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Homogenization of a highly rarefied binary

structure of finite diffusivity

I. GRUAIS*

Université de Rennes1, I.R.M.A.R, Campus de Beaulieu,
35042 Rennes Cedex, France

The homogenization of a binary structure made of very small particles of general shape is
performed when the diffusivity is finite and when the size of the particles has a critical value
with respect to a rarefaction number. The limit problem involves an auxiliary function which
can be interpreted as the solution of a problem of cellular type, thus filling the gap with classical
methods of multiple scales.
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2000 Mathematics Subject Classifications: 35B27; 35Q72; 74Q05; 74Q15; 76M50

1. Introduction

This study follows a collection of three articles [2–4] dealing with the modelization of
rarefied binary structures where possibly spherical particles are embedded in an
ambiantal medium. The ratio of the radius of the particles and the size of the network
is used as main criteria to analyze the limit behavior of the resulting suspension.
The case where this ratio is of unity order is well-known and has been classically studied
through homogenization methods. Thus, our interest focused on the other cases
and more specifically on rarefied suspensions where the particles are very small in
comparison with the size of the underlying network. A rarefaction number depending
on the radius of the particles was introduced to characterize the limit problem and
actually defines what was meant by very small. However, it appeared that when this
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rarefaction number has a critical value, then finite diffusivity is an obstruction to
our method. This case is analyzed in the present article using methods that were already
presented in a previous work [6].

Although our model suffers from the restrictions due to the choice of the homogeni-
zation method, we claim that it is also physically relevant owing to recent studies on
microstructures either in optical or porous media.

Indeed, the binary representation of porous media can provide a direct means for
the characterization of their internal structure. However, the commonly used concepts
of pore, grain [2,3] or fiber [1] models inevitably introduce a significant degree of
approximation to the actual structure and rarefied transport prevails in the continuum
limit [3,4].

Moreover, optical fields can induce forces between microscopic objects, thus
giving rise to new structures of matter. It was demonstrated that optical fields
can produce forces on neutral particles and this mechanical action has been used
in optical tweezers and more recently in optical force microscopy. The possibility
of binding objects through optical forces and thus create microstructures has
been pointed out. An application of this principle lies in laser trapped mirrors
which may offer an interesting alternative for very large space telescopes.
Building laser-trapped sheet structure for use as an astronomical mirror requires
investigations on micronscale particles. At the microscopic level, light-matter inter-
actions can organize colloidal matter via a process known as optical binding.
Optical binding refers to the creation of arrays of microparticles formed in the
presence of laser fields, the inter-particle spacing being determined by the refocusing
and/or scattering of the laser fields by the microparticles. As a matter of fact,
experimental work on optical binding deals with water suspensions of microspheres.
In this respect, the development of nanotechnologies requires studying of transport
processes of nanoparticles in fluids. In turn, to control these processes it is
necessary to study mechanisms of nanoparticles velocity relaxation in gases and
liquids. The key to the solution of these problems is the description of the
nanoparticles diffusion in liquids and gases. The size of nanoparticles lies between
the molecule and large dispersed particles ones ðR2 ½10�7, 5� 10�6� smÞ.
Therefore, gas nanosuspensions (gasþ nanoparticles) and nanosuspensions
(liquidþ nanoparticles) are essentially different from gas mixtures, ordinary gas
suspensions and suspensions.

The present study is based on references [2–4] which were devoted to the mathema-
tical analysis of nanoparticles diffusion in gases and liquids.

It is organized as follows. Section 2 is devoted to the main notations and to the
description of the model. In section 3, we show that the analog of Proposition 5.2
of [4] still holds although the localizing operators of [4] are of no use in the case
under consideration. Section 4 is devoted to a reformulation of a two-scale convergence
result of [6]. The limit problem is determined in section 5 and the main result is stated
in Theorem 5.4. The capacitary term is explicited in Proposition 5.5 for the particular
case of spherical particles. Theorem 6.1 of section 6 yields an a posteriori justification
of the choice of the regularity of external forces. Section 7 makes the link with the
two-scale convergence method (see [6] and references therein) and we show in
section 8 that the limit problem actually involves an auxiliary problem of cellular
type. Finally, in the appendix, we state and prove a maximum principle that was
used in Proposition 5.3.
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2. Rarefied diffusion

Let � � RN, N� 3, be an open Lipschitz domain and let D be an open set of class C1

contained in B(0, 1). Let us denote:

Y :¼ �
1

2
,þ

1

2

� �N

, ð1Þ

For some 0<r"� ", we set

Yk
" :¼ "kþ "Y, k2ZN, Dk

" :¼ "kþ r"D, ð2Þ

Z" :¼ fk2ZN, Yk
" ��g, �Y" :¼ [

k2Z"

Yk
" : ð3Þ

We consider that � is occupied by a mixture of two different materials, one of them
forming the ambiantal connected phase, the other being concentrated in a "-periodical
suspension of small particles of general shape. The suspension, denoted by D", is
defined by the following reunion

D" :¼ [
k2Z"

Dk
" ð4Þ

and obviously jD"j ! 0 as "! 0. The fluid domain, denoted by �", is defined by
�" :¼ �nD".

