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Abstract

We perform a multiscale analysis of the backscattering properties of a complex in-
terface between water and a layer of randomly arranged glass beads with diameter
D = 1 mm. An acoustical experiment is done to record the wavelet response of the
interface in a large frequency range from λ/D = 0.3 to λ/D = 15. The wavelet re-
sponse is a physical analog of the mathematical wavelet transform which possesses
nice properties to detect and characterize abrupt changes in signals. The experi-
mental wavelet response allows to identify five frequency domains corresponding to
different backscattering properties of the complex interface. This puts quantitative
limits to the validity domains of the models used to represent the interface and
which are flat elastic, flat visco-elastic, rough random half-space with multiple scat-
tering, and rough elastic from long to short wavelengths respectively. A physical
explanation based on Mie scattering theory is proposed to explain the origin of the
five frequency domains identified in the wavelet response.
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1 Introduction

The concept of interface plays a key role in many imaging methods using
backscattered waves, and most reflexion techniques (e.g. seismics) are based on
models where quasi-homogeneous domains are separated by sharp interfaces
where the physical properties of the medium change abruptly [e.g. Miller et
al., 1987]. These models are used to reproduce the data as a superimposition of
reflected echoes coming from interfaces whose number, position and strength
are to be determined. The determination of the position of the interfaces needs
an accurate large-scale velocity model whose inversion is recognized to be a
highly non-linear tomography problem [Tarantola, 1987; Jin et al., 1992]. This
stage of imaging is performed with a smooth model of the distribution of the
physical properties, also called the macro-model [Bunks et al., 1995; Billette
and Lambaré, 1998; Lambaré et al., 2004], which represents the large-scale
heterogeneities of the medium. The macro model is completed by an interface
skeleton representing the support of the abrupt impedance contrasts located
at the limits of the domains and producing the reflected echoes forming the
data. In most approaches, these abrupt impedance contrasts are represented
by step-like functions (i.e. the Heaviside distribution). The parameters (i.e.
compressional and shear velocities) of the macro-model are adjusted in order
to fit with the arrival times and the interface skeleton is used to fit with the
sign and the amplitude of the echoes forming the data [Thierry et al., 1999a;
1999b]. A more sophisticated macro model is eventually used to account for
the attenuating visco-elastic properties of the media and the dispersion of the
body waves [e.g. Ribodetti et al., 2000].

Many situations exist where the model described above is insufficient to cor-
rectly account for the reality. In particular, the concept of sharp and step-like
interfaces may be strongly inadequate to represent the transition between bod-
ies of heterogeneous material. Geophysical examples are volcanoes, the weath-
ered subsurface [Exon et al., 1998; Vanneste al., 2001], and the shallow layers of
sediments forming the seafloor [De Moustier et al., 1993; Augustin et al., 1996].
Ultrasonic imaging in both medical applications and non-destructive testing
(NdT) are also faced with pitfalls of the step-like interface concept at transi-
tions involving small-scale heterogeneous media like bones, fat and composite
material. A first way to tackle with these difficulties is to use rough-interface
models where the transition surface between homogeneous bodies with dif-
fering properties is given a rough topography [e.g. Voronovich, 1994] with
possibly a fractal geometry [Shepard et al., 1999; Gautier and Gibert, 2004].
However, the rough-interface concept does not generally consider the hetero-
geneous nature of the material on both sides of the transition, and further
sophistications of the interface model would be necessary to properly account
for the complex wave phenomena occurring in the vicinity of the interface.
A number of questions then arise: In which wavelength range is the step-like
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concept still valid to represent the transition between domains of highly het-
erogeneous material ? At which wavelengths does the step-like model cease to
be valid ? Which kind of more sophisticated models should be used instead ?

