These two models are
detailed as follows.

2.1 DAG Model

A DAG is a directed acyclic graph G = (V,E,w, c) where V is the set of nodes and E is the set of edges. For
two nodes ni, nj ∈ V , eij denotes the edge from the origin node ni to the destination node nj . A node represents
a computation, and the weight of node ni (denoted by w (ni)) represents the time cost of computation. An edge
represents the communication between two nodes, and the weight of edge eij(denoted by c (eij)) represents the
time cost of communication. In this model, the set {nx ∈ V : exi ∈ E} of all the direct predecessors of node ni is
denoted by pred (ni); the set {nx ∈ V : eix ∈ E} of all the direct successors of node ni is denoted by succ (ni).
A node ni with pred (ni) = ∅ is named a source node, and a node ni with succ (ni) = ∅ is named a sink node,
where ∅ is the empty set.

The execution of computations on a processor is sequential. A computation can not be divided into parts. A
computation can not start until all its input communications finish; all its output communications can not start until
this computation finishes. Communications are also sequential on a communication link, but different computa-
tions and communications can be executed simultaneously respecting the input and output constraints given above.
Figure 1(a) gives a DAG example used in ref. [17] to illustrate performances of different scheduling heuristics. It
is also used in subsection 5.1 to show the performance of our method.



Mu P C, et al. Sci China Inf Sci ? 2010 Vol. ? No. ? 3

2

1114

111
533

n1

n2 n3 n4 n5

n6 n7 n8

n9

10

1

5 6 5

4

4 4 4

1

(a) Algorithm

P1

P2

P3

S1 S2

P4

P6

P5

L1 L6

L2

L3

L7 L5

L4

(b) Architecture 1

L2

L4

L3

S1

P1 P4

P3P2

L1

(c) Architecture 2

P2

P4

P6

L8

L6L2

L3

L7

L5L4

P8

S1

P1 P7

P5P3

L1

(d) Architecture 3

Figure 1: System models

2.2 Topology Graph Model

A topology graph TG = (N,P,D,H, b) has been used to model a target system of multiple processors intercon-
nected by communication links and switches[14]. N is the set of vertices; P is a subset of N , P ⊆ N ; D is the set
of directed edges; H is the set of hyperedges; b is the relative data rate of edge. The union of the two edge sets D
and H is designated the link set L, L = D ∪H; an element of this set is denoted by l ∈ L. The topology graph is
also denoted by TG = (N,P,L, b).

Since a parallel embedded system usually consists of multiple heterogenous components, the topology graph is
used to model it in this paper. A vertex p ∈ P represents a processor; a vertex n ∈ N,n /∈ P represents a switch.
It is supposed that directed edges are not used in a topology graph. Hence, a link l ∈ L is actually a hyperedge
ℎ, which is a subset of two or more vertices of N , ℎ ⊆ N, ∣ℎ∣ > 1. A hyperedge connects multiple vertices and
represents a half duplex multidirectional communication link (e.g. a bus). The weight b (l) associated with a link
l ∈ L represents its relative data rate.

Differing from the processor, a switch is an ideal vertex only used for connecting communication links, and no
computation can be executed on it.

Ideal Switch: For a switch s, let l1, l2, . . . , ln be all the communication links connected to s. If two links li1
and li2 of them are not used for the moment, a communication can be transferred from li1 to li2 without any impact
from/to communications on other communication links connected to s.

Figure 1(b) gives an architecture example with six processors (P1, P2, P3, P4, P5 and P6) interconnected by
seven links (L1, L2, L3, L4, L5, L6 and L7) and two switches (S1 and S2). This architecture models TI’s C6474
Evaluation Module (EVM) which includes two C6474 multicore DSPs1. Figure 1(c) and 1(d) also show two other
architectures which will be used for the experimental results in subsection 5.1 and 5.2, respectively.

A route is used to transfer data from one processor to another in a parallel embedded system. It is a chain of
links connected by switches from the origin processor to the destination processor. For example, L1→ L7→ L4

is a route from P1 to P4 in Figure 1(b). A link l on a route R is denoted by l ∈ R. All the routes from processor
pi to processor pj compose a set of routes RS (pi, pj). If pi = pj , then RS (pi, pj) = ∅, which means no route is
needed.

Routing is a procedure of generating routes and is an important aspect of task scheduling. In ref. [15], the route
is dynamically created during the scheduling to improve the performance, but it does not use switches in the system
architecture. In fact, routes are usually determined once and stored in a table for parallel embedded systems using
switches, which means static routing. This paper uses the static routing and supposes that there is at least a route
between any two processors. Hence, the routing during the scheduling becomes looking up the table of routes.

2.3 Task Scheduling with Communication Contention

A schedule of a DAG is the association of a start time and a processor with each node of the DAG. When the com-
munication contention is considered, a schedule also includes allocating communications to links and associating
start times on these links with each communication. A schedule S of a DAG G = (V,E,w, c) over a topology
graph TG = (N,P,L, b) is described by the following terms.

