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Abstract – The enhancement of directivity of a monopole located in a Fabry-Perot type 

cavity is studied. The analysis is based on the response of the cavity excited from its inside 

by electromagnetic waves. To validate the proposed antenna, an experimental prototype 

was designed, fabricated and measured.  
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1. Introduction 

Directive and low-cost antennas composed of a single feed present an attractive solution for 

several wireless communication systems, such as high-speed wireless LANs, satellite systems 

and point-to-point links. Their single-feed system allows to increase the gain with low 

complexity compared to feeding networks used in conventional antenna arrays. In this paper, a 

directive antenna composed of a monopole embedded inside a  Fabry-Perot cavity is proposed.  

Recently, several authors have developed techniques to obtain high directive antennas by 

embedding a dipole inside a Fabry-Perot cavity [1-3]. In [1], a relation between the half power 

beamwidth and the quality factor of the cavity (at the resonant frequency of the cavity) has been 

proposed and validated numerically, whereas in [2], it has been demonstrated that this directivity 

improvement has an analogy with past research in optical physics. In [3], a study on the input 

impedance of the antenna has been presented. In [4, 5], an antenna based on a Electromagnetic 

Band Gap (EBG) material with a defect has been proposed. The antenna consists of a Fabry-Perot 

cavity between a patch antenna and the EBG material.  

Another way for producing a high-gain antenna has been introduced in the 50's [6]. This 

technique uses a Partially Reflecting Surface (PRS) to introduce leaky waves and beamforming 

effects when placed in front of a grounded waveguide aperture. A ray theory has been proposed, 

showing that the directivity of the antenna increases when the reflectivity of the PRS increases. 

This kind of antenna has been revisited recently [7], where the PRS has been optimized to enlarge 

the antenna bandwidth.  

To our knowledge, the directivity at different frequencies of antennas based on a Fabry-Perot 

cavity has not been sufficiently studied. Indeed, the directivity (or the beamwidth) is often 

calculated at the resonant frequency of the cavity. However, as it is shown in this paper, the 

maximum of the directivity (or minimum of the beamwidth) is obtained at another frequency. In 

this contribution, a ray method is applied to predict the focusing characteristics of the proposed 

antenna. To demonstrate the proposed approach, an antenna prototype was build and measured, 

and the experimental results show a good agreement with the predicted ones. 

2. Analysis 

The analysis procedure for the proposed antenna is given in the following sections. In Section 

2.1, the structure is characterized using the frequency and angular responses of the Fabry-Perot 
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cavity to a plane wave excitation, which is in the center of the cavity. This frequency and angular 

function is called T. Usually, in the Fabry-Perot interferometer, the source is outside the Fabry-

Perot cavity [8], whereas here the source is placed inside the cavity, which necessitates new 

formulas for the characterization. Using the calculated function T, in Sections 2.2 and 2.3, the 

relationships of the bandwidths at the half-power and at an arbitrary power ratio are developed 

and presented. In Section 2.4, these relations are then used to calculate new results for the half 

power beamwidth of the radiation pattern of the Fabry-Perot-antenna, and the main results are 

finally applied in Section 2.5 for the antenna design. 

2.1. Characterization 

Figure 1(a) shows the geometry of the proposed structure. This structure consists of two metallic 

wire rows located on each side of a point source, where a TM-wave excitation is considered. The 

wires are spaced periodically with the period P , the distance between the two rows is  and the 

diameter of the wires is a. In order to characterize the structure in terms of frequency and 

radiation pattern, the rays going at the direction 

D

θ  are considered (Fig. 1(b)). The rows of wires 

act as partially reflecting surfaces to these rays, with the complex reflection and transmission 

coefficients r  and t . An infinite number of rays exit from the cavity at the direction θ . The 

amplitude of the direct transmitted ray ( t ), using an arbitrary reference of phase, is equal to t . 

The amplitude of the once-reflected ray ( t ) can be written as 

0
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Using the energy conservation relation 22 1 rt −=  [8] and after simplifications, the squared 

modulus of T can be written 

 
( )( )rkDrr
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where ϕ  is the phase of r r .  