In the present study, we present and discuss experimental results designed to
provide both qualitative and quantitative data about the conceptual model-
ing of an interface corresponding to the transition between water and a dense
layer of randomly arranged glass beads. Both the experiments and the analy-
sis are based on the wavelet response method introduced in a previous paper
[Le Gonidec et al., 2002]. In this previous study, we show that the continuous
wavelet transform obtained by convolving a signal with a family of constant-
shape wavelets (see Holschneider [1995] for an introduction) may be physically
extended to the wavelet response where a family of wavelets are propagated
(i.e. NOT convolved) through the medium to be analyzed. We also show that
the wavelet response is equivalent to the wavelet transform of the reflectivity
function under the first Born approximation. Consequently, the interesting
properties of the wavelet transform concerning the characterization of abrupt
changes in signals [e.g. Mallat and Hwang, 1992; Herrmann, 1994; Alexan-
drescu et al., 1995, 1996] are retrieved in the wavelet response which may
be used to remotely analyse the multiscale structure of acoustical interfaces
[Walden and Hosken, 1986; Herrmann, 1996; Wapenaar, 1998, 1999; Marsan
and Bean, 1999].

This paper continues with a brief presentation of the continuous wavelet trans-
form and its extension to the wavelet response method. Then, the experimen-
tal setup is detailed and the experimental wavelet response of the surface of a
thick layer of glass bead is presented. In a next section, the wavelet response
is analyzed in the framework of the singularity characterization toolbox de-
veloped for the continuous wavelet transform [Mallat and Hwang, 1992]. In a
last section, we discuss the wave phenomena relevant in the different wave-
length bands identified in the wavelet response of the interface. Our physical
interpretation is based on the microscopic Mie scattering occurring in the
heterogeneous medium.

2 Analyzing method: the wavelet response

The wavelet response has been introduced in details by Le Gonidec et al.
[2003], and we only recall the main steps of its derivation from the classical
continuous wavelet transform which consists in convolving a signal with a fam-
ily of constant-shape analyzing wavelets [Alexandrescu et al., 1995; Holschnei-
der, 1995]. The wavelet family is obtained by dilating an analyzing wavelet
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where Da represents the dilation operator indexed by the dilation a > 0 which
is inversely proportional to the frequency. The wavelets obtained for a dilation
range amin ≤ a ≤ amax have the same shape and constitute a wavelet fam-
ily spanning a wide wavelength range well-adapted to study multiscale wave
phenomena [Le Gonidec et al., 2002, 2003]. The analyzing wavelet must be a
time-localized oscillating function with a band-pass spectrum and, at least, a
zero-order vanishing moment. For instance, the well-known Ricker source func-
tion [Jannaud et al., 1991; Hoshiba, 2000] frequently used in seismic modeling
is an acceptable analyzing wavelet g.

The wavelet transform is obtained by convolving the whole wavelet family
with the analyzed signal, s(t),

W [g, s] (b, a) ≡ (Dag ∗ s) (b) , (2)

where ∗ is the convolution operator and b is a translation parameter. The
main property needed in the present study is the covariance of the wavelet
transform which indicates that the wavelet transform of a dilated function is
the wavelet transform of the non-dilated function rescaled on both the a and
b axes:

W [g,Dβs] (b, a) =
1

β
W [g, s]

(

b

β
,
a

β

)

. (3)

When applied to an homogeneous function of degree α ∈ R such that,

s (βx) = βαs (x) , (4)

equation (3) simplifies into,

W [g, s] (βb, βa) = βαW [g, s] (b, a) , (5)

which indicates that the whole wavelet transform of a homogeneous function
can be obtained from the wavelet transform taken at a given dilation [Mallat
and Hwang, 1992]:

W [g, s] (b, a′) =

(

a′

a

)1+α

Da′/aW [g, s] (b, a) , (6)
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where the dilation operator is understood to act on the translation variable b
only. The geometrical sense of this equation is that the wavelet transform of
a homogeneous singularity has the appearance of a cone whose apex points
onto the singularity for a ↓ 0+ . Equation (6) indicates that the magnitude of
the wavelet transform is ∝ aα when sampled along the cone lines also called
the ridge functions (see Alexandrescu et al. [1995, 1996] and Le Gonidec et al.
[2003] for details). The Heaviside distribution H used to represent step-like
interfaces as discussed above is homogeneous of degree α = 0 [Bracewell, 1986],
and its wavelet transform has a constant amplitude along the ridge functions.

