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Mikhail Menshikov? Dimitri Petritis! and Stanislav Volkov*?

13 March 2007

Abstract

In this paper we study a regular rooted coloured tree with random
labels assigned to its edges, where the distribution of the label assigned
to an edge depends on the colours of its endpoints. We obtain some
new results relevant to this model and also show how our model general-
izes many other probabilistic models, including random walk in random
environment on trees, recursive distributional equations, and multi-type
branching random walk on R.

Keywords and phrases. Random environment on trees, random walk in ran-
dom environment, branching random walks, first-passage percolation, recursive
distributional equations.

AMS 2000 subject classification. Primary 60G60, 60K35; secondary 60F05,
60J80, 60K37.

1 Introduction

Random walks in random environment have been studied for a long time (see
Solomon [[L(] for such a random walk on Z). One of the most natural extensions
of this model is to consider a random walk in random environment on a tree,
see e.g. Lyons and Pemantle [ﬂ] It turns out that the question of recurrence vs.
transience of the walk is equivalent to infiniteness vs. finiteness of certain sums
of random variables assigned to the edges of the tree. In [ﬂ] it is assumed that
all these random variables are i.i.d., which may be a fairly restrictive condition.
Indeed, in the classical setup, the probability of jump from a given vertex v
through a certain edge is set to be equal to the ratio between the value assigned
to this edge and the sum of the values assigned to all the edges adjacent to
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v. The assumption that these values are independent results in substantial
restrictions on the possible random jump distributions assigned to vertices, in
particular the symmetry of such a distribution.

Our initial motivation in writing this paper was to overcome this difficulty.
Additionally, we have managed to study the situations when the distribution
of value assigned to an edge depends on its direction and even on the direction
of the immediately preceding edge. This has resulted in establishing two phase
transitions in the model, which in turn is useful for a variety of applications -
not only random walks in random environment, as outlined in Section H

Formally, let b > 2, and consider a b-ary regular rooted tree T = T} with
root vy and vertex set V (that is a tree in which all vertices have degree b + 1,
with the exception of the root which has degree b). For any two vertices v,u € V
let d(u,v) denote the distance between these two vertices, that is the number
of edges on the shortest path connecting v and u. Let V,, denote the set of b™
vertices at graph-theoretical distance n from the root, and write |v| = d(v,vg) =
n when v € V,. If two vertices v and w are connected by an edge, we write
v ~ w and £(v) will denote the sequence of vertices of the unique self-avoiding
path connecting v to the root.

With the exception of the root, colour each vertex in one of b distinct colours,
from left to right, such that for every fixed vertex each of its children has a
different colour . For definiteness, colour the root in any of the b colours.
Denote the colour of a vertex v as c(v) € {1,2,...,b}.

We are given b? positive-valued random variables of known joint distribution,
which we denote f_ij, i,7 =1,2,...,b. Now to each unoriented edge (u,v) =
(v,u) assign a random variable &,,, such that

e for any edge (u, v), where u is the parent of vertex v, we have &,, 2 fc(u) e(v);

e for any collection of edges (u1,v1), (u2,v2), ..., (tm, vm) such that w; is
the parent of v; for all ¢ and w; # u; for all ¢ # j, the random variables
{&uiv; }1 are independent.

Here and throughout the paper X Y means that random variables X and Y
have the same distribution. Note that we allow dependence between sibling
edges.

For any v € V and any w € £(v) let {[w,v] equal the product of the random
variables assigned to the edges of the sub-path connecting w to v. By convention
set [v,v] = 1, and also denote £[v] = &[vg, v].

In this paper we will answer the following two questions.

Question 1. When is Y := }_ _y &[v] finite a.s.?

Question 2. Let a > 0. When is Z = Z(a) := card{v € V : £[v] > a} finite
a.s.?

The answers, of course, depend on the distribution of &j’s and they are



presented in Section E, with the proofs given in Section E, while Section E
contains some auxiliary statements.