We consider the problem which governs the diffusion throughout our binary struc-
ture. Denoting by a" the relative mass density of the concentration, we assume that,
although the volume of the suspension is vanishing, its mass is of unity order, namely:

a"jD"j ¼ a > 0: ð5Þ

If b">0 denotes the relative diffusivity of the suspension, and if we assume, without
loss of generality, that |�|¼ 1, then we consider the nondimensional from of the pro-
blem, namely: To find u" solution of

�b"�u" þ a
u"

jD"j
¼ f " in D" ð6Þ

��u" ¼ f " in �" ð7Þ

½u"�" ¼ 0 on @D" ð8Þ

b"
@u"jD"

@n

����
@D"

¼
@u"j�"

@n

����
@D"

on @D" ð9Þ

u" ¼ 0 on @� ð10Þ

where [�]" is the jump at the interface @D", n is the unit normal in the outward direction
on @D", and where f " 2H�1ð�Þ.

The variational formulation of the problems (6)–(10) reads:
To find u" 2H1

0ð�Þ satisfying

a

Z
�

D"

u"wþ b"

Z
D"

ru"rwþ

Z
�"

ru"rw ¼ h f ",wi, 8w2H1
0ð�Þ ð11Þ

where h�, �i denotes the duality product between H�1(�) and H1
0ð�Þ.
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To study the asymptotic behavior of u" when "! 0, we make the following
additional hypotheses: namely, the relative diffusivity is bounded below by a positive
constant:

b" � b0 > 0, 8" > 0, ð12Þ

and there exists f2H�1ð�Þ such that

f " * f in H�1ð�Þ ð13Þ

PROPOSITION 2.1 Under the assumptions (12)–(13),

u" is bounded in H1
0ð�Þ: ð14Þ

Moreover, there exists C>0, independent of ", such thatZ
�

D"

ju"j2dxþ b"jru
"j2D"

	 C: ð15Þ

3. Homogenization of the case re ¼ OðeN=ðN�2ÞÞ when the relative diffusivity be is finite

We assume that b" is finite, say b"¼ a¼ 1, which leads to the following problem:
To find u" 2H1

0ð�Þ solution of:

��u" þ
u"

jD"j
¼ f " in D" ð16Þ

��u" ¼ f ", in �" ð17Þ

½u"�@D"
¼

@u"

@n

� �
@D"

¼ 0: ð18Þ

The variational formulation becomes:

u" 2H1
0ð�Þ and 8’2H1

0ð�Þ,

Z
�

ru"r’þ

Z
�

D"

u"’ ¼ h f ", ’i ð19Þ

where h�, �i denotes the duality product between H1
0ð�Þ and H�1(�).

PROPOSITION 3.1 There exists v2L2ð�Þ such thatZ
�

D"

u"’ dx !

Z
�

v’dx, 8’2Ccð�Þ:

Proof Let M" denote the operator M" : Ccð�Þ ! L2ð�Þ fined by

M"ð’ÞðxÞ :¼
X
k2Z"

Z
�

Yk
"

’ð yÞdy

 !
1Dk

"
ðxÞ: ð20Þ
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Then, the uniform continuity of ’2Ccð�Þ immediately yields:

lim
"!0

Z
�

D"

j’�M"ð’Þj
2 dx ¼ 0: ð21Þ

Let ’2Ccð�Þ. We haveZ
�

D"

u"’dx ¼

Z
�

D"

u"ð’�M"ð’ÞÞdxþ

Z
�

D"

u"M"ð’Þdx ð22Þ

with Z
�

D"

u"ð’�M"ð’ÞÞdx

���� ���� 	 Z
�

D"

ju"j2
� �1=2 Z

�
D"

j’�M"ð’Þj
2dx

� �1=2

	 C

Z
�

D"

j’�M"ð’Þj
2 dx

� �1=2

where we have taken into account (15). From (21), we deduce that

lim
"!0

Z
�

D"

u"ð’�M"ð’ÞÞdx ¼ 0: ð23Þ

The remaining term in (22) also readsZ
�

D"

u"M"ð’Þdx ¼

Z
�

’P"ðu
"Þdx ð24Þ

where P" denotes the operator L2ð�Þ ! L2ð�Þ defined by

P"ð’ÞðxÞ :¼
X
k2Z"