1http://www.ti.com/



4 Mu P C, et al.

The start time of a node ni ∈ V on a processor p ∈ P is denoted by ts (ni, p); the finish time is given by

tf (ni, p) = ts (ni, p) + w (ni, p)

where w (ni, p) is the execution duration of ni on p. The schedule length of S is the maximum finish time among
all the nodes,

sl (S) = max
ni∈V

{tf (ni, proc (ni))}

where proc (ni) denotes the processor on which ni is allocated.
Since execution durations of a node on different processors can be very different (w (ni, pj) ≫ w (ni, pk)),

this node is usually constrained to some processors which give relatively small execution durations. The set of
processors on which ni can be executed is denoted by Proc (ni). The average computation duration of a node on
different processors is used to represent the node weight which is given by

w (ni) =
1

∣Proc (ni)∣
∑

p∈Proc(ni)

w (ni, p)

where ∣Proc (ni)∣ is the number of processors in Proc (ni).
The communication represented by an edge is needed only when the edge’s origin node and destination node

are not allocated on the same processor. The start time of an edge eij ∈ E on a link l of route R is denoted
by ts (eij , l, R). Communications are handled in the way of cut-through on a route because of the use of circuit
switching in embedded systems. Hence, eij is aligned on all the links of the route R = l1 → l2 → . . . → lk with
ts (eij , l1, R) = ts (eij , l2, R) = . . . = ts (eij , lk, R). The route on which eij is allocated is denoted by R (eij).
The start time and finish time of eij on all the links of the route R = R (eij) are uniformly denoted by ts (eij , R)

and tf (eij , R) with tf (eij , R) = ts (eij , R) +
d(eij)

min
l∈R
{b(l)} , where d (eij) is the number of data to be transferred by

eij , and min
l∈R
{b (l)} is the minimum data rate of the links in the route R. The average communication duration of

an edge on all its possible routes is used to represent the edge weight which is given by

c (eij) =
1∑

px,py

∣RS (px, py)∣
∑
px,py

⎧⎨⎩ ∑
R∈RS(px,py)

d (eij)

min
l∈R
{b (l)}

⎫⎬⎭
where px ∈ Proc (ni) , py ∈ Proc (nj). This kind of calculation for c (eij) is firstly proposed in this paper and is
more suitable for task scheduling in parallel embedded systems.

A node (computation) can start on a processor at the time when all the node’s input edges (communications)
finish. This time is called the Data Ready Time (DRT) and is denoted by

DRT (nj , p) = max
eij∈E

{tf (eij , R (eij))}

DRT is the earliest time when a node can start. If nj is a node without input edge, then DRT (nj , p) = 0,∀p ∈ P ,
which means data of nj are ready at the beginning (time 0).

The insertion technique is usually used for node and edge scheduling[16]. The conditions to use the insertion
technique for node and edge scheduling are explained as follows.

Node Scheduling Condition: For a node ni, let [A,B] (A,B ∈ [0,∞]) be an idle time interval on the processor
p. ni can be scheduled on p within [A,B] if max {A,DRT (ni, p)}+ w (ni, p) ⩽ B. The start time of ni on p is
given by ts (ni, p) = max {A,DRT (ni, p)}.

Edge Scheduling Condition: For an edge eij , let R be a route for this edge and let [A,B] (A,B ∈ [0,∞])
be a common idle time interval on all the links of this route. eij can be scheduled on R within [A,B] if
max {A, tf (ni, proc (ni))} + d(eij)

min
l∈R
{b(l)} ⩽ B. The start time of eij on this route is given by ts (eij , R) =

max {A, tf (ni, proc (ni))}.



Mu P C, et al. Sci China Inf Sci ? 2010 Vol. ? No. ? 5

3 Node Levels with Communication Contention

The top level and bottom level are usually used as node priorities which are important for DAG scheduling[11,18].
The top level of a node is the length of the longest path from any source node to this node, excluding the weight
of this node; the bottom level of a node is the length of the longest path from this node to any sink node, including
the weight of this node. Two groups of top and bottom levels have been used in task scheduling heuristics, which
are: 1) computation top and bottom levels (tlcomp and blcomp), 2) top and bottom levels (tl and bl). In addition,
this paper proposes three new groups which are named as: 3) input top and bottom levels (tlin and blin), 4) output
top and bottom levels (tlout and blout), 5) input/output top and bottom levels (tlio and blio). Figure 2 illustrates the
dependencies between nodes to define different top levels and bottom levels, where the red dotted nodes and edges
are used to recursively define the top levels and bottom levels of ni.

n pred

n i

nsucc
tlcomp

n pred

n i

nsucc
bl comp

(a)

n pred

n i

nsucc
tl

n pred

n i

nsucc
bl

(b)

n pred

n i

nsucc
tl in

n pred

n i

nsucc
blin

(c)

n pred

n i

nsucc
tlout

n pred

n i

nsucc
bl out

(d)

n pred

n i

nsucc
tl io

n pred

n i

nsucc
blio

(e)