The study of the sum Y was a very important ingredient in the analysis
carried out in [E] and it is essential for the investigation of random walks in
random environment on trees, edge-reinforced random walks on trees, and some
other problems. At the same time, the quantity Z is relevant to first-passage
percolation and branching random walks. Some other relevant models are also
mentioned in [E]

In our paper, we consider various applications as well, and they are presented
in Section f.

2 Main results

First we will introduce an alternative colouring procedure, which is equivalent
to the one described above in terms of the questions we ask, yet it has some
advantages. Suppose that the colouring of the tree is done in a different manner
than described above. Namely, it is done recursively for Vi, Vs, ... as follows.
Suppose that the vertices up to level n — 1 are already coloured. Next, colour
the vertices of V,, randomly in such a way that whenever two vertices v € V,,
and u € V, share a common parent, they must have different colours. The
distribution of the colouring is independent of the previous levels and is uniform,
that is, we assign each of the allowed (b!)bni1 colourings with equal probability.
This process can be extended to infinity, thus producing the colouring of all
vertices v € V.

Again, assign to each edge (u, v) a random variable (,,,, such that conditioned
on the colouring of the tree, ,, satisfy the two conditions on &,,’s mentioned
in the previous section, and similarly compute ([w,v]’s and ([v]’s. Then by
construction it is clear (e.g. by using coupling arguments) that for each n, the
distribution of the unordered set {C[v], v € V,,} is the same as the distribution
of {¢[v], v € V,,}. Therefore, the answers to the questions above will be the
same as in the original model. At the same time, the new model which uses
randomized colouring has a significant advantage, namely

for any two v,w € V,,, ¢[v] 2C[w], (2.1)

though ([v] and ([w] are of course dependent. Thus, from this moment on,
we will only work with the new, randomly coloured model. The probability
P and the expectation E below will be with respect to the measure generated
by a random colouring ¢ = {c(v), v € V} and a random environment { =
{Cow, v,w €V, v~w}.

For s € [0, 00) let



and let p(s) be the largest eigenvalue of m(s), which is positive by the Perron-
Frobenius Theorem, since all the elements of the matrix are strictly positive and
hence it is irreducible.

We will need the following regularity conditions. Let

D= {sER: ]ngj <oon',j€{1,2,...,b}}
and suppose that
0,1 < D,
0 € Int(D), (2.2)
Ellog&i;| < ooVi,je{l,2,...,b}, '
E|&;log&i| < ooVi,je{l,2,...,b}.

Now we are ready to present our main results.
Theorem 1 Let Y =3 o ([v] and Ay = infc(o1) p(s).

(a) If \y <1 then Y < 00 a.s.

(b) If \y > 1 and the conditions @) in the next section are fulfilled, then

Y =00 a.s.

Theorem 2 Let x > 0, Z(x) = card{v € V : ([v] > x} and X = inf ¢ o0y p(5).
Additionally suppose @) are fulfilled.

(a) If N <1 then Z(x) < 0o a.s.
(b) If A\ > 1, then Z(z) = o0 a.s.

Note that we do not attempt to analyze here the situation in the critical
case A = 1 ( Ay = 1 resp.) The reason is that unlike the one-dimensional
situation, the analysis becomes much more difficult here and we could not find
any reasonable and interesting conditions which would ensure infiniteness of

Z(z)orY.

3 Large deviations results

Let v € V,, and suppose that £(v) = {vg,v1,...,0n—1,v, = v}. Then the
random variables ¢(v;), ¢ = 1,2,...,n are i.i.d. random variables with uniform

distribution on the set {1,2,...,b}.

Lemma 1 Let S, = >.7 ;1og(Cv,_,v,) and

n 1/n
ba(s) = (E ()" = (E Hcsim> :

Suppose @) are fulfilled. Then



(a) k(s)=Ilimk,(s) € [0,00] exists for all s;
(b) A(s) =logp(s) —logb =logk(s) € (—oo, +0] is conver;

(c) the rate function A*(z) = sup,ep(sz — A(s)), z € R is convez, lower
semi-continuous and differentiable in INT(D). Moreover

. so(z)z — A(so(2))  if = > A'(0)
A (Z) = { OO 0 ZfZ < AI(O),

where so(z) is the solution of equation z — A'(s) = 0;

(d) for all a >0,

1 Sn

lim — logP (— > loga) = —A*(loga).
n—oo 1 n

Remark 1 The statement of the Lemma holds simultaneously for all possible

colourings of the root.