The wavelet response R [g, s] is obtained by propagating the wavelet family
through the velocity profile s along the raypath,

R [g, s] (b, a) ≡
(

Dag
⊗

s
)

(b) , (7)

where
⊗

represents the physical propagation inside the medium and b is
the two-way flight time. Practically, each line a = constant of R [g, s] is the
rescaled (i.e. multiplied by dilation a) time-signal of the backscattered waves
recorded after the launch of the corresponding member of the wavelet fam-
ily. Neglecting multiple scattering and assuming a constant density profile, Le
Gonidec et al. [2003] show that the wavelet response may be rewritten in a
form similar to the classical continuous wavelet transform (2):

R [g, s] (b, a) =

(

Dag ∗ d

dz
s [z (t)]

)

(b) . (8)

A comparison of equations (2) and (8) indicates that the wavelet response of
the velocity profile s is the wavelet transform of the first spatial derivative of s.
Consequently, both W and R give the same result when applied to s when the
wavelets used in W are the derivatives of those used in R. Several synthetic
and experimental examples may be found in Le Gonidec et al. [2003] where
similarities and differences between W and R are discussed in more details.

An ideal step-like interface is mathematically represented by sH (z) = s0 +
∆sH (z), where ∆s is the velocity jump at the interface. The synthetic wavelet
response of sH is shown in Figure 1(a) where the cone-like structure converg-
ing toward the interface is conspicuous. The step-like nature (i.e. α = 0) of
the transition may be verified by checking that the magnitude of the wavelet
response is constant along the cone lines as shown in Figure 1(b). The char-
acterization of the reflector structure may then simply be inferred from the
homogeneity degree α obtained from the ridge functions. This has been as-
sessed from an experimental point of view in an ideal case of planar interfaces
[Le Gonidec et al., 2003] and is now assessed from a more complex situation
of an interface represented by the upper part of a granular medium.

5



3 Wavelet response of a layer of glass beads

3.1 Experimental setup and reference wavelet response

The experimental setup is immersed in a large water tank and consists in
a rigid frame with a top plate holding the source and receiver transducers
mounted in the near normal incidence configuration (Figure 2). The transduc-
ers beams focus at a common point onto the surface of the target placed on a
bottom plate which may be horizontally translated.

The first stage of the experimental procedure is to calibrate the source-receiver
chain by constructing a reference wavelet response to be compared with the
wavelet response of the layer of glass beads. In the present study, the wavelet
response of a step-like interface at normal incidence is used as the reference
[Le Gonidec et al., 2003]. This response is constructed by searching the source
signals to be used such that the wavelet response recorded for a step-like
interface (represented by a flat block of glass) actually corresponds to the the-
oretical response shown in Figure 1. This is done with a non-linear inverse
technique based on simulated annealing and neural network (see Conil et al.
[2004] for technical details), and four pairs of transducers with central frequen-
cies fc = 250, 500, 750, and 1000 kHz are used to construct a wavelet family
with 30 members for central frequencies 200 kHz ≤ fc ≤ 1 MHz (Figure 3).

3.2 Wavelet response of granular media

In this paper, the target interface is the transition between water and the
surface of a layer of glass beads randomly filling a rolling box beneath the
transducers (Figure 2). The thickness of the granular medium is taken large
enough (20 cm) to avoid any reflection from the bottom of the box: this is
verified by sending the lowest-frequency wavelet and checking that no reflec-
tion from the box bottom occurs. The granular is made of monodisperse glass
beads immersed in a fluid matrix, i.e. the water of the talk. We determine the
bead concentration φ ' 0.63 by the volume of water needed to fill the dry
medium pores: the result agrees with the concentration found for close ran-
dom packing of glass beads [Page et al., 1995, 1996]. Highest concentration
of about 0.74 should be reached for arranged packings of spherical inclusions
[Neser et al., 1997]. The glass beads are mixed into the water in order to sup-
press air bubbles; the surface of the layer is slightly smoothed to produce a
flat reflector at the macroscopic scales and to avoid any ordered arrangement
of the spheres [Sheng, 1995].

For each individual wavelet, we stack 1000 individual reflected signals while

6



moving the box to define the average wavelet response of the interface. This
approach is performed on six quasi-monodisperse glass bead diameters, re-
spectively: D = 0.6 mm, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm. We merge
and rescale the six average wavelet responses so obtained to compute the
wavelet response for a unique glass bead diameter D = 1 mm : this equiva-
lent wavelet response is then composed by 57 wavelets spanning the frequency
range [100 kHz; 5 MHz] (Figure 4).