Figure 2: Five groups of node levels

1. Computation top level and bottom level (Figure 2(a))

The computation top level of a node is the length of the longest path from any source node to this node only
including the weights of nodes; the computation bottom level of a node is the length of the longest path from
this node to any sink node only including the weights of nodes. The weights of edges are not taken into
account in the computation top level and bottom level. They are recursively defined as follows:

tlcomp (ni) =

{
0, if ni is a source node

max
nk∈pred(ni)

{tlcomp (nk) + w (nk)} , otherwise

blcomp (ni) =

{
w (ni) , if ni is a sink node

max
nk∈succ(ni)

{blcomp (nk)}+ w (ni) , otherwise

2. Top level and bottom level (Figure 2(b))

The top level and bottom level additionally take into account the weights of edges on the path by contrast
with the computation top level and bottom level. They are recursively defined as follows:

tl (ni) =

{
0, if ni is a source node

max
nk∈pred(ni)

{tl (nk) + w (nk) + c (eki)} , otherwise

bl (ni) =

{
w (ni) , if ni is a sink node

max
nk∈succ(ni)

{bl (nk) + c (eik)}+ w (ni) , otherwise

3. Input top level and bottom level (Figure 2(c))

The input top level and bottom level take into account weights of nodes on the path as well as weights of all
the input edges of a node on the path. They are recursively defined as follows:

tlin (ni) =

{
0, if ni is a source node

max
nk∈pred(ni)

{tlin (nk) + w (nk)}+
∑

eli∈E
c (eli) , otherwise

blin (ni) =

⎧⎨⎩
w (ni) , if ni is a sink node

max
nk∈succ(ni)

{
blin (nk) +

∑
elk∈E

c (elk)

}
+ w (ni) , otherwise



6 Mu P C, et al.

4. Output top level and bottom level (Figure 2(d))

The output top level and bottom level take into account weights of nodes on the path as well as weights of
all the output edges of a node on the path. They are recursively defined as follows:

tlout (ni) =

⎧⎨⎩
0, if ni is a source node

max
nk∈pred(ni)

{
tlout (nk) + w (nk) +

∑
ekl∈E

c (ekl)

}
, otherwise

blout (ni) =

{
w (ni) , if ni is a sink node

max
nk∈succ(ni)

{blout (nk)}+
∑

eil∈E
c (eil) + w (ni) , otherwise

5. Input/output top level and bottom level (Figure 2(e))

The input/output top level and bottom level take into account weights of nodes on the path as well as weights
of all the input and output edges of a node on the path. They are recursively defined as follows:

tlio (ni) =

⎧⎨⎩
0, if ni is a source node

max
nk∈pred(ni)

{
tlio (nk) + w (nk) +

∑
ekl∈E

c (ekl)− c (eki)

}
+
∑

eli∈E
c (eli) , otherwise

blio (ni) =

⎧⎨⎩
w (ni) , if ni is a sink node

max
nk∈succ(ni)

{
blio (nk) +

∑
elk∈E

c (elk)− c (eik)

}
+
∑

eil∈E
c (eil) + w (ni) , otherwise

The three new groups take into account the communication contention between nodes in comparison with the
two existing groups which are usually used in the list scheduling without communication contention. Table 1 gives
all the five groups of top levels and bottom levels for the DAG given in Figure 1(a). This table will be used in
subsection 5.1.

Table 1: Different node levels
tlcomp blcomp tl bl tlin blin tlout blout tlio blio

n1 0 11 0 23 0 41 0 35 0 55
n2 2 8 6 15 6 35 19 16 19 36
n3 2 8 3 14 3 26 19 14 19 26
n4 2 9 3 15 3 27 19 15 19 27
n5 2 5 3 5 3 5 19 5 19 5
n6 5 5 10 10 10 21 24 10 24 21
n7 5 5 12 11 20 21 24 11 34 21
n8 6 5 8 10 9 21 24 10 25 21
n9 10 1 22 1 40 1 34 1 54 1

4 List Scheduling Heuristics

List scheduling is an important task scheduling heuristic. Algorithm 1 gives a commonly used static list scheduling
heuristic as given in ref. [14].

This algorithm consists of three procedures. Nodes are firstly sorted into a static list by the procedure of
Sort Nodes() in the heuristic, then a processor is selected for each node by Select Processor() and
this node is scheduled by Schedule Node(). Since the order of nodes in the list affects the schedule result,
many different priority schemes have been proposed to sort nodes[10,11]. Experiments in ref. [18] show that list
scheduling with static list sorted by bottom level outperforms other compared contention aware algorithms. Hence,
this paper uses the following rule to sort nodes.

Rule of Sorting Nodes: Nodes are sorted by the decreasing order of their bottom levels; if two nodes have
equal bottom levels, the one with greater top level is placed before the other; if both the bottom level and the top
level are equal, these nodes are randomly sorted.



Mu P C, et al. Sci China Inf Sci ? 2010 Vol. ? No. ? 7

Algorithm 1: Static List Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph TG = (N,P,L, b)

Output: A schedule of G on TG

NodeList← Sort Nodes(V );1

for each n ∈ NodeList do2

pbest ← Select Processor(n, P );3

Schedule Node(n, pbest);4

end5

Details about the static list scheduling heuristic can be found in ref. [16]. This heuristic is considered as a classic
list scheduling heuristic and will be used for the comparison with our advanced method. The following gives two
advanced list scheduling techniques and an advanced dynamic list scheduling heuristic using these two techniques.