Proof.

First, for any s1,s2 € D, with s1 < so, the segment [s1, so] belongs to D,
hence for any a € (0,1), we have kJ (as1 + (1 —a)s2) = E(exp(asi Sn)) exp((1—
a)s2Sn)) < [E(exp(s1Sn))]*[E(exp(s2Sn))]1 ™ from where logarithmic con-
vexity of k,, follows.

Suppose c(vg) = a. Then ky(s) = 1 (egm(s)"e)l/n where

0
: 1
0 1
ea=1| 1 — a-th position, e=| . (3.3)
0 .
1
0

Now m(s) = p1(s)P1 + p2(s)P2 + ... where (p;) are the eigenvalues of m(s),
ordered so that p; > |pa2| > |p3| > ..., and P; denotes the projection on the i—th
eigenspace corresponding to the i—th eigenvalue p;. Notice that p = p; > 0, the
image space of P; is 1—dimensional and since m(s);; > 0 for all 4, j, we have

(Pre); >0 for all ¢ and |p2| < p1.

Hence k(s) = 3p(s) € (0,00] for all s and is log-convex, as limit of a log-convex
function is log-convex.

Finally (d) follows from Gértner-Ellis theorem (see, for instance, Lemma V.4
p. 53 in den Hollander [[f]), under conditions (2.9). [ |



Note that we can rewrite A* as

A*(z) = sup[sz —log(p(s)/b)]

s>0

o p(s)e**
-1 f
%20 b

Recall that

A = inf p(s),

s>0

N = inf >\
1 5611[%71]0(5)_

Corollary 1 For any A < \; and a € {1,...,b} there exists a y € (0,1] and a
positive integer n such that for any v,u € V such that u € £(v), ¢(u) = «, and
d(u,v) =n

Proof.
Lemma [l| yields that for any small € > 0 and all y > 0 there is an ng =
no(e, y) such that for every n > ng

RS0 2 Togy) = exp (-0 (og)} = exp {ninf low(p(s)5) — slog] |

(1 290) " — (o)

whence for any v, u € V such that u € £(v) and |[v| = |u| +n

—E&

P((lu,v] > y") > [eyb X igf(;p(s)yls]

Now since log p(s) is convex, it follows from the proof of the Lemma on p. 129
in Lyons and Pemantle [f] that

inf =5 — mj = ).
Jmax, ;gop(S)y Orgnslglp(éf) 1

Consequently, by choosing y € (0,1] at the point where this maximum is
achieved, and € > 0 very small, we ensure in fact that for all large n

P(Clu,v] > y") >

R (3.5)



4 Proofs of the main theorems

Proof of Theorem El
(a) Suppose that Ay < 1. Then we can fix an s € (0,1) such that p(s) < 1.
Suppose that the root has color o. Then

§ s _ § s s s
C [U] - VUL dVLV2 " " T DUy _1Un
veV, L(v)=(v0,...,Vp): V=0, EV,,

and hence by construction of the colouring of the tree, we have

E (Z Cs[v]> = Z mac(m)(S)mc(vl)c(vz)(S)"'mc(vnfﬂc(vn)(s)

veV, L(v)=(v0,...,Un): V=0, €V,
= elm"(s)e
where e, and e are defined in (B.3). Now, since p(s) < 1, Yoo m™(s) < oo,
therefore by Fubini’s theorem E (>, (*[v]) < oo and hence ), (*[v] is finite
a.s. This implies that ([v] > 1 for only finitely many v’s, and therefore there

exists an N such that whenever v ¢ V; U---UVy it follows ([v] < 1, hence
¢%[v] > ¢[v]. Consequently,

v -y (T 3 (Zw)