Z
�

Dk
"

’ð yÞdy

 !
1Yk

"
ðxÞ, a:e: in �, 8w2L2ð�Þ:

Note that

jP"ðu
"Þj2� ¼

X
k2Z"

Z
Yk
"

Z
�

Dk
"

u"

�����
�����
2

	 C

Z
�

D"

ju"j2 	 C

and thus, at least for some subsequence: there exists v2L2ð�Þ such that

P"ðu
"Þ* v in L2ð�Þ:

After substitution into (24), this yields

lim
"!0

Z
�

D"

u"M"ð’Þdx ¼

Z
�

v’ dx: ð25Þ

We conclude after substitution of (23) and (25) into (22). g
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4. A convergence result

Definition 4.1 For any ’2Dð�Þ, we set

N"ð’Þ ¼
X
k2Z"

Z
�

Yk
"

’ð�Þd�1Yk
"
ðxÞ ¼:

X
k2Z"

Nk
" ð’Þ1Yk

"
ðxÞ:

Definition 4.2 For any x2�Y" ¼: [k2Z"Y
k
" ��, we set

y"ðxÞ ¼
1

r"
x� "

x

"

h i� �
so that

x2�Y"()y" 2K" :¼
"

r"
Y

x2�"()y" 2K"nD and x2D"()y" 2D:

PROPOSITION 4.3 Let �2CcðR
NÞ and  2Cð�Þ. Then,Z

�

�ðy"ÞN"ð Þ ¼

Z
�

 ðxÞ

Z
�

K"

�

� �
: ð26Þ

In particular,Z
�

D"

�ðy"ÞN"ð Þ ¼
1

"NcardZ"

Z
�

 ðxÞ

Z
�

D

�

� �



Z
�

 ðxÞ

Z
�

D

�

� �
: ð27Þ

Proof We haveZ
�

�ðy"ÞN"ð Þ ¼
X
k2Z"

Z
Yk
"

�ðy"ÞNk
" ð Þ ¼ rN"

X
k2Z"

Z
K"

�ðyÞNk
" ð Þ

¼
rN"
"N

X
k2Z"

Z
Yk
"

 ðxÞ

Z
K"

�ðyÞ ¼

Z
�

��K"

 ðxÞ�ðyÞ,

which yields (26). There resultsZ
�

D"

�ðy"ÞN"ð Þ ¼
1

jK"jjD"j

Z
�

 ðxÞ

Z
D

�

� �

where jK"j ¼ ð"=r"Þ
N. Note that

jD"j ¼ cardZ"r
N
" jDj ¼ "NcardZ"

r"
"

� �N
jDj ¼ "NcardZ"

jDj

jK"j

and therefore ð1=jK"jÞ ¼ ð1="NcardZ"ÞðjD"j=jDjÞ, which yields (27). g
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5. The limit problem

Let ��2H1
0ðB�Þ be the solution of

���y��þ
��

jDj
¼

1

jDj
, in D ð28Þ

���y�� ¼ 0, in B�nD ð29Þ

½���@D ¼
@��

@n

� �
@D

¼ 0 ð30Þ

�� ¼ 0, on @B�: ð31Þ

Definition 5.1 Let R a set of control sequences defined by:

R ¼ ðR"Þ", r" � R" � "
� 	

: ð32Þ

For every sequence ðR"Þ" 2R, we introduce the associated control zone, namely:

C" ¼ [
k2Zk

ðBk
"nD

k

" Þ, ð33Þ

where the Bk
" ¼ Bð"k,R"Þ, k2Z", denote balls centered at the nodes of the network.

Letting �" ¼ r�1
" R", we establish:

PROPOSITION 5.2 Let �" be defined in �Y" by �
" ¼ ��"ðy

"Þ. Then, �" is solution of

���" þ
�"

jD"j
¼ �", in D" ð34Þ

���" ¼ 0, in C" ð35Þ

½�"�@D"
¼

@�"

@n

� �
@D"

¼ 0 ð36Þ

�" ¼ 0 in �"nC": ð37Þ

where �" 
 ð1=jD"jÞ. Moreover, �" ! 0 in L2(�) and

jr�"j2� ¼ �"

Z
��B�"

jry��"j
2 	 C:

Proof An immediate computation yields formulas (34)–(37). Moreover,

j�"j2� ¼

Z
�

��K"

j��"j
2 ¼

r"
"

� �NZ
��B�"

j��"j
2 


r"
"

� �NZ
��RN

j�0j2 ! 0:

jr�"j2� ¼ �"