In order to obtain simple analytical results, the reflection and transmission coefficients r and  

are considered constant (i.e. independent of the frequency and angle). This approximation is 

usually considered valid in the frequency band of interest [6, 7]. 

t

When the resonance condition ( ) rkD ϕ=θcos  is verified, 2T  achieves its maximum value 2
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For instance, we consider 824.0=r , radr   52.2=ϕ , and mmD 40= . In Fig. 2, T  is plotted 

versus frequency at  in the first abscise, and versus °=θ 0 ( )θcos  at the resonant frequency 

 in the second abscise. The bandwidth of GHzf   30 = T  versus frequency at its half squared 

maximum amplitude is defined as 1 , where  is the quality factor of the cavity [1]. Figure 3 

shows 

Q/ Q

T  versus angle at different frequencies. These radiation patterns exhibit directive beams 

at the normal directions (θ  and °= 0 °=θ 180 ) for frequencies lower than . For frequencies 

greater than , lobs appear on each side of the normal axis. 

0f

0f dB3θ∆  is defined as the half power 

beamwidth of the main lobs at the normal directions (see Fig. 3). In the next sections, the quality 

factor  is first written as function of the reflection coefficient Q r , and then, the interrelation 

between the half power beamwidth and the quality factor Q  is developed.  

2.2. Half power bandwidth 

To find the expression of 1  as a function of the reflection coefficient Q/ r , the following 

equation is resolved 
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where , and  and ( )θ=ψ coskD +ψ −ψ  are the values of ψ  corresponding to the half of the 

maximum of 2T . Then, resolving Eq. (6) gives 
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Q/1  can be expressed as 
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The approximate relation is obtained by considering r  close to 1, which is the condition to 

obtain high directivity [6, 7].  

2.3. Bandwidth for an arbitrary power ratio  x

The half power bandwidth 1  is obtained for Q/ 2/2

max
T . We can also define a bandwidth 1  

determined for 

xQ/

xT /2

max
. For this, we have to resolve the following equation : 
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which leads to the following expression of 1 : xQ/
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where 22

max
/ TTx = . The approximate relation is obtained by considering r  close to 1 and  is 

such that  

x

( ) 11)1( 2 <<−− rrx . Then, the approximate relation is valid for frequencies near the 

resonance.  

2.4. Half power beamwidth  

The bandwidth obtained for )2/(2

max
xT  is noted 1 . To resolve the interrelation between the 

angular beamwidth and the frequency bandwidth, a graphical method that is described in this 

xQ2/

 5



section is used. Two cases are considered: the case 0ff ≤ , and the case . Note that 

 is not defined at , because for these frequencies, the level of 

+≤≤ fff0

dB3θ∆ +> ff 2T  at normal is 

inferior to the half of 2

max
T . The link between the beamwidth dB3θ∆  and the bandwidths 1  

and  1  is shown in Fig. 4, for 

xQ/

xQ2/ 0ff ≤ . From this figure, the following relation can be 

obtained 
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With the approximation of a small beamwidth, the relation can be written : 
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Using Eq. (10), the beamwidth is then given by 

 x 123
−

θ∆  (13) 

Figure 5 shows the relationship between the beamwidth 3θ∆  and the bandwidths 1  and  

 when . From the curve presented in Fig. 5, the following equation can be 

obtained 
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Then, at , with the approximation of a small beamwidth, and using Eq. (10), the 

beamwidth can be expressed as 

+≤≤ ff

 123 ≈θ∆  (15) 

Now, the link between ∆  and 1  is obtained for all frequencies . Figure 6 exhibits 

the beamwidth versus frequency using Eqs. (13) and (15). From this figure, it can be seen that the 

minimum of  is obtained for 

Q/ +≤ ff

dB3θ∆ . By minimizing Eq. (13), one can see that the 

minimum of  is obtained for dB3θ∆ =x , and then it can be written 

 
QdB
2
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The frequency   corresponding to this value is obtained from min3dB
f θ∆
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For r  close to 1, the quality factor  is high and then  is close to . Q min3dB
f θ∆ 0f

2.5. Applications 

From the previous results, considering r  close to 1, the minimum of the beamwidth dB3θ∆  is 

obtained at a frequency , which is slightly smaller than the resonance . This frequency 

can be written as 

min3dB
f θ∆ 0f
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At , the beamwidth  is given by min3dB
f θ∆ dB3θ∆

 
QdB
2

min3 ≈θ∆  (20) 