=1 \veV i=N+1 \veV;

N 00

Z(Zc >+ > (Zgw) <
=1 veVY; i=N+1 \veV;

where the last inequality follows from the fact that > (*[v] is finite a.s.
(b) Since A; > 1, by Corollary [, there are an ¢ > 0, 0 < y < 1 and an n
such that for any v, u € V satisfying u € ¢(v) and |v| = |u| +n

1+e
(by)™

P (Llu,v]) = =:q,

where
Llu,v] == {C[u,v] > y"}.
Let us construct an embedded branching process, with members of genera-

tion j denoted Mj, as follows. The root of the tree vy is the sole member of
generation 0, that is My = {vo}. For j > 1, let

M; ={ueVj,:Jwe M;j_; suchthat V_y), Nl(u)={w} (4.6)
and L{w, u] occurs} '

The process | M| can be minorised by an independent branching process with
uniformly bounded number of descendants whose average is equal to

p=b"xg=>01+¢e)y " >1,



which is a supercritical process surviving with a positive probability, say ps > 0;
moreover M
{ lim M > 0} = {the process survives} a.s.
Jj—oo u]
by Kesten-Stigum theorem, see e.g. [ﬂl], p. 192. This, in turn, implies that there
is a positive § > 0 such that with probability at least ps/2 > 0 for all j large
enough we have |M;| > du’. Consequently, since for each v € M; we have

Clv] > (y™),

Y= 3 Co) = 0 (y") = 0(1+€) — ooas j— oo
vEM;

with positive probability. Now, the set {Y = oo} is a tail event and the random
variables at different generations are independent, hence its probability satisfies
the 0 — 1 law and we obtain the required result. [ ]

Proof of Theorem B
(a) Recall that for any v € V,, the quantity p, = P(¢[v] > z) does not
depend on v, and observe that

EZ(z) = i b"pp.
n=1

Since A < 1, from (B.4) we have that for a small z < 0 and a very small £ > 0

—A*(2) < log ! ;26.

Set y = e* < 1 and apply Lemma EI (d) to obtain that for all large n

1—¢
b

1
—logP(¢[v] = y") <log
n
This yields
V"P(Cl] = ") < (1—€)",
and since x > 0 and y < 1 implies p, = P(¢[v] > x) < P(E[v] > y™) for large n,
we have EZ(x) < 00, and so Z(z) < oo a.s.

(b) Now since A > 1, from (B.4) we have that for a small z > 0 and a very
small € > 0,

1+2
—A"(z) > log —; =

As before, we set y = ¢ > 1, and apply Lemma m (d), to obtain that there is
an n, which we fix from now on, such that

1+4+¢

Clog P[] > y") 2 log 1S = BB 2N > (14 (@)



Next we construct a branching process, that is almost identical to the one
constructed in the proof of Theorem EI Again, provided that v € £(v) and
|v| — |u| = n, we introduce the event

L[u,v] = {C[uav] > yn}, (48)

whose probability is at least (14 ¢)"/b" according to ({7). Let the root of the
tree vp be the unique member of generation 0, that is My = {vp}. Similarly to
the previous proof, for j > 1 let M; be defined by (@) Then the process |M;]|
can again be minorised by a supercritical independent branching process, with
average number of descendants equal to p := (1 +¢)™ > 1, which survives with
a positive probability ps > 0. On the event Z;’il |M;| = oo of survival, for any
x > 0 there exists jo = jo(x) such that for all j > jo, we have v € M; implying
¢[v] > y™ > z. Consequently,

P(Z(x) = oo for all z > 0) > pg > 0.

Taking into account the fact that the event {Z(z) = oo for all z > 0} is a tail
event and variables at different generations are independent, we conclude that

for any x >0
P(Z(z) = 00) = 1.

5 Applications

Here we show how Theorems ﬂ and E can be applied to obtain some of the
already known facts as well as to establish new results in various applications of
probability theory. Throughout this section, we will assume that the regularity
conditions (R.9) are satisfied.