4 Analysis of the wavelet response

4.1 Cone-like structure

A first glance at Figure 4 reveals that the wavelet response of the granular
interface dramatically changes throughout the spanned frequency range. The
most conspicuous feature is a two-fold behavior of the wavelet response with
a clear cone-like structure in the low-frequency domain which suddenly disap-
pears to be replaced by a coda pattern in the high-frequency range. This first
analysis shows that the surface of the granular layer is identified as a localized
interface at wavelengths λ ≥ √

πD. The structure of the conical pattern is sim-
ilar to the one obtained for a step-like interface (Figure 3) and, in particular,
their numbers of extrema are the same. This last point confirms the step-like
nature of the interface since a change of regularity α would have modified the
extrema arrangement by changing their relative amplitude or even changing
their number (see Le Gonidec et al., [2003] for a detailed discussion of these
aspects).

The high-frequency range of the wavelet response has a totally different ap-
pearance and the absence of a conical pattern indicates that the surface of
the layer of glass beads can no more be represented as a localized interface as
for the low frequencies. In this domain, most of the reflected waves are part
of the coda component which duration indicates backscattered waves coming
from deep within the granular medium.

4.2 Coherent frequency bands

The analysis can be made more quantitative by examining the variation of
the magnitude of the wavelet response along the ridge functions. For this
purpose, we have plotted the first 5 ridge functions belonging to the cone
in the low-frequency domain. The corresponding ridge paths are numbered
and represented by black dots in Figure 4, and the ridge functions are shown
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in Figure 5(b) where the amplitude of the wavelet extrema are plotted as a
function of r = λ/D in a log− log diagram. The average ridge function is also
shown in the same Figure as a solid curve.

As can be observed in Figure 5(b), the ridge functions are clearly segmented
and five domains labeled from I to V can be recognized. The limits between
these domains roughly fall at λ/D = 2π, π, π/2 and 2/π. Excepted for domain
III where the ridge functions display a pronounced minimum, the remaining
four domains correspond to frequency bands where the ridge functions are
linear segments. Domain I corresponds to a linear and horizontal part of the
ridge functions. In domain II, the ridge functions are linear with a slope equals
to +1. Domain IV falls in the short-wavelength part of the wavelet response
where, again, the ridge functions are linear with a slope equals to +2 in the
log− log plot. Domain V corresponds to the short-wavelength end of the ridge
functions where the energy level is very low with a white-noise appearance. As
already noted, domain III covers a dilation range where the ridge functions
are not linear and where they appear more scattered with a low energy level.
It is interesting to note that this intermediate domain corresponds to the
disappearance of the main cone around λ/D ' √

π. The characteristics of
these five domains are now discussed in more details.

4.3 Long (relative) wavelength domains I and II

Both domains I and II cover the dilation range λ/D > π where the wavelet
response has a single conical appearance with 5 ridge functions as observed in
the reference wavelet response shown in Figure 3. Hence, from this point of
view, domains I and II cannot be distinguished, and only the break of slope
observed in the ridge function puts a limit at λ/D = 2π between these two
domains. In both domains, the temporal durations of the reflected wavelets
are identical to those of the incident wavelets. This indicates that the granular
medium does not modify the shape of the incident wavelets when λ/D > π.

In the log − log plot of Figure 5(b), the ridge functions in domain I (λ/D >
2π) are linear with a slope α = 0 as theoretically predicted for the wavelet
response of a flat elastic interface (Figure 1(b)). Hence, when the incident
wavelength is larger than twice the circumference of the glass beads, i.e. when
λ/D > 2π, the layer of monodisperse glass beads is equivalent to an elastic
homogeneous medium. The amplitude of the ridge function directly gives a
constant reflectivity R = 0.34 at normal incidence.