4.1 Processor Selection with Critical Child

The classic list scheduling heuristic selects the processor allowing the earliest finish time for a node. This rule
probably gives a locally optimized result. In fact, this rule usually gives bad results for the join structure of a
DAG especially in the case of great communication cost and communication contention. Figure 3(a) shows such
an example; Figure 3(b) gives the schedule result with the classic processor selection method, which selects a new
processor for each one of n1, n2 and n3 to provide the earliest finish time. Hence, the execution of node n4 has to
wait until the communications from n2 and n3 finish, and the schedule length is 6 at last. By contrast, the schedule
of all nodes on the same processor is shown in Figure 3(c) and has a schedule length of 4. The reason for the bad
result of the classic method is that the successor is not taken into account during the processor selection, hence we
propose a technique of critical child to avoid this bad result.

n1 n2 n3

n4

1 1 1

1

2 2 2

(a)

P1

0 5

P2

P3

L1

n1

n2

6

n3

n4

e3,4e2,4

time

(b)

P1

0 5

P2

P3

L1

n1 n2

4

n3 n4
time

(c)

Figure 3: A join DAG and two different schedule results

In ref. [10], the critical child of a node is defined as one of its successors that has the smallest difference between
the absolute latest possible start time (ALST) and the absolute earliest possible start time (AEST). It is used for
scheduling in the case of unbounded number of processors and without communication contention. We use the
concept of critical child for list scheduling in the case of bounded number of processors and with communication
contention. The critical child is differently defined as follows.

Critical Child: Given a static node list NodeList, the critical child of node ni is denoted by cc (ni) and is one
of ni’s successors that firstly emerges in NodeList.

According to this definition, the critical child of ni may be different if NodeList differs though the DAG is
not changed. This is the difference between our critical child and that in ref. [10]. Using critical child makes the
processor selection take into account not only the predecessors of a node, but also its most important successor.
Our method of using the critical child to select processor is given in Algorithm 2.

An unscheduled node with all its predecessors having been scheduled is called a free node. Since it is possible
that cc (ni) is not a free node during the processor selection for ni, the scheduling of cc (ni) only takes into account
the critical child’s scheduled predecessors in the procedure of Select Processor(), which will be shown in
the algorithm of edge scheduling.

4.2 Node and Edge Scheduling with communication delay

Our methods of node and edge scheduling differ from those of the classic one by using the As Late As Possible
(ALAP) start time to delay communications. Given the route R = l1 → l2 → . . .→ lk for edge eij , let em be the



8 Mu P C, et al.

Algorithm 2: Select Processor(ni, P )
Input: A node ni ∈ V and the set P of all the processors
Output: The best processor pbest for the input node ni

Find the critical child cc (ni);1

BestF inisℎT ime←∞;2

for each p ∈ Proc (ni) do3

FinisℎT ime← Schedule Node(ni, p, true);4

MinFinisℎT ime←∞;5

if cc (ni) ∕= null then6

for each p′ ∈ Proc (cc (ni)) do7

FinisℎT ime← Schedule Node(cc (ni), p′, true);8

MinFinisℎT ime← min {MinFinisℎT ime, F inisℎT ime};9

Unschedule the input edges of cc (ni);10

Unschedule cc (ni) from p′;11

end12

else13

MinFinisℎT ime← FinisℎT ime;14

end15

if MinFinisℎT ime < BestF inisℎT ime then16

BestF inisℎT ime←MinFinisℎT ime;17

pbest ← p;18

end19

Unschedule the input edges of ni;20

Unschedule ni from p;21

end22

edge before which eij is scheduled on link lm, the ALAP of eij is defined as

ALAP (eij) = min {ts (e1, R (e1)) , ts (e2, R (e2)) , . . . , ts (ek, R (ek)) , ts (nj , proc (nj))} − d(eij)
min
l∈R
{b(l)}

If em does not exist, which means eij is the last edge scheduled on lm, then ts (em, R (em)) =∞.
The communication can be delayed by using the ALAP, hence, an idle time interval is enlarged on the link.

The idle time interval changes from [tf (en−1, R (en−1)) , ts (en, R (en))] to [tf (en−1, R (en−1)) , ALAP (en)]

between two successive edges en−1 and en on link l. If en is the first edge on link l, then tf (en−1, R (en−1)) = 0;
and if en−1 is the last edge on link l, then ts (en, R (en)) = ALAP (en) =∞.

Figure 4(a) shows the use of ALAP. If eij is delayed to its ALAP, the idel time interval on L1 between eab and
eij will be enlarged and a greater communication can be inserted bewteen eab and eij .

The method of scheduling a node ni onto a processor p is given in Algorithm 3. When a node is scheduled,
the ALAPs of its input edges are then calculated (line 6 to 10 in Algorithm 3). The ALAP of an edge can not
be calculated during the processor selection. Hence, a Boolean value is used to indicate whether the procedure
Schedule Node() is used in the procedure Select Processor() or not.

