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Abstract—In this paper, a cylindrical electromagnetic bandgap
(CEBG) structure composed of infinite metallic wires is analyzed,
designed and used as a model to develop a new reconfigurable di-
rective antenna. This structure is circularly and radially periodic,
and it is excited at its center using an omnidirectional source. The
analysis is based on calculating the transmission and reflection
coefficients of a single cylindrical frequency selective surface (FSS)
and then, considering only the fundamental mode interaction,
deducing the frequency response of the CEBG structure composed
of multiple cylindrical FSSs. For this structure, new analytical
formulas are derived, and their accuracy is assessed compared to
those obtained by the finite-difference time-domain method. As in
rectangularly periodic structure case, the frequency response of
the CEBG structure exhibits pass-bands and bandgaps, and it is
possible to obtain directive beams by introducing defects in the pe-
riodic structure. Using this concept, a new antenna was developed
to obtain a controllable directive beam. An antenna prototype,
without control, was designed, fabricated, and tested. An excellent
agreement was obtained between theory and experiment for both
return loss and radiation patterns.

Index Terms—Cylindrical structures, directive antennas, elec-
tromagnetic bandgap (EBG) materials, periodic structures.

I. INTRODUCTION

RECENTLY, photonic bandgap (PBG) materials [1], [2]
have drawn significant attention in physics and engi-

neering due to their analogy to semiconductor crystals, where
electron bandgaps can be found. In microwave and antenna
domains, they are known as electromagnetic bandgap (EBG)
structures. EBG materials are periodic structures character-
ized by the forbidden propagation of electromagnetic waves
whose frequencies belong to frequency bandgaps, and also
characterized by the ability to open localized electromagnetic
modes inside the forbidden frequency bandgap by introducing
defects into the periodical structures. EBG structures, rectan-
gularly periodic, have been used in several applications, such
as suppressing surfaces waves [3], designing directive antennas
with a single feed [4], [5], and creating a controllable beam
[6], [7]. In this paper, a new concept of circularly and radially
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periodic structures, i.e., cylindrical EBG (CEBG) structures,
is investigated in order to demonstrate the advantage of their
circular symmetry, which can allow a reconfigurable directive
beam over 360 range.

It is known that the transmission and reflection characteris-
tics of periodic structures, composed of multiple layers of planar
frequency selective surfaces (FSSs), can be obtained using the
cascading scattering matrix method [8]. This method is inspired
from that of cascading networks in the circuit theory, and it re-
duces considerably computing time compared to the conven-
tional ones that calculate the overall scattering from the struc-
ture. The cascading approach is well suited to the design process
because it is possible to evaluate the effect of any changing in
one layer or in the period without repeating the entire computing
process. The same approach may be applied to CEBG struc-
tures by calculating the transmission and reflection character-
istics of a single cylindrical FSS. Cylindrical FSSs have been
studied by several investigators [9]–[12]. One of the principal
objectives was to calculate scattered fields of cylindrical sur-
face using Floquet harmonics. In [9], both internal line source
excitation and plane wave excitation were considered. In [10], a
numerical technique based on the Conjugate Gradient with Fast
Fourier Transform was used. In [11], [12], the cylindrical FSS
has been used as a waveguide, and the propagation constant has
been studied. However, from these contributions, the transmis-
sion and reflection coefficients of the cylindrical FSS have not
been calculated yet. The challenge in this structure is the ex-
isting of multiple reflections between the cylindrical FSS and
its center.

This paper presents the design of a new reconfigurable
directive antenna using a simple but efficient model based on
CEBG structures and a cascading approach. The problem of the
characterization of a single cylindrical FSS is resolved and the
multiple reflections of cylindrical waves between cylindrical
FSSs are developed for the first time. In this work, the periodic
structures are composed of infinite metallic wires and only
the fundamental mode interaction between cylindrical layers
is considered. The proposed approach is well suited for the
design process of the proposed antenna. An equivalent network
approach for circular cylindrical FSSs which considers mul-
tiple modes interactions can be found in [13], but it is more
time consuming that the present approach. Using the CEBG
structure model, an application for creating a controllable beam
over 360 range is proposed. The concept of controllable beam
with reconfigurable EBG structures has been proposed in [6],
[7], where the authors have proposed to commute between
continuous and discontinuous wire structures for reconfiguring
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Fig. 1. Characteristics of a cylindrical FSS: (a) reflection and transmission
coefficients for a cylindrical wave coming from inside to outside, (b) reflection
and transmission coefficients for a cylindrical wave coming from outside to
inside.