In domain II where 2π > λ/D > π, the ridge functions remains linear but with
a slope α = +1. In this domain, the surface of the granular medium may again
be considered as step-like since the conical appearance of the wavelet response
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is not modified. However, the λ dependance of the reflectivity R indicates
that the heterogeneous medium is not equivalent to an elastic homogeneous
medium but, instead, is equivalent to a visco-elastic homogeneous medium
with a normal reflectivity which linearly decreases from R = 0.34 to R = 0.15
as the wavelength shortens.

4.4 Medium (relative) wavelength domain III

Domain III covers the range π > λ/D > π/2 where the global cone-like
pattern of the wavelet response progressively disappears and splits into two
sub-conical structures at λ/D ' √

π (Figure 5(a)). The reflectivity in domain
III appears ill-defined because of some scattering in the data, however the
average ridge function possesses a deep minimum R = 0.025 at λ/D ' √

π.
The coherence of the wavelet response is destroyed when the wavelength of the
incident wave becomes smaller than the circumference of the beads, i.e. when
λ/D < π. The splitting of the wavelet response creates new ridge functions
whose number increases as the wavelength shortens. Meanwhile, as can be
observed in Figure 5(b), the amplitude of the ridge functions does not obey
a power law as observed in domains I and II. Domain III then corresponds
to a wavelength range where significant late arrivals appear and make the
duration of the back-scattered wavetrains longer than the duration of the
incident wavelets. Domain III is a transition region where the surface of the
granular medium may no more be considered as a step-like interface.

4.5 Short (relative) wavelength domains IV and V

Domains IV and V correspond to the shorter wavelengths used in the ex-
periment and such that λ/D < π/2. In these domains, the conical structure
of the wavelet response is totally blurred and most energy is carried by a
strong and well-developed coda (Figure 5(a)). Numerous ridge functions are
found in the wavelet response with an amplitude higher than the one of the
first five ridge functions (1 − 5) observed in all domains. This phenomenon is
due to intense multiple scattering of the incident wave with the small-scale
structure of the granular medium. The plot of the ridge functions displayed
in Figure 5(b) shows that the ridge functions are linear with different slopes
in two frequency ranges defining domains IV and V . Domain IV corresponds
to π/2 > λ/D > 2/π where the ridge functions has a slope α = +2 in the
log − log plot, i.e. with a strong λ dependance of the reflectivity R. Domain
V corresponds to λ/D < 2/π where the ridge functions appear scattered with
an average slope α = 0.
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5 Discussion of Wave Phenomena

5.1 Propagation-to-diffusion transition

The five wavelength domains recognized in the experimental wavelet response
(Figure 5) have very different reflectivity characteristics corresponding to dif-
ferent wave phenomena at work. A conspicuous feature is the rather sharp
transition which exists between the reflectivity domains. Indeed, the r de-
pendance of the reflectivity derived from the ridge functions (Figure 5(b))
reveals that, as r diminishes, the reflectivity departs more and more from
the r-independant one corresponding to a flat elastic interface as observed
in domain I. This indicates that, the shorter the wavelength the greater the
perturbations of the re-radiated wavefield by the granular medium.

A first quantitative assessment of the perturbations produced by the granular
medium can be derived from the ratio between the energy, Eb, of the ballistic
part of the wavelet response and the energy, Ec, of the late arrivals forming
the coda part (Figure 5(c)). The duration of the ballistic part is taken equal
to the theoretical duration of the incident wavelets, i.e. the duration of the
conical pattern of the reference wavelet response shown in Figure 3. From
this definition, we observe that the wavelet response in domains I and II is
almost totally restricted to the ballistic response, contrarily to what occurs
in domains III, IV and V where the coda part is more and more present
(Figures 4 and 5(a)).

The ballistic-to-coda energy ratio curve in Figure 5(c) clearly indicates that
domain III is an important transition where the relative energy of the coda
dramatically increases by more than one order of magnitude as r gets smaller.
In domains I and II, the ballistic energy Eb > 10Ec, and the scattering
phenomena are weak. Conversely, the coda energy Ec > 10Eb in domains
IV and V indicates that most of the wavelet response comes from multiple
scattering produced by the glass beads.

5.2 Small-scale Mie scattering

The multiple scattering effects observed at the macroscopic scales result from
wave phenomena occurring at microscopic length scales corresponding to the
diameter of the glass beads. We shall now discuss the five frequency bands
identified in the wavelet response in terms of wave scattering produced by a
single scatterer.