Algorithm 4 gives our method for edge scheduling which is similar to that of the classic heuristic. However,
there is also some improvements: The origin node ni of eij is tested because some predecessors of the critical
child may be non-scheduled; the best route is chosen to give the earliest finish time; and the ALAP is considered
in the edge scheduling condition.

Figure 4(b) gives a DAG example to show the effect of communication delay. Nodes are sorted into a static list
of n1, n2, n3, n4, n5, n6 by using the priority of bl & tl. Figure 4(c) gives a partial schedule result with n1, n2,
n3, n4 having been scheduled. As to n5, the input edge e1,4 for n4 can start at its ALAP of time 3. Hence, the
edge e1,5 is inserted between e1,3 and e1,4 as shown in Figure 4(d) and finally a schedule length of 8 is obtained in
Figure 4(e). If ALAP is not used, another schedule result is obtained in Figure 4(f) with the schedule length of 9.



Mu P C, et al. Sci China Inf Sci ? 2010 Vol. ? No. ? 9

P1

0 5 10

P2

L1

n y

n jna

eab eij

nb

t seij
ALAP eij

n i

nx

e yz

nz

time

(a) ALAP

n1

n3

n6

n2 n4 n5

1

1111

1

111
2 226

1

(b) A DAG example

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,4e1,3

time

(c) Partial schedule result

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,5e1,3

n5

e1,4

time

(d) Schedule n5 with communi-
cation delay

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,5e1,3

n5

e1,4 e5,6e4,6

n6

8

time

(e) Schedule result with commu-
nication delay

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,4e1,3

n5

e1,5 e4,6e5,6

n6

9

time

(f) Schedule result without com-
munication delay

Figure 4: Communication delay

Algorithm 3: Schedule Node(ni, p, IsTemporary)
Input: ni ∈ V , a processor p ∈ Proc (ni) and a Boolean value IsTemporary

Output: The finish time of ni on p

for each nl ∈ pred (ni) , proc (nl) ∕= p do1

Schedule Edge(eli, p);2

end3

Calculate DRT of node ni;4

Find the earliest idle time interval for node ni on processor p respecting the node scheduling condition;5

if IsTemporary = false then6

for each nl ∈ pred (ni) , proc (nl) ∕= p do7

Calculate the ALAP of eli;8

end9

end10

Schedule ni on p and calculate the finish time;11

4.3 Advanced Dynamic List Scheduling

Algorithm 5 shows our advanced dynamic list scheduling heuristic. The “dynamic” means that the node list is not
determined before the scheduling but created during the scheduling. Hence, the procedure Sort Nodes() for
the static list scheduling heuristic is no longer necessary. The procedure Choose Node() is used in place of
the procedure Sort Nodes() to choose a node for scheduling. The procedures Select Processor() and
Schedule Node() use the new method given above.

As used for sorting nodes into static lists, node levels are also effective to create dynamic node lists. In the
dynamic list scheduling, any free node can be scheduled in the next step, but we should choose the most critical
one. Since the length of the longest path passing a free node during the scheduling is crucial to the final schedule
length, the free node in this path, which is the first unscheduled node in this path, must be treated immediately in
order to be executed as early as possible. This node is named the critical node and is obtained by considering the
bottom level as shown in Algorithm 6.

In this algorithm, the bottom level (bl (ni)) is used as the node priority. The bottom level reflects the time
needed from this node to the end of the DAG; our new bottom levels reflect better the reality in the case of
communication contention. Hence, bl (ni) can be replaced by other bottom levels like blcomp (ni), blin (ni),
blout (ni) and blio (ni). Different bottom levels may give different dynamic node lists and can finally lead to
different schedule results.



10 Mu P C, et al.

Algorithm 4: Schedule Edge(eij , p)

Input: eij ∈ E and a processor p ∈ Proc (nj) on which the node nj to be scheduled
Output: None
if ni is scheduled then1

if proc (ni) ∕= p then2

FinisℎT ime←∞;3

for each R ∈ RS (proc (ni) , p) do4

Find the earliest common idle time interval on all the links of R respecting the edge scheduling5

condition with ALAP;
if tf (eij , R) < FinisℎT ime then6

FinisℎT ime← tf (eij , R);7

Rbest← R;8

end9

end10

Schedule eij on Rbest;11

end12

end13

Algorithm 5: Dynamic List Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph TG = (N,P,L, b)

Output: A schedule of G on TG

UNS ← V ;1

while existing nodes in UNS do2

n← Choose Node(UNS);3

pbest← Select Processor(n, P );4

Schedule Node(n, pbest, false);5

Remove n from UNS;6

end7

5 Experimental Results

This section gives experimental results of our proposed list scheduling heuristics compared to the classic one given
in ref. [14]. The architecture in Figure 1(c) and 1(d) are used for the comparison in subsection 5.1 and 5.2,
respectively.