Z
��K"

jry��"j
2 
 �

Z
��RN

jry�
0j2 < þ1
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where �0 is the unique solution of

���y�
0 þ

�0

jDj
¼

1

jDj
, in D ð38Þ

���y�
0 ¼ 0 in RNnD ð39Þ

½�0�@D ¼
@�0

@n

� �
@D

¼ 0 ð40Þ

g

Having in mind the application of a maximum principle for which we refer to
Proposition A.1 of the appendix, we need the following:

PROPOSITION 5.3 The solution �0 of (38)–(40) satisfies the following estimates:

0 < 1�

Z
�

D

�0 < 1:

Proof Multiplying both sides of (38)–(40) by �0 and applying Green’s formula, we getZ
�

D

�0 ¼

Z
�

D

j�0j2 þ �

Z
RNnD

jry�
0j2 > 0:

The maximum principle (see Proposition A.1 below) yields, for every �� 1:

0 ¼ min min
@B�

��,0 ¼ fjB�nD

� �
	 �� 	 max max

@B�
��,1 ¼ fjD

� �
¼ 1:

In particular,

0 	

Z
D

�0’ 	

Z
D

’, 8’2CðDÞ such that ’ � 0:

Passing to the limit as �! þ1, we get

0 	

Z
�

D

�0’ 	

Z
D

’, 8’2CðDÞ such that ’ � 0,

that is,

0 	 �0 	 1 in D:

To conclude, we compare �� with the solution w� of the following problem

��w� ¼ 0 in
w� ¼ 1 on
w� ¼ 0 on

C� :¼ Bð0, �ÞnD,
@D,
S� :¼ @Bð0, �Þ:

ð41Þ
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Classical results in potential theory ensure the convergence of

cap�ðDÞ :¼

Z
C�

jrw�j
2 ð42Þ

towards the capacity of D, namely

lim
�!þ1

cap�ðDÞ ¼ capðDÞ :¼

Z
RNnD

jrw1j2, ð43Þ

where w1 is the solution of the exterior Dirichlet problem with respect to D. Assume for
a while that

R
�D�

0 ¼ 1. Then, we get that �0 � 1 a.e. in D, and thus �0 ¼ w1 a.e. in RN,
which contradicts

@w1

@n

� �
@D

¼ �
@w1

@n

����
@ðRNnDÞ

6¼ 0,

where n is the unit outward normal on @ðRNnDÞ, i.e. the unit inward normal on @D. This
leads to a contradiction, and thus

R
�D�

0 6¼ 1, which achieves the proof. g

THEOREM 5.4 Assume that there exists h2L2ð�Þ such that

8 2Dð�Þ,

Z
�

�

f "�"N"ð Þ !

Z
�

h : ð44Þ

Then

u ¼
h

1�
R
�D�

0
: ð45Þ

Proof We have

�" ! 0 in L2ð�Þ strongly:

The uniform continuity of  on � yields:

N"ð Þ ! in L1ð�Þ: ð46Þ

Then we get, by definition of v:Z
�

D"

u"ð1� �"ÞN"ð Þ !

Z
�

v : ð47Þ

Moreover Z
�

D"

u"ð1� �"ÞN"ð Þ ¼

Z
�

u"
1D"

jD"j
ð1� �"ÞN"ð Þ

9



whereZ
�

1D"

jD"j
ð1� �"ÞN"ð Þ ¼

Z
�

D"

ð1� �"ÞN"ð Þ ¼
1

"NcardZ"

Z
�

��D

ð1� ��"ð yÞÞ ðxÞ

¼
1

"NcardZ"

Z
�

 ðxÞ

Z
�

�

ð1� ��"ð yÞÞ

� �
!

Z
�

Z
�

D



1� �0

�� �

and thus

1D"

jD"j
ð1� �"Þ !

Z
�

D

ð1� �0Þ ¼ 1�

Z
�

D

�0 in L2ð�Þ weakly:

As u" ! u in L2(�) strongly and taking into account (46), we infer thatZ
�

D"

u"ð1� �"ÞN"ð Þ !

Z
�

u 1�

Z
�

D

�0
� �

 :

Comparing with (47), we conclude that

v ¼ u 1�

Z
�

D

�0
� �

: ð48Þ

Moreover, arguing as in Tartar’s energy method, we computeZ
�

ru"r�"N"ð Þ þ

Z
�

D"

u"�"N"ð Þ ¼

Z
�

f "�"N"ð Þ ð49Þ

Z
�

ru"r�"N"ð Þ þ

Z
�

D"

u"�"N"ð Þ ¼

Z
�

�

u"N"ð Þ: ð50Þ

Substracting (50) from (49), we getZ
�

D"

u"N"ð Þ ¼

Z
�

f "�"N"ð Þ: ð51Þ

Then, passing to the limit as "! 0 in (51) and taking advantage of the hypothesis (44),
we deduce that Z

�

v ¼

Z
�

h 

that is, v¼ h. The result follows from (48).