the radiation patterns of an antenna. Indeed, these two struc-
tures behave differently at low frequencies, by presenting a
pass-band and a stop-band for discontinuous and continuous
wires cases, respectively. To obtain the commutation, the
authors have placed periodically diodes in the broken wires.
When the diodes are switched on, the structure behaves as a
continuous wire medium, if the impedance of the diodes are
neglected, whereas when the diodes are switched off, the struc-
ture behaves as a discontinuous wire medium. We have recently
presented an analysis of the band structure of the discontinuous
wire medium for different wire diameters and lengths in [14].
In [6], [7], EBG structures with rectangular mesh have been
used. However, EBG structures with rectangular mesh present
a major drawback: they do not make possible to obtain a beam
turning on 360 with any angle of direction and any step.
Cylindrical EBG structures allow to overcome this drawback.

In the next section, new formulas to extract the transmission
and reflection coefficients of a single cylindrical FSS are out-
lined, completing our previous work [15]. Then, in Section III,
we develop an iterative formulation to handle multilayered
CEBG structures. The approach is validated using finite-differ-
ence time-domain (FDTD) method. As an application, a new
reconfigurable directive antenna, based on CEBG structures
with defects, is described in Section IV. Finally, in Section V,
an antenna prototype is designed, fabricated and tested. The
fabricated antenna does not have a control yet in order to test
first the directivity characteristic of CEBG structures with
defects. Both theoretical and experimental results are presented
and discussed, which demonstrate the accuracy and usefulness
of the present approach.

II. CHARACTERIZATION OF A SINGLE CYLINDRICAL FSS

In this section, the transmission and reflection coefficients of
a single cylindrical FSS are calculated. These coefficients can
not be directly obtained as in the planar case because of the mul-
tiple reflections between the cylindrical FSS and its center. It is
clear that, for a current line source or no object in the center,
the reflection coefficient at the center is equal to 1. Now, let us
consider the transmission and reflection coefficients of
the cylindrical FSS as shown in Fig. 1. Using the principle of
reciprocity, these coefficients are the same whatever the struc-
ture is illuminated by a cylindrical wave coming from inside or
from outside. To study these coefficients, we consider an inci-
dent cylindrical wave coming from the center as shown in Fig. 2.

Fig. 2. Cylindrical FSS illuminated by a cylindrical wave coming from the
center. Multiple reflections between the center and the surface lead to the
coefficients T and R.

Calculating the normalized fields at points outside and inside the
cylindrical cavity leads to the coefficients and as illustrated
in Fig. 2. In Section II-A, analytical relations between and

coefficients are developed, and in Section II-B, the coef-
ficients and are calculated for the particular case of a single
surface composed of metallic wires.

A. Extraction of the Reflection and Transmission Coefficients

Using the multiple reflections between the cylindrical FSS
and its center as shown in Fig. 2, the coefficient can be ex-
pressed as a function of and

(1)

where is the free space wave number, is the radius of the
cylinder and is the phase of the cylindrical wave

(2)

where and are the first and second kind Bessel
functions of zero order.

To obtain , an observation point at the distance
from the center is considered. Referring to Fig. 2, can be
expressed as a function of and

(3)

From (1) and (3), one can show that and can be expressed as

(4)

(5)
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Fig. 3. Periodic cylindrical structure made of infinite long metallic wires and
illuminated by a TM cylindrical wave coming from the center.

B. Calculation of the Scattered Field

In this section, we present a simple method to calculate and
coefficients for a single cylindrical FSS composed of infinite

long metallic wires as illustrated in Fig. 3. The parameters of
this structure are the diameter of the wires , the radius , and
the angular period . We also denote by the
transversal period and by the number of
wires.