5.1 Comparison with an Example

The DAG given in Figure 1(a) is used in this section to show the improvement by using the advanced dynamic
heuristic with different node priorities. Table 1 has given all the five groups of top levels and bottom levels for
this DAG, the resulting static lists according to the rule of sorting nodes are given in Table 2 which also shows the
critical children according to these different static node lists.

Figure 5 gives the schedule result of the classic static list scheduling heuristic with nodes sorted by bl&tl. In
this figure, two different symbols for an edge respectively represent the sending and receiving of this edge. The
classic heuristic gives the schedule length of 21.

Our advanced dynamic heuristic with different node priorities may give different dynamic node lists and finally
gives different schedule results. Table 3 shows the generated dynamic node lists with the five node priorities, and
it is noticed that four different node lists (from (a) to (d)) are obtained.

The schedule result for the node priority blcomp is shown in Figure 6(a). The schedule length of 18 is obtained
by using 3 processors. The schedule result for the node priority bl is shown in Figure 6(b), and the schedule length
is also 18 with 3 processors. Figure 6(c) shows the schedule result with the node priority blin. The schedule length
is also 18 but with 4 processors. Figure 6(d) gives the schedule result for the same node list obtained by blout and



Mu P C, et al. Sci China Inf Sci ? 2010 Vol. ? No. ? 11

Algorithm 6: Choose Node(UN )
Input: A set UN of all the unscheduled nodes
Output: The critical node nc among all the unscheduled nodes
Create a set FN of all the free nodes from UN ;1

MaxLengtℎ← 0;2

for each ni ∈ FN do3

Lengtℎ← 0;4

for each nl ∈ pred (ni) do5

Lengtℎ←max {Lengtℎ, tf (nl, proc (nl)) + bl (ni)};6

end7

if MaxLengtℎ < Lengtℎ then8

MaxLengtℎ← Lengtℎ;9

nc ← ni;10

else if MaxLengtℎ = Lengtℎ then11

if bl (nc) < bl (ni) then12

nc ← ni;13

end14

end15

end16

Table 2: Different static node lists and corresponding critical children
Critical child

Node priority Static node list n1 n2 n3 n4 n5 n6 n7 n8 n9

blcomp & tlcomp n1, n4, n3, n2, n8, n7, n6, n5, n9 n4 n7 n8 n8 null n9 n9 n9 null
bl & tl n1, n2, n4, n3, n7, n6, n8, n5, n9 n2 n7 n8 n8 null n9 n9 n9 null

blin & tlin n1, n2, n4, n3, n7, n6, n8, n5, n9 n2 n7 n8 n8 null n9 n9 n9 null
blout & tlout n1, n2, n4, n3, n7, n8, n6, n5, n9 n2 n7 n8 n8 null n9 n9 n9 null
blio & tlio n1, n2, n4, n3, n7, n8, n6, n5, n9 n2 n7 n8 n8 null n9 n9 n9 null

blio. The schedule length is 17 with 4 processors and is better than the three former schedule lengths of 18. All
the schedule results of the advanced dynamic heuristic are better than that of the classic heuristic; sometimes the
number of used processors is also reduced.

5.2 Comparison with Random DAG

Random graphs are commonly used to compare scheduling algorithms in order to get statistical results which are
more persuasive than the result for some particular graphs. We implement a graph generator based on SDF3 to
generate random SDF graphs[19] except that the SDF graphs are constrained to be DAGs (no cycles).

A random DAG is constrained in five aspects: (1) the number of nodes, (2) the average in degree, (3) the
average out degree, (4) the random weights of nodes, (5) the random weights of edges. The average in degree and
out degree are assumed to be same in this paper. The weights of nodes vary randomly from wmin to wmax. The
communication to computation ratio (CCR) is used to generate random weights of edges. The CCR is defined

P1

0 5 10 15 20

P2

P3
L3

n1 n2 n7

n5

n4 n8

n3

n6

n9

e1,5

L1 e1,3e1,5e2,6

e3,8

e8,9

L2

e1,3

e2,6

e3,8

e8,9

P4
L4

e6,9

e6,9

e1,4

e1,4

21

time

eijSending:

Receiving: eij

Figure 5: Schedule result of classic heuristic



12 Mu P C, et al.

Table 3: Different dynamic node lists
Node priority Dynamic node list No.

blcomp n1, n4, n2, n6, n7, n3, n8, n9, n5 (a)
bl n1, n4, n2, n7, n6, n3, n8, n9, n5 (b)
blin n1, n2, n4, n3, n8, n6, n7, n9, n5 (c)
blout n1, n2, n4, n3, n8, n7, n6, n9, n5 (d)
blio n1, n2, n4, n3, n8, n7, n6, n9, n5 (d)

P1

0 5 10 15 20

P2

P3
L3

n1 n2 n7

n5

n4

n8n3

n6 n9

e1,5

L1 e1,3e1,5

e4,8

e8,9

L2 e1,3

e4,8

e8,9

P4
L4

18

time

(a)