Remark 1 The quantity 1�
R
�D�

0 is related to the mean capacity of �0 on the open
set D through the identity:

1�

Z
D

�0 ¼ �

Z
@D

�0 �
@w1

@n

� �
¼ �

Z
@D

�
@�0

@n

� �
:
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Indeed, the same arguments as above with w1 as test function lead to

1 ¼

Z
�

D

�0 þ �

Z
RNnD

ry�
0ryw1

where

�

Z
RNnD

ry�
0ryw1 ¼ �

Z
@D

�0 �
@w1

@n

� �
and

�

Z
RNnD

ry�
0ryw1 ¼ �

Z
@D

�
@�0

@n

� �

which yields the result.

PROPOSITION 5.5 In the particular case where D¼B(0, 1) is the unit ball of R3, we haveZ
�

D

�0 ¼
3ð!� tanh!Þ

!3
2 �0,1½, where ! :¼

ffiffiffiffiffiffiffiffi
3

4��

s
:

Proof For every �>1, �� has the spherical symmetry and thus ��¼��(r) is a radial
function. There results that �� solves

��
d

dr
r2

d

dr
��

� �
þ

3

4�
r2�� ¼

3

4�
r2, 0 < r < 1

��
d

dr
r2

d

dr
��

� �
¼ 0, 1 < r < �

��ð1þÞ ¼ �ð1�Þ,
d

dr
��ð1þÞ ¼

d

dr
��ð1�Þ ð52Þ

��ð�Þ ¼ 1: ð53Þ

Setting  ¼ r(��� 1) for 0 	 r 	 1 we find that solves the following differential
equation

��
d2

dr2
þ

3

4�
¼ 0, 0 < r < 1,

whose general solution takes the form

¼ Ae!r þ Be�!r:

There follows

�� ¼ 1þ A
e!r

r
þ B

e�!r

r
, for 0 < r < 1

11



where the limit

�� 
 1þ
Aþ B

r
as r ! 0

is defined as soon as AþB¼ 0, which leads to

�� ¼ 1þ 2A
sinhð!rÞ

r
0 < r < 1 and ��ð0Þ ¼ 1þ 2A!:

For every 1<r<�, direct computation as well as the boundary condition (53) yield

��ðrÞ ¼ C
1

�
�
1

r

� �

where the constant C remains to be determined. Note that (52) leads to:

C ¼ 2Að! cosh!� sinh!Þ

and

2A ¼
�

ð1� �Þ! cosh!� sinh!
;

successively. Finally, we get

��ðrÞ ¼ 1þ
�

ð1� �Þ! cosh!� sinh!

sinhð!rÞ

r
, if 0 < r < 1

��ðrÞ ¼
ðr� �Þ

r

ð! cosh!� sinh!Þ

ð1� �Þ! cosh!� sinh!
, if 1 < r < �:

Then, a direct computation shows that

1�

Z
�

D

�� ¼ �
3�

!2

! cosh!� sinh!

ð1� �Þ! cosh!� sinh!

� �
:

As �! þ1:

1�

Z
�

D

�0 ¼
3

!3
ð!� tanh!Þ

and considering the variations of !� ð3=!3Þð!� tanh!Þ we get 0 <
R
�D�

0 < 1. g
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6. An alternative result

If we assume that

f " * f in L2ð�Þ ð54Þ

then the limit problem is much simpler (see Theorem 6.1 below).
In that case, the variational formulation reads

u" 2H1
0ð�Þ and 8’2H1

0ð�Þ,

Z
�

ru"r’þ

Z
�

D"

u"’ ¼

Z
�

f "’: ð55Þ

Setting ’¼ u" in (55), we find that the energy is bounded, which yields the a priori
estimation:

jru"j2� þ

Z
�

D"

ju"j2 	 C

for some generic constant C>0 independent of ".
Passing to the limit as "! 0 and taking into account the above results, we find that

u2H1
0ð�Þ and 8’2H1

0ð�Þ,

Z
�

rur’þ

Z
�

v’ ¼

Z
�

f’: ð56Þ

THEOREM 6.1 The limit u is solution of

��u ¼ f in �, u2H1
0ð�Þ:

Proof Let  2C1
cð�Þ. Taking �" ¼ �"N"ð Þ as a test function in the variational

formulation (55), and u"N"ð Þ as a test function in the variational formulation of
(34)–(37), we successively find:Z

�

ru"r�"N"ð Þ þ

Z
D"

u"�"N"ð Þ ¼

Z
�"

f "�"N"ð Þ ð57Þ

Z
�

ru"r�"N"ð Þ þ

Z
D"

u"�"N"ð Þ ¼

Z
�

D"

u"N"ð Þ: ð58Þ

Comparing (57) and (58), we deduce thatZ
�

D"

u"N"ð Þ ¼

Z
�"

f "�"N"ð Þ

with Z
�

D"

u"N"ð Þ !