At , using Eq. (15) with , the following relation is obtained 0f 1=x

 
QfdB
12

0,3 ≈θ∆  (21) 

The quality factor Q  is obtained from the following equation 

 
r

r
Q

rϕ

−
≈

1
21  (22) 

The knowledge of the reflection coefficient r  allows then to obtain important parameters of the 

radiation patterns of the proposed antenna. For this, numerical simulations using the Finite 

Difference Time Domain (FDTD) method were carried out to obtain the reflection coefficient r , 

of an infinite grid of metallic wires with the following characteristics:  and 

. In Fig. 7, 

mmP  20=

 mma 2= T  is plotted using Eq. (4) and the computed coefficient r , which is 

considered now dependent on the frequency. From this figure, the resonant frequency of the 
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structure is . The modulus and phase of  GHzf 30 = r  at  are  and 2 , 

respectively. These values are used to calculate 1  in Eq. (22). Then, it is possible to evaluate 

the frequency of maximum directivity and the beamwidth at this frequency and at the resonant 

frequency using Eqs.(19)-(21). 

0f

mm 

824.0 rad  52.

 GHz85.

Q/

2cm

GHz 

cm 

 GHz85.2

8.28  2.

° 8.

 GHz85.

° 6.43

 GHz

In the following section, results from Eqs.(19)-(21) are compared with experimental data. 

3. Experimental results 

To validate our approach, a prototype of the structure was fabricated and measured. A monopole 

is used as an excitation source. Figure 8 gives the photograph of the fabricated antenna. The 

wires are 50  length and  diameter, the number of wires in each row is 28 , the cavity is 

 width, the period is , the monopole is 15  length and  diameter.  

The dimensions of the ground plane are .  

 mm2

PmmD  40= mm 20=

61×

mm 2

 21

The radiation patterns of the proposed antenna were measured in an anechoic chamber located at 

INRS, in Montreal. As an example, the measured radiation patterns of the antenna in the H-plane 

and E-plane at  are plotted in Fig. 9, showing two directive beams at the normal 

directions. Figure 10 exhibits the measured directivity versus frequency. From this curve, the 

maximum of directivity (corresponding to the minimum of beamwidth) is obtained at 2 . 

From Eq. (19), it is obtained 846.2min3
≈θ∆ dB

f

° 

, which shows a good agreement with 

measured ones. The measured beamwidths are  and  at 2  and 3 , 

respectively. The results obtained from Eqs. (20) and (21) are 30  and , these show also 

a good agreement with the previous experimental data.  

°41

To conclude the experimental part, note that the matching of the antenna can be done at the 

frequency of maximum directivity using conventional techniques (e.g., stubs on the feeding line). 

4. Conclusion 

An analysis for enhancing the directivity of an antenna based on a Fabry-Perot cavity has been 

presented. The frequency of maximum directivity and the beamwidth at different frequencies 

have been predicted with new analytical expressions. An antenna prototype has been fabricated 

and tested, and a good agreement has been achieved between theoretical and experimental results 

showing the usefulness of the proposed approach.  
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Figure Captions: 

 

FIG. 1:  (a) Geometry of the antenna based on a Fabry-Perot cavity  

(b) Sum of the transmitted rays, outside the cavity, at the direction . θ

FIG. 2: T  versus frequency (at ), and versus °=θ 0 ( )θcos  (at ). 0f

FIG. 3: Normalized T  versus  (logarithm scale) at different frequencies. θ

FIG. 4: Relationship between ∆ , 1  and  1  at dB3θ xQ/ xQ2/ 0ff ≤ . 

FIG. 5: Relationship between ∆ , 1  and  1  at dB3θ Q/ xQ/ +≤≤ fff0 . 

FIG. 6: Beamwidth versus frequency. dB3θ∆

FIG. 7: T  at  (computed with Matlab, using °=θ 0 r , calculated with a FDTD method). 

FIG. 8: Photograph of the fabricated antenna. The monopole is fed via an SMA connector. 

FIG. 9: Measured radiation patterns at .  GHz85.2

FIG. 10:  Measured directivity in the H-plane versus frequency  
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FIG. 1 
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FIG.2 
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FIG.3 
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FIG. 4 
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FIG.5 
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FIG.6 
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FIG. 7 
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FIG.8 
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FIG.9 
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FIG.10 
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