The structure is illuminated by an infinite line source, with
a TM cylindrical wave. The transverse electric field is a
function of the frequency and the position from the center.
According to [16], this transverse field is equal to the incident
field plus the field scattered by the wires. Thus, can be
written as

(6)

where , is the Hankel function of
the second kind and of zero order, and is the scattered field
by the wire . are unknown coefficients
due to the interactions between the wires. Because of the sym-
metry of the structure, the coefficients are all identical, i.e.,

, and we can write

(7)

For a small wire diameter , the scattered fields can be
written in terms of the Hankel function as

(8)

is obtained by imposing on the wire surface, for

the case of wire : , where is the vector
defined by the center of the wire and a point on the surface
of this wire.

The equation must be satisfied at all points of
the surface of the wire . As a good approximation for

a small wire diameter, is neglected in the expressions of

and . Since does

not depend on the angle defined by the vector , then the point
can be included in the expression. Finally,

is obtained by the following relation:

(9)

The variable is defined as the radiated transverse electric field
outside the cavity normalized by the radiated field of the source
with the cylindrical surface not present, and is the transverse
electric field inside the cavity at the distance from
the center normalized by the radiated field of the source with the
cylindrical surface not present, then we can write

(10)

(11)

Here we can note that, after numerical studies, a minimum
distance of approximately , the transversal period, must be re-
spected between the observation point and the surface to avoid
non propagating waves. In this case, it can be seen that the
coefficient does not depend on the position of the obser-
vation point as long as it is far enough from the surface, i.e.,

.
To validate the accuracy of the above expressions, the structure

shown in Fig. 3 has been simulated using the FDTD method. The
source is an infinite line current source and the wires are mod-
eled using Holland et al. thin wire formalism [17]. The and
coefficients are obtained with the FDTD method by carrying out
two simulations: one with the structure and another without the
structure for the normalization. Numerical results based on this
current analysis and the FDTD simulations for are plotted
in Fig. 4. A good agreement is observed between the results ob-
tained by the current method and those computed by the FDTD
method. The reason of a strength of greater than one is that
the cavity modifies the matching of the line source, which is not
initially matched to free space, and then the power supplied out-
side the cavity, at resonance, is greater than the power supplied
by the line source alone. However, according to the energy con-
servation principle, the strengths of and are always smaller
than one, as it is shown in the next section.

C. Cylindrical FSS

The extraction of the reflection and transmission coefficients
for different cylindrical FSSs allows an interesting analysis pre-
sented in this section. For instance, we consider the following
case: , and . The transversal
period is . Fig. 5 shows and coeffi-
cients obtained with the proposed extraction method [using (4)
and (5)].

The characteristics and of a second structure with the
parameters , and were
computed. This structure has the same transversal period as the
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Fig. 4. Transmission coefficient jT j of a single cylindrical FSS (a = 1:5mm,
P = 30 , C = 45 mm).

Fig. 5. Coefficients jtj and jrj of a single cylindrical FSS (a = 1:5 mm,
P = 30 , C = 45 mm).

previous structure . Fig. 6 shows the co-
efficients and of this case. We can observe that the coeffi-
cients and are similar to the previous ones shown in Fig. 5,
and the phases of and (not shown here) are also similar to the
previous ones. This observation can be verified with other struc-
tures, and it can be conclude that when the transversal period is
constant, the structure has the same and coefficients. EBG
structures composed of planar FSSs use usually surfaces with
the same characteristics. Therefore, it is possible to apply the

Fig. 6. Coefficients jtj and jrj of a single cylindrical FSS (a = 1:5 mm,
P = 15 , C = 90 mm).

same design for CEBG structures using cylindrical FSSs with
the same transversal period.

III. MULTILAYERED CYLINDRICAL STRUCTURES

In this section, a new analytical iterative formulation is de-
veloped to handle cylindrical multilayered structures. A CEBG
structure composed of multiple layers of cylindrical FSSs of
metallic wires as shown in Fig. 7 is considered. The cylindrical
surfaces are periodically spaced with the period and have the
same transversal period , and accordingly the same transmis-
sion and reflection coefficients. The transversal period is kept
constant by modifying adequately the angular period of each
layer .