5.1 Random walk in random environment

Let u be a vertex of the coloured tree T. For every v ~ u define py, € (0,1)
such that > » = 1. For definiteness, denote the parent of u as u*, and
the children of u as u',u?,...,u® (also, when u is the root vy of the tree, set

u* = u). Now suppose that for each u

v v~ Pu

p(u) = (puu*7puulvpuu2 v 7puub) € (05 1)b+1

is a (b4 1)-dimensional random variable. Obviously, the set of the components
of p(u) is dependent, since they have to sum up to 1.

Suppose that the distribution of p(u) depends only on the colour ¢(u) of the
vertex u. Additionally suppose that the random variables {p(u),u € V} are
independent.



Now define a random walk X (k) in a random environment on the coloured
tree T by letting X (0) = vg and

Puv if u~ v,
PX(k+1) =v|X(k) =u) = { 0 otherwise,

where we set vg ~ v§ = vo. This model is similar to that of Lyons and Pemantle
[ﬂ]; however, we do not require as much independence or symmetry for the
distribution of the jumps to children, as required in [ﬂ] Additionally, we also
allow jump distributions to depend on the type of the vertex. On the other
hand, in M] more general trees have been considered, while we restrict ourselves
only to regular trees.

We want to establish when the walk in the random environment is transient

(resp., recurrent). For i =1,2,...,b let
57 = \D [ DPuul Puu? DPuub
5'136'23"'76'13 :( ) PR a)
( ’ ’ ‘ ) Puu*  Puu* Puu=

whenever c¢(u) = i. Also let m(s), p(s), and A\; be the same as defined in
Section E

Proposition 1 The random walk in random environment described above is
a.s. positive recurrent when A\y < 1, and a.s. transient when Ay > 1.

Proof.

We will use the standard electric network representation of the random walk
by replacing each edge of the colored tree T with a resistor, such that their
conductances satisfy the following formula:

Cuu* _ Puur
Cuui Puywi

where again u', ..., u are the children of vertex u and u* is its parent (see [{]).

These equations are satisfied when for any v € V,,, n > 1, with £(u) = {ug =
VO, UL, Uy -+« Up_1, Uy = U} We havel

n—1

C _ puiui+1
Un—1Un

i—g Puiui1

Now to each edge (u*, u) where u* is the parent of u, assign a random variable
with distribution fc(u*)c(u). Then Cy,, ,u, is equal to the product of the random
variables assigned to edges of the path connecting vy to u, = u. Theoremljl
implies that whenever \; < 1, Y = C := Zmy Cy,y < 00 a.s., and then there
exists a stationary probability measure 7 such that 7w, = C,/C where

Co= Y Chuy

Y YNz

1When u; = vg, we need to set Puju;_1 = Pogvg-

10



Therefore, the random walk is positive recurrent.

The reverse statement (about transience for A; > 1) follows from a slight
modification of the proof of part (i) of Theorem 1 of [}, effectively using the
estimate (@), since transience is equivalent to establishing finiteness of the
effective resistance Ref. |

Example. Consider a random walk in a random environment on a coloured
binary tree (b = 2). Suppose that from a vertex of type 1, the walk always goes
down with probability % and up with probabilities % to either of its children.
From a vertex of type 2, the walk goes up and right with probability i, down
with probability %nv and up and left with probability %(1 — 7)y), where 7, are
i.i.d. random variables distributed uniformly on [h, 1], h € (0,1). Then

27s 27s
w0y s (2)
n 3n
It is easy to verify that if p(s) is the largest eigenvalue of m(s), then Ay =
inf c(o,1) p(s) is smaller than 1 whenever h > he, = 0.417. .., and thus the walk

is positive recurrent for almost every environment when h > h,., and transient
for almost every environment when h < h;..

5.2 Recursive distributional equations

It turns out that our construction on randomly coloured trees may be used
to answer the question about the existence of solutions of certain functional
equations, described below.