P1

0 5 10 15 20

P2

P3
L3

n1 n2 n6

n5

n4

n8n3

n7 n9

e1,5

L1 e1,3e1,5

e4,8

e8,9

L2 e1,3

e4,8

e8,9

P4
L4

18

time

(b)

P1

0 5 10 15 20

P2

P3
L3

n1 n2 n7

n5

n4 n8

n3

n6 n9

e1,5

L1 e1,3e1,5

e3,8

e8,9

L2

e1,3 e3,8

e8,9

P4
L4

18

e1,4

e1,4

time

(c)

P1

0 5 10 15 20

P2

P3
L3

n1 n2 n7

n5

n4 n8

n3

n6 n9

e1,5

L1 e1,3e1,5

e3,8 e7,9L2

e1,3 e3,8

e7,9

P4
L4

17

e2,6

e2,6

e1,4

e1,4

time

(d)

Figure 6: Schedule results of advanced dynamic heuristic

as the average weight of edges divided by the average weight of nodes in this paper, that is, CCR =

1
∣E∣

∑
e∈E

c(e)

1
∣V ∣

∑
n∈V

w(n)
.

The CCR’s typical values of 0.1, 1 and 10 represent the low, medium and high communication cases, respectively.
The weights of edges are generated randomly from wmin × CCR to wmax × CCR.

The advanced dynamic list scheduling heuristic can use the five groups of node priorities to get different results.
We combine the five groups of node priorities with the advanced dynamic heuristic and choose the best result; the
whole process is called a combined advanced dynamic heuristic. To compare the performance difference between
the combined advanced dynamic heuristic and the classic list scheduling heuristic with the node priority of bl & tl,
we generate random DAGs as follows: The number of nodes is fixed to be 100, weights of nodes vary randomly
from wmin = 100 to wmax = 1000, and according to the average in/out degree and CCR, 9 groups of random
DAGs are generated with 1000 samples in each group. Table 4 compares the combined advanced dynamic heuristic
with the classic heuristic. Although the combined advanced dynamic heuristic is worse than classic heuristic for
most random DAGs in the case of CCR = 0.1, it is better for most random DAGs as the CCR increases.

Table 4: Comparison of the combined advanced dynamic heuristic with the classic list scheduling heuristic
Average in/out degree 2 3 4

CCR 0.1 1 10 0.1 1 10 0.1 1 10
Better 1.2% 86.4% 94.7% 1.9% 78.2% 95.6% 2.3% 76.6% 95.3%
Equal 24.2% 0.9% 0.0% 13.7% 0.0% 0.0% 8.7% 0.0% 0.0%
Worse 74.6% 12.7% 5.3% 84.4% 21.8% 4.4% 89.0% 23.4% 4.7%

To illustrate more clearly the performance of the combined advanced dynamic heuristic, we define the accel-
eration factor (Acc) as Acc = slclassic

sladvanced
to show the speed-up of the advanced heuristic. We tested 27 groups of

random DAGs, and Figure 7(a) shows the average Acc of the combined advanced dynamic list scheduling heuris-
tics. It is noticed that their performances are similar and the schedule results are sped up (Acc > 1) by using



Mu P C, et al. Sci China Inf Sci ? 2010 Vol. ? No. ? 13

the combined advanced heuristic in the cases of CCR = 1 and CCR = 10. We can see that the average Acc

increases when CCR varies from 0.1 to 10. The schedule result can be accelerated up to 80% when CCR = 10.
If the number of nodes is fixed, the average Acc increases as the average in/out degree increases when CCR = 10.
The reason for this phenomenon is that the critical child technique helps to select better processors for nodes with
multiple predecessors. The greater the in/out degree is, the better the critical child works. Since the communica-
tion cost is increasing in modern embedded applications like digital communication and video compression, our
method is suitable for scheduling these applications on parallel embedded systems.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Combined advanced dynamic list scheduling for random DAGs

CCR=0,1
CCR=1
CCR=10

(Number of nodes; Average in/out degree)

Av
er

ag
e 

ac
ce

le
ra

tio
n 

fa
ct

or

(a) Average Acc

100 200 300 400 500
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

P=16
P=12
P=8
P=4

V
Ti

m
e 

(m
s)

(b) Time complexity with V

2 4 6 8 10 12 14 16
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

V=500
V=300
V=100

P

Ti
m

e 
(m

s)

(c) Time complexity with P

Figure 7: Average Acc of the advanced dynamic heuristic and its time complexity

5.3 Time Complexity of the Advanced Dynamic Heuristic

The classic list scheduling heuristic has the time complexity of O
(
PE2O (routing) + V 2

)
, where P , V and E

are the number of processors, the number of nodes and the number of edges, respectively. O (routing) represents
the maximum number of links on a route and is usually fixed because of the static routing strategy in parallel
embedded systems. The time complexity increases by a factor of P when using the critical child. Hence, the
time complexity of our advanced dynamic heuristic is O

(
P
(
PE2O (routing) + V 2

))
, while combination of the

advanced dynamic heuristic with the five node priorities does not increase the degree of the time complexity.
Figure 7(b) and 7(c) shows the time consumed to schedule different sizes of DAGs on architectures with different

numbers of processors by our combined advanced dynamic heuristic. All the DAGs have the average in/out degree
of 4; all the processors are connected to the same switch by different communication links. It is shown that the
time increases with the square of V and also with the square of P . We ran our heuristic on a Pentium Dual-Core
PC at 2.4GHz, and it toke about 3 minutes to schedule a DAG with 500 nodes on an architecture of 16 processors.
In fact, a complicated embedded application usually has no more than 500 nodes in models of coarse and medium
grain, and P is usually much smaller than V and E in a parallel embedded system. Hence, the increase of time
complexity is reasonable and acceptable for rapid prototyping methodologies.