Using multiple reflections and considering single-mode in-
teractions between layers, one can show that the transmission
and reflection coefficients of the CEBG structure composed of

layers of cylindrical FSSs can be written as in (12) and (13),
shown at the bottom of page. The transmission and reflec-
tion coefficients of a multilayered structures composed of

layers of cylindrical FSSs are functions of the coefficients of
the structure composed of layers. To our knowledge, this
is the first time that analytical relations of the multiple reflec-
tions of cylindrical waves in radially periodic structures are pre-
sented. These relations are an extension to the cylindrical case
of formulas for multi-sections transmission lines [18]. Taking
into account the multiple reflections with the center, we obtain
the coefficient

(14)

(12)

(13)
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Fig. 7. CEBG structure composed of multiple layers of cylindrical FSSs.

Fig. 8. Coefficient jT j of a CEBG structure made of four layers (n = 4).

As an example, the coefficient of the structure shown in
Fig. 7, with the parameters ,
and is computed by the proposed approach and the
FDTD method. Fig. 8 shows a comparison between both results.
A good agreement is observed between the predicted results by
our approach and those obtained using the FDTD method. The
advantage of our proposed approach is that the computational
time is considerably reduced compared to the FDTD method,
which makes the design easier. From curves presented in Fig. 8,
one can note that there is a first bandgap, where the value of
is very low, and a passband, where the number of peaks is corre-
lated with the number of cylindrical layers. The positions of the
bandgap and the passband can be controlled by modifying the
geometric parameters of the structure: , , and . For the
application presented in the next section, the end of the bandgap
is positioned at 2 GHz.

Fig. 9. Geometry of the CEBG structure with defects (n = 4, C = P =
45 mm, P = 30 ).

Fig. 10. Simulated radiation patterns in the H-plane at 2 GHz for different
number of layers of the CEBG structure with defects consisting of removed
wires.

IV. APPLICATION TO RECONFIGURABLE DIRECTIVE ANTENNAS

The radiation pattern of CEBG structures, excited at their
center, is omnidirectional as long as . To modify
their radiation pattern, defects are introduced in the proposed
structures. To demonstrate this approach, we consider the CEBG
structure with defects, as illustrated in Fig. 9. In this example,
defects consist of removing multiple wires: 3 wires are removed
from the first layer, 5 from the second, 7 from the third, and so
on.

For this case, numerical simulations using the FDTD method
were carried out. Fig. 10 shows the radiation patterns in the
H-plane of the CEBG structures with defects, for different
number of layers, at 2 GHz (this frequency is located at the
end of the bandgap). From these curves, it can be seen that
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Fig. 11. Simulated radiation patterns in the H-plane at 2 GHz for different
number of layers of the CEBG structure with defects consisting of discontinuous
wires.

the directivity increases with the number of layers. The direc-
tivity is due to the electromagnetic wave modes opened by
the defects in their direction and the electromagnetic waves
forbidden in other directions caused by the existing bandgap.
If we replace the continuous wires by discontinuous ones with
diodes, where diodes are off for the removed wires and on
for the remaining wires, we can note that the CEBG structure
can allow an electronically sweeping of the antenna beam and
reconfiguration of its radiation pattern over 360 range. With
this features it is possible to design reconfigurable antennas.
These reconfigurable antennas have a potential application
in mobile communications, and they can be used at the base
station for reducing interferences and fading.

We consider now that the removed wires are replaced by dis-
continuous wires. The finite wires are 12 mm length and the
vertical distance between two wires is 3 mm. Fig. 11 shows the
radiation patterns in the H-plane of the CEBG structures with
defects consisting of discontinuous wires, for different number
of layers, at 2 GHz. From this figure, it can be seen that the struc-
tures with discontinuous wires present the same desired radia-
tion characteristic, i.e., a single directive beam, than those of the
structures with removed wires.

As an example, an antenna made of a CEBG structure with
defects (wires removed) is considered and studied in the next
section.

V. EXPERIMENTAL RESULTS

A CEBG antenna prototype has been simulated with the
FDTD method and fabricated to validate the proposed concept.
The geometry of the CEBG illustrated in Fig. 9 is used. Fig. 12
shows a side view of this antenna. It consists of a monopole, as
an excitation source, a ground plane, and a four-layer CEBG
structure made of metallic wires (see Fig. 9).

In the FDTD simulations, the ground plane is considered infi-
nite. The monopole has the same diameter as the parasitic wires,

Fig. 12. Side view of the CEBG antenna (dimensions in millimeters).