Z
�

v ,

Z
�"

f "�"N"ð Þ ! 0,
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that is,
R
��v ¼ 0. There results v¼ 0. To conclude, note that, taking into account (56),

we find that u solves

��uþ v ¼ f, in � ð59Þ

which achieves the proof. g

7. The limit is necessary: justification by the two-scale convergence [6]

Using the two-scale convergence method, we find that �0 defined as the solution of
(38)–(40) is a natural choice. To show this, the convergence defined in [6] is revisited
relying on notations [3,4].

Definition 7.1 For every � 2H1
0ð�Þ, define ~�" 2L2ð�� RNÞ as

~�"ðx, yÞ ¼
X
k2Z"

�ð"kþ r"yÞ1Yk
"
ðxÞ:

PROPOSITION 7.2 Let �2DðRNÞ and  2Dð�Þ. Then

Z
�

u"�ðy"ÞN"ð Þ ¼

Z
�

 ðxÞ

Z
�

K"

~u"�

� �
:

Proof We have

Z
�

u"�ðy"ÞN"ð Þ ¼
X
k2Z"

Z
Yk
"

u"�ðy"ÞNk
" ð Þ ¼ rN"

X
k2Z"

Z
K"

u"ð"kþ r"yÞ�ðyÞN
k
" ð Þ

¼
rN"
"N

X
k2Z"

Z
Yk
"

 ðxÞ

Z
K"

u"ð"kþ r"yÞ�ðyÞ ¼

Z
�

��K"

 ðxÞ ~u"ðx,yÞ�ðyÞ: g

COROLLARY 7.3 For every �, 	2L2ð�Þ,  2C0ð�Þ, there holds

Z
�

�	N"ð Þ ¼

Z
�

Z
�

K"

~�" ~	"
� �

:

As a direct consequence of Corollary 7.3, we have

PROPOSITION 7.4 For every � 2L2ð�Þ and every  2C0ð�Þ, the following holds true:

Z
�

j�j2N"ð Þ ¼

Z
�

 

Z
�

K"

�� ~�"��2, Z
�

D"

��’��2N"ð Þ ¼
1

"NcardZ"

Z
�

 

Z
�

D

�� ~�"��2: ð60Þ
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Moreover, if � 2H1ð�Þ, thenZ
�

jr�j2N"ð Þ ¼ �"

Z
�

��ry
~�"
��2
K"
: ð61Þ

Proof Inequalities (60) follow directly from Proposition 7.2. As for (61), note that for
every � 2C1ð�Þ:

fr�"ðx,yÞ ¼ X
k2Z"

r�ð"kþ r"yÞ1Yk
"
ðxÞ

while

r ~�"ðx,yÞ ¼ ry
~�" ¼ r"

X
k2Z"

r�ð"kþ r"yÞ1Yk
"
ðxÞ ¼ r"fr�"ðx,yÞ:

There results: Z
�

jr�j2N"ð Þ ¼
1

r2"

rN"
"N

Z
�

��ry
~�"
��2
K"

¼ �"

Z
�

��ry
~�"
��2
K"
:

g

PROPOSITION 7.5 If �" ! � 2 �0,þ1½, then, the following estimates hold true for ~u":

j ~u"j2��D 	 C,

Z
��K"

jry ~u
"j2 	 C: ð62Þ

Proof We have:

�"

Z
��K"

jry ~u
"j2 ¼

Z
�

jru"j2N"ð1Þ ¼

Z
�Y"

jru"j2 	 jru"j2� 	 C,Z
�

��D

j ~u"j2 ¼ "NcardZ"

Z
�

D"

ju"j2N"ð1Þ

¼
"NcardZ"

jD"j

Z
D"\�Y"

ju"j2

	 C

Z
�

D"

ju"j2 	 C: g

PROPOSITION 7.6 The following estimate holds true:

Z
�

Z
K"

j ~u" �N"ðu
"Þj2N=ðN�2Þ

� �ðN�2Þ=N

	 C: ð63Þ

Proof We have

Z
�

Z
K"

j ~u" �N"ðu
"Þj2N=ðN�2Þ

� �ðN�2Þ=N

¼

Z
�

jK"j
ðN�2Þ=N

Z
Y

�� ~u",# �N"ðu
"Þ
��2N=ðN�2Þ

� �ðN�2Þ=N

15



where we have set

~u",#ð�, zÞ :¼ ~u" �,
"

r"
z

� �
:

Poincaré–Wirtinger’s inequality yields:

Z
�

Z
K"

j ~u" �N"ðu
"Þj2N=ðN�2Þ

� �ðN�2Þ=N

	

Z
�

jK"j
ðN�2Þ=N

Z
Y

��rz ~u
",#
��2� �

¼

Z
�

jK"j
ðN�2Þ=N

Z
K"

jK"j
�1
��ry ~u

"
��2jK"j2=N� �

¼

Z
��K"

��ry ~u
"
��2 	 C: g

PROPOSITION 7.7 For every  2C 0ð�Þ, there holdsZ
�

N"ðu
"Þ !

Z
�

u as "! 0: ð64Þ

Proof We have

Z
�

N"ðu
"Þ ¼

X
k2Z"

Z
Yk
"

Z
�

Yk
"

u"

 !
¼
X
k2Z"

Z
�

Yk
"

 !Z
Yk
"

u" ¼

Z
�

u"N"ð Þ !

Z
�

u :

PROPOSITION 7.8 There exists u0 : �� RN ! R that satisfies

u0 � u2L2


�;H1



RN
��

\ L2


�;L2N=ðN�2Þ



RN
��

ð65Þ

and, at least for some subsequence,

~u" * u0 in L2


�;H1

loc



RN
��

\ L2


�;L

2N=ðN�2Þ
loc



RN
��
: ð66Þ

Proof The estimates (62) and (63) also read:

j ~u"j2��D 	 C,

Z
��RN

jry ~u
"j2 	 C

and

Z
�

Z
RN

j ~u" �N"ðu
"Þ1K" j

2N=ðN�2Þ

� �ðN�2Þ=N

	 C:

We deduce the existence of some u0# 2L2ð�;H1ðRNÞÞ \ L2ð�;L2N=ðN�2ÞðRNÞÞ such that,
at least for some subsequence:

~u" �N"ðu
"Þ1K" * u0# in L2



�;H1



RN
��

\ L2


�;L2N=ðN�2Þ



RN
��
:
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Moreover, (64) implies that

N"ðu
"Þ1K" * u in L2ð�Þ: ð67Þ

As  � 12H1
locðR

NÞ \ L
2N=ðN�2Þ
loc ðRNÞ, the result follows with u0# ¼: u0 � u. g

8. The auxiliary problem

We are in a position to be more precise about the aforementioned necessary result,
see section 7.

PROPOSITION 8.1 The limit u0 solves the following boundary value problem

���yu
0 þ

u0

jDj
¼ 0, in ��D ð68Þ

���yu
0 ¼ 0 in �� RNnD ð69Þ

½u0�@D ¼
@u0

@n

� �
@D

¼ 0 ð70Þ

u0 � u2L2


�;L2N=ðN�2Þ



RN
��

\ L2


�;H1



RN
��
: ð71Þ

Proof Let �2C1
cðR

NÞ and let  2Dð�Þ. Then, taking �" ¼ �ðy"ÞN"ð Þ as a test
function in the variational formulation (55), we getZ

�

ru"r�" þ

Z
�

D"

u"�" ¼

Z
�

f "�"

withZ
�

ru"r�" ¼

Z
�

ru"rð�ðy"ÞÞN"ð Þ ¼
1

r"

Z
�

ru"ry�ðy
"ÞN"ð Þ

¼
1

r2"

Z
�

Z
�

K"

ry ~u
"ry�ðyÞ

� �
¼ �"

Z
��K"

ry ~u
"ry�

! �

Z
��RN

 ryu
0ry� ¼ �

Z
�

Z
RN

ryu
0ry�

� �
,Z

�
D"

u"�" ¼

Z
�

D"

u"�ðy"ÞN"ð Þ ¼
1

"NcardZ"

Z
�

��D

~u"�ðyÞ !