Let = be the b x b matrix of random variables fij, 1,7 =1,2,...,b. We want
to find a b-dimensional random vector Y = (Y7,...,Y;)T, independent of =,
such that

b
1+3 6,V 2Y; for i=1,2,...,b (5.9)
j=1

which can be expressed in a vector form as
—, D
e+ZY =Y

where e has been defined by (B.9). Equation (5.9) is a special case of a more
general recursive distributional equation, which have been widely studied; for
example see [§] where one can find sufficient conditions for the existence of
its solution (Theorem 4.1). At the same time, for equation (f.) we obtain
essentially a criterion for this existence.

Note that it will be essential that the tree is coloured; otherwise we would
have been able to solve (.9) only in a one-dimensional case b = 1.

11



Proposition 2 Let Y be the quantity defined in Question 1 of Sectionﬂ. Then
equation @) has a solution if and only if Y < oo a.s.

Proof.

First, suppose Y < oo a.s. For each i = 1,...,blet Y; = > _y C[v] when
¢(vp) = 14, and suppose that different Y;’s are constructed using independent
random variables. By assumption, each Y; < co a.s. Now it is easy to see that
1+ 2?21 &;;Y; indeed has the distribution of Y; hence Y = (Yi,...,¥;)T is a
solution of (@)

Secondly, suppose Y = oo a.s., and suppose that there is a solution Y =
(Y1,Ya,...,Y,)T of equation (5.9). Construct a b—ary tree with c(vg) = 1
and assigned random variables £’s as described in the introduction. Also for
each n and each v € V,, let Q(v) be an independent random variable with the
distribution of Y., and denote

Y = S ¢l
Y = ST+ Y Q)

veEVoU---UVy 1 veV,
forn =1,2,.... Since Y is a solution to the problem, it follows by induction
on n that VEQL) must have the distribution of Y; and this is true for all n. Now
observe that Y§<n) < ?§<n). At the same time, lim,_. Y§<") =Y =00 as.
by assumption. Hence ?§<n) which equals to Y7 in distribution, is larger than
a random variable equal to oo a.s., which is impossible. [ |

Let A; be the same as defined in Section . Then Theorem [[ yields the
following

Corollary 2 If Ay < 1 then there is a solution to equation ) In contrast,
if A1 > 1 then equation @) has no solution.

5.3 First-passage percolation

Here we show how our techniques can extend the results of the first passage
percolation theory to the situation where one allows negative passage times.
For each edge (u,v) of the coloured tree T', where u is the parent of v, let 7,
denote the passage time from vertex u to vertex v. Allow these times to be
also negative, for example, indicating a “speed up” of a walker. Suppose for
simplicity that 7,,’s are all independent, while their distribution depends on
the colour of the endpoints, thus being one of the b possible types. Let

Rit)y={ueV: > 1<t}

(v,w)€Ll(u)

12



be the set of the vertices of the tree, reachable in time ¢. The primary question is
whether R(t) is finite, since it can be easily infinite due to the negative passage
times.

To answer this, for all v and v such that v ~ v and u is the parent of v set

Ec(u)c(v) 2 e=Tu. The following statement is straightforward.

Proposition 3 R(t) is finite a.s. if and only if the quantity Z(e™") defined in
Question 2 of Sectionﬁ is finite a.s.

5.4 Multi-type branching random walks on R!

The literature on the branching random walks is fairly extensive, and a similar
model to the one which follows was considered for example in [E], although
somewhat different questions were investigated in that paper.

Suppose that we are given b? positive-valued random variables n;;, i,j =
1,2,...,b with known joint distribution. Consider a process on R which starts
with a single particle of type i € {1,2,...,b} located at point X0 =0 eR.
The particle splits into b new particles, one of each type 1,2,...,b. If the
positions of the new particles of types 1,2, ..., b are denoted Xl(l), X2(1), ey X,El)

respectively, then the distribution of jumps X J(l) — X are independent for
different j’s and have the distribution of n;;. After this, each of the new particles
behaves in the same way as the original particle, so by time t € {1,2,...} we
will have exactly b particles X 1(t), e X b(,t ) located somewhere on R.

Set &; = exp(—nij), i,j = 1,...,b. Then the following statement is obvious.