Fig. 13. Photograph of the fabricated CEBG antenna.

Fig. 14. Photograph of the fabricated CEBG antenna showing the connection
and the ground plane.

and its length has been optimized to obtain matched impedance
at 2 GHz. Figs. 13 and 14 show photographs of the fabricated
CEBG antenna. The simulated and measured return loss of the
antenna are shown in Fig. 15. A good agreement is obtained
between theoretical and measured results. From the measured
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Fig. 15. Measured and simulated return loss of the proposed CEBG antenna.

Fig. 16. Simulated and measured radiation patterns in the H-plane at 1.77 GHz
(simulated X-pol is lower than �30 dB).

curve, a bandwidth from 1.74 to 2.31 GHz (a
fractional bandwidth of 28%) is achieved, which is enough to
cover the DCS, PCS, and UMTS bands (1.77–2.17 GHz). This
CEBG antenna can find application for mobile communication
base stations.

A further study of the CEBG antenna has focused on its ra-
diation performance. The radiation patterns of the proposed an-
tenna were measured in an anechoic chamber located at INRS,
in Montreal. For comparison, numerical simulations for radi-
ation patterns were also carried out using the FDTD method.
The measured and simulated patterns are shown in Figs. 16–19.
With reference to these curves, a good agreement between pre-
dictions and measured data can be observed. The half-power
beam widths in the H-plane are 47.8 and 37.9 at 1.77 and
2.17 GHz, respectively. In the E-plane, the half-power beam
widths are 36.3 and 29.9 at 1.77 and 2.17 GHz, respectively.
The values of the maximum radiation in the cross polarization

Fig. 17. Simulated and measured radiation patterns in the E-plane at 1.77 GHz
(simulated and measured X-pol are lower than �30 dB).

Fig. 18. Simulated and measured radiation patterns in the H-plane at 2.17 GHz
(simulated X-pol is lower than �30 dB).

are 18 dB and 20.5 dB at 1.77 and 2.17 GHz, respectively.
Note that in the E-plane the beam is slightly tilted. The angles of
the tilt are 23.4 at 1.77 GHz and 19.8 at 2.17 GHz. To explain
the beam tilting, Fig. 20 presents the simulated radiation pat-
terns in the E-plane of the CEBG antenna and of the monopole
alone. From these curves, it can be seen that the beam tilting is
essentially due to the monopole. Future work will concentrate
on the examination of other sources that have a maximum ra-
diation in the horizontal (e.g., a dipole antenna). The measured
gains of the CEBG antenna are 12.2 and 15.8 dB at 1.77 and
2.17 GHz, respectively.

These measurements of CEBG antenna are unique and very
positives. With such features, these antennas are suitable for
wireless communication systems operating at 2 GHz, specially
at the base station, where more gain is needed.
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Fig. 19. Simulated and measured radiation patterns in the E-plane at 2.17 GHz
(simulated and measured X-pol are lower than �30 dB).

Fig. 20. Simulated Co-pol radiation patterns in the E-plane, at 2.17 GHz, of
the monopole alone and the CEBG antenna.

VI. CONCLUSION

This paper has presented the design of a new reconfigurable
directive antenna by incorporating Cylindrical EBG structures
composed of metallic wires. For this, a simple but efficient
analysis of these periodic structures has been proposed. First,
the transmission and reflection coefficients of a single cylin-
drical FSS have been extracted, and then, considering only
fundamental mode interaction between layers, iterative rela-
tionships to handle multilayered Cylindrical EBG structures
have been also developed and described. The obtained results
by the proposed method have been successfully compared with
that obtained using the FDTD method. Using the CEBG struc-
tures model, a prototype of a new directive antenna, without
control, was designed, built and tested. This antenna offers a
bandwidth of 28% and a gain between 12 and 16 dB, which

are enough for wireless applications, such as DCS, PCS, and
UMTS.

The proposed CEBG antenna has several advantages, such
as easy fabrication and a single feed, which can reduce com-
plexity compared to feeding networks used in conventional an-
tenna arrays. In addition, the gain can be increased by adding
other layers and different types of exciting source can be used.
Finally, due to the circular symmetry of the structure, it is pos-
sible to obtain a controllable radiation pattern over 360 range
by incorporating in the structure active components, such as
diodes.
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