Z
�

Z
�

D

u0�ðyÞ

� �
:

Moreover, we note that

�ðy"ÞN"ð Þ ! 0 in H1
0ð�Þ: ð72Þ
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Indeed, assuming that supp��Bð0,RÞ for some R>0, and noticing that

jy"j 	 R() x� "
x

"

h i��� ��� 	 r"R,

we get

j�ðy"ÞN"ð Þj� 	 Cj�j1j j1
j�j

"N
ðr"RÞ

N
¼ C

r"R

"

� �N

! 0

jrð�ðy"ÞN"ð ÞÞj� ¼
1

r"
ry�ðy

"ÞN"ð Þ

���� ����
�

	 jry�j1j j1
C

r"

r"R

"

� �N

¼ Cr"�"R
N ! 0

which yields (72). We deduce thatZ
�

f "�" ¼

Z
�"

f "�ðy"ÞN"ð Þ ! 0:

There results

�

Z
�

Z
RN

ryu
0ry�

� �
þ

Z
�

Z
�

D

u0�ðyÞ

� �
¼ 0:

g

The analog of Theorem 5.4 can be established: see in particular formula (48).

PROPOSITION 8.2 The application v defined in Proposition 3.1 can be identified as

v ¼ u 1�

Z
�

D

�0
� �

ð73Þ

where:

�0 2L2N=ðN�2Þ


RN
�
\H1



RN
�

ð74Þ

is the unique solution of (38)–(40).

Proof Let ’2Dð�Þ. Then, Proposition 3.1 still holds true and we have:

Z
�

v’ ¼ lim
"!0

Z
�

D"

u"’:

Note that from the Mean value theorem

jN"ð’Þ � ’j1 	 2"jr’j1
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which yields

Z
�

D"

u"’�

Z
�

D"

u"N"ð’Þ

���� ���� 	 C"

Z
�

D"

ju"jjr’j1 	 C"

Z
�

D"

ju"j2
� �1=2

jr’j1 	 C":

There results Z
�

v’ ¼ lim
"!0

Z
�

D"

u"N"ð’Þ ¼ lim
"!0

Z
�

��D

~u"’ ¼

Z
�

��D

u0’,

that is,

v ¼

Z
�

D

u0: ð75Þ

To conclude, note that the limit u0 solves the following boundary value problem:

���yu
0 þ

u0 � u

jDj
¼

�u

jDj
, in ��D ð76Þ

���yu
0 ¼ 0 in �� RNnD ð77Þ

½u0�@D ¼
@u0

@n

� �
@D

¼ 0 ð78Þ

u0 � u2L2


�;L2N=ðN�2Þ



RN
��

\ L2


�;H1



RN
��
: ð79Þ

Due to the linearity of the problems (76)–(79) and the unicity of its solution for any
given u, we infer that u0� u splits as

u0 � u ¼ �u�0

where �0 solves the problems (38)–(40), (74) which does not depend on u. Then, the
conclusion comes thanks to (75). g

Remark 1 We conclude as in the proof of Theorem 5.4 using the energy method
(49)–(51) to get v¼ h.
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Appendix A: a maximum principle

An adaptation of Theorem IX.27 [5] leads to the following result.

PROPOSITION A1 For every �>1, the solution �� of the problems (28)–(31) satisfies the
following maximum principle:

0 	 �� 	 1 in B�:

Proof Using Stampacchia’s truncature, we let G2C
1
ðRÞ satisfying

jG0ðsÞj 	 M, 8s2R ðA1Þ

G is strictly increasing in �0,þ1½ ðA2Þ

GðsÞ ¼ 0, 8s 	 0: ðA3Þ

Let 
�¼G(��� 1). Then, 
� 2H1ðB�Þ and Dirichlet’s condition (31) together with the
assumption (A3) on G lead to 
�j@B� ¼ 0 and therefore 
� 2H1

0ðB�Þ. Choosing 
� as a test
function in the variational formulation of (28)–(31), we get

Z
B�

jry��j
2G0ð��� 1Þ þ

Z
�

D

ð��� 1ÞGð��� 1Þ ¼ 0: ðA4Þ

The first term in the left-hand side of (A4) is nonnegative because of (A1). As for the
second term, the integral actually reduces to an integral defined on the subset of D
where ��� 1 � 0 and it is thus nonnegative. There follows that (A4) is vanishing
while at the same time being the sum of nonnegative terms, which implies that each
of its terms is zero:

Z
B�

jry��j
2G0ð��� 1Þ ¼

Z
�

D

ð��� 1ÞGð��� 1Þ ¼ 0:

Finally, ð��� 1ÞGð��� 1Þ ¼ 0 a.e. in D. If we assume that ��� 1 6¼ 0 in some subset
A�D with positive Lebesgue measure, then, for every y2A, Gð��ðyÞ � 1Þ ¼ 0, and
thus, taking into account (A2)–(A3), we find that ��<1 in A, a contradiction.
Finally: ��	 1 a.e. in D, which is the first part of the proposition. The same arguments
with �� and 
� replaced by ��� and G(���) respectively show that ��� 	 0 a.e. in D,
and the proof is complete. g
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