6 Conclusions

This paper proposes three new groups of node levels (top level and bottom level) and two advanced techniques
(critical child and communication delay) for list scheduling with communication contention. We also give an ad-
vanced dynamic list scheduling heuristic using the new node levels and the two advanced techniques. Our method
is used for heterogeneous parallel embedded systems. The new node levels take into account the communication
contention and are used as node priorities to generate different node lists; the critical child technique helps to select
a better processor for a node; and the communication delay technique delays communications when necessary in
order to enlarge idle time intervals on communication links.

The advanced dynamic heuristic can use different node lists to get different scheduling results for a given
DAG. We combine the five groups of node priorities with the advanced dynamic heuristic and choose the best
result; the whole process is a combined advanced dynamic heuristic. To compare with the classic method, we
use homogeneous parallel systems and randomly generated DAGs. Experimental results show that the combined
advanced dynamic heuristic is efficient to shorten the schedule length for most of the randomly generated DAGs
in the cases of medium and high communication. Our method accelerates a scheduling result up to 80% in the



14 Mu P C, et al.

case of high communication and sometimes also reduces the use of hardware resources. Since the communication
cost is increasing from low to medium and even to high in modern digital communication and video compression
applications, our method will work well for scheduling these applications on parallel embedded systems.

Acknowledgements

This work was supported by the China Scholarship Council. We thank Profs. YIN QinYe of Xi’an Jiaotong University for
giving precious propositions during the redaction of this paper.

References

1 Lee E, Parks T. Dataflow process networks, Proceedings of the IEEE, 1995, 83(5): 773–801
2 Sriram S, Bhattacharyya S S. Embedded multiprocessors - scheduling and synchronization. New York, NY, USA: Marcel Dekker, Inc, 2000
3 Sarkar V. Partitioning and scheduling parallel programs for multiprocessors. Cambridge, MA, USA: MIT Press, 1989
4 Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NP-completeness. New York, NY, USA: W H Freeman &

Co, 1990
5 Adam T L, Chandy K M, Dickson J R. A comparison of list schedules for parallel processing systems. Commun ACM, 1974, 17(12):

685–690
6 Kasahara H, Narita S. Practical multiprocessor scheduling algorithms for efficient parallel processing. IEEE Trans Comput, 1984, 33(11):

1023–1029
7 Hwang J J, Chow Y C, Anger F D, Lee C Y. Scheduling precedence graphs in systems with interprocessor communication times. SIAM J

Comput, 1989, 18(2): 244–257
8 Wu M Y, Gajski D. Hypertool: A programming aid for message-passing systems. IEEE Trans Parallel Distr Syst, 1990, 1(3): 330–343
9 Yang T, Gerasoulis A. DSC: Scheduling parallel tasks on an unbounded number of processors. IEEE Trans Parallel Distr Syst, 1994, 5(9):

951–967
10 Kwok Y K, Ahmad I. Dynamic critical-path scheduling: An effective technique for allocating task graphs onto multiprocessors. IEEE Trans

Parallel Distr Syst, 1996, 7(5): 506–521
11 Sih G, Lee E. A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans

Parallel Distr Syst, 1993, 4: 175–187
12 Kwok Y K, Ahmad I. Bubble scheduling: A quasi dynamic algorithm for static allocation of tasks to parallel architectures. In: Proceedings

of the 7th IEEE Symposium on Parallel and Distributed Processing, Washington, DC, USA, 1995
13 Grandpierre T, Lavarenne C, Sorel Y. Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors. In: Proceedings

of 7th International Workshop on Hardware/Software Co-Design, Rome, Italy, 1999
14 Sinnen O, Sousa L. Communication contention in task scheduling. IEEE Trans Parallel Distr Syst, 2005, 16(6): 503–515
15 Tang X, Li K, Padua D. Communication contention in APN list scheduling algorithm. Sci China Inf Sci, 2009, 52(1): 59–69,
16 Sinnen O. Task scheduling for parallel systems. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2007
17 Kwok Y K, Ahmad I. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys, 1999,

31(4): 406–471
18 Sinnen O, Sousa L. List scheduling: Extension for contention awareness and evaluation of node priorities for heterogeneous cluster archi-

tectures. Parallel Computing, 2004, 30(1): 81–101
19 Stuijk S, Geilen M, Basten T. SDF3: SDF for free. In: Proceedings of 6th International Conference on Application of Concurrency to

System Design, Los Alamitos, CA, USA, 2006