Proposition 4 Suppose that Z(1), as defined in Question 2 of Section E, s
finite a.s. Then all the particles will be eventually on the positive semi-azis a.s.,
that is

P(HN: Vt>N  min Xi(t)zo) —1.
i€{1,2,...,bt}

In fact, we can strengthen this result. Let

; (t)
;= min X
H i=1,...bt °

be the minimum displacement of our multi-type branching random walk (see
e.g. [E] and references therein). As before, set &; = exp(—mn;j), 4,5 = 1,...,b
and let p(s) be the largest eigenvalue of

Ee=sm1 .. Ee M
m(s) = : . :
Ee=smr . Ee™ %M
For x € R let
(x) _ sz
A ;121%6 p(s), (5.10)
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and observe that A(*) is non-decreasing in 2. Note that if the joint distribution
of n;;’s is not degenerate, then p(s) is strictly log-convex in s and therefore there
exists a unique zg such that \(#0) = 1.

Proposition 5 Under the non-degeneracy condition above,

.M
lim — =29 a.s.,
t—oo

where xq is the unique solution of the equation \(#0) = 1.

Proof. For each x € R we can define a new multi-type branching random walk
()
naturally couple the new walk X ,gt’ ) with the original one by setting X ,gt’ ) =

with the step sizes equal to 7;;” = m;; — « for every ¢ and j. Then we can

X,gt) — tx. Observe that the largest eigenvalue p(z)(s) of the matrix m(x)(s) for

this modified walk, whose entries are (E e_s(’”f_””))i.7 1y
the value of A needed for Theorem [ is given by (f.10).
Suppose & < xo. Then A® < 1 whence by Theorem [| Z(1) < oo a.s. and

by Proposition E

equals e*¥p(s), hence

P(u; — tx > 0 for all sufficiently large t) = 1. (5.11)

To prove the complementary statement, we need to improve slightly the proof
of part (b) of Theorem E First, choose z > xg yielding A(*) > 1, and replace

the event ([.g) by

Llu,v] := {C[u,v] > y", and ([u,w] > v for all w € £(v) with |w| > |ul}.

One can choose the constants v > 0 and € > 0 so small, that still P(L[u,v]) >
(1+¢)™/b"™. Then we can construct sets M; defined by ([.6) with L[u,v] replaced
by Llu,v].

Let jo be so large that vy™® > 1 (recall that y > 1). On the event of
survival of the process |M;|, for each j we have M; # () and M;4; # 0, hence
there are a v € M; C V,,; and a v € Mj 1 C V,(;44) such that u € £(v) and

L{u,v] occurs. Consequently, for every ¢ > njy such that nj <t < n(j + 1)
there is a w € V; such that w € £(v), whence ([w] = ([u,w] [u] > vy™ > 1.
On the other hand ([w] > 1 implies u; — tz < 0. Therefore, we have proved
that the event

{pt — tz < 0 for all sufficiently large t} (5.12)

has positive probability, since the branching process minorising |M;| is super-
critical. However, the event () is a tail event, so it must have probability 1.
Together with (f.11]) this finishes the proof of Proposition [ |
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5.5 Number theory: 5z + 1 Collatz-type problem

Fix an odd positive integer ¢ and define the following map:

Ty x/2, if z is even,
¢ gr +1, if zis odd.

The famous and yet unresolved Collatz problem (see e.g. [B] for hundreds of
references on papers and short description of their content) states that if one
sequentially applies mapping T35 to any positive integer, then eventually it will
arrive to the cycle 1 — 4 — 2 — 1. On the other hand, a similar mapping T5 is
conjectured to “explode”, i.e., for most positive integers lim, Té")(z) =00
(Ya.G. Sinai, personal communications).

Another conjecture made in states that the density of those numbers x €
Z4 for which lim,, Tén)(ac) < oo has a “Hausdorff dimension” approximately
0.68, and this conjecture was made based on a construction of a probabilistic
“equivalent” of mapping T3, leading to a special case of the model studied for
answering Question 2. For more details, see [EI]
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