Assuming an incident plane wave traveling in the θ = π direction, the Mie
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scattering theory [Goodman and Stern, 1962] defines the scattering amplitude
|f(θ)|2 of the wave re-radiated by a spherical scatterer, where θ is the scat-
tering angle. The 2-D directivity patterns of a spherical scatterer have been
computed for the five frequency bands of interest using the physical proper-
ties of the glass: density = 2560 kg.m−3, compressional velocity = 5500 m.s−1

and shear velocity = 3400 m.s−1. The results are plotted in Figure 6(a). The
origin of the axis (black dot) corresponds to the center of the spherical scat-
terer. In particular, θ = 0 and θ = π correspond to the longitudinal back-
(i.e. leftward) and forward-scattering (i.e. rightward) directions respectively,
transverse scattering corresponds to θ = π/2.

The ratio between the back- and forward-scattering amplitudes is shown in
Figure 6(b). This ratio quantifies the amount of energy reflected by the glass
bead compared to the energy scattered in the incident direction. From this
curve, we observe that the low-frequency bands I and II correspond to a
dominant back-scattering regime where the back-scattered energy is about
one order of magnitude larger than the energy re-radiated in the forward
direction.

The total scattering cross section, normalized by the geometrical cross section
of a glass bead, characterizes the extinction coefficient of an isolated scatterer,

σt =
∫

|f(θ)|2d (θ) . (9)

In the frequency band I, the extinction coefficient follows a Rayleigh scattering
law ∝ λ−4 [Ishimaru, 1978] (Figure 7). This indicates a single scattering regime
inside the granular medium when λ/D > 2π.

The ratio between the transverse- and the longitudinal-scattering amplitudes
is shown in Figure 6(c): it indicates the amount of energy laterally scattered
by the glass bead compared to the energy scattered in the dominant (i.e.
backward or forward) longitudinal direction. Both the back-to-forward and
the transverse-to-longitudinal ratios reveal that the medium-frequency band
III corresponds to a dramatic decrease of the backscattering energy and to
a sharp increase of the transverse energy. The r = 2 value corresponds to an
equilibrium between back-scattering and forward-scattering. This value also
corresponds to the frequency where the energy in the transverse direction is
maximum (Figure 6(c)). The strong decrease of reflectivity observed in band
III of the wavelet response may thus be explained by the fact that a significant
amount of the energy of the incident wave is re-radiated perpendicularly to
the incident direction.

The high-frequency bands IV and V correspond to a dominant forward-
scattering regime where a large part of the scattered wave is directed deeper
in the layer of beads. In this situation, the scattered waves follow long tor-
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tuous paths in the heterogeneous medium and multiple scattering dominates.
The waves eventually re-emerge from the bead layer in the back-scattering
direction and contribute to the formation of the strong coda observed in the
wavelet response (Figures 5(a) and 4).

The scattering phenomena occurring at the scale of a single glass bead are in
a total agreement with the frequency bands observed in wavelet response of
the whole layer of glass beads. This confirms that the macroscopic response of
the heterogeneous medium is controlled by cooperative scattering occurring at
microscopic scales. It is interesting to note that the longitudinal cross-section
ratio is similar to the ridge function of the granular medium (Figure 5(b) com-
pared to Figure 6(b)): the global acoustic response of monodisperse spherical
inclusions can be interpreted from an isolated inclusion. The experiment limit
r = π/2 corresponds to a resonance inside the glass beads, as predicted by the
Mie theory.

6 Conclusion

The wavelet-response method [Le Gonidec et al., 2002, 2003; Conil et al., 2004]
used in the present study allows to obtain a coherent acoustical response of
a target in a large frequency range. This range may be further increased by
rescaling and merging the individual responses of several layers of glass beads
with different diameters. The resulting wavelet response then spans a 5-octaves
frequency range, and the dimensionless parameter r = λ/D varies from r = 0.3
to r = 15 (Figures 4 and 5).

Five r−ranges are identified in the wavelet response with limits at (roughly)
r = 2π, r = π, r = π/2 and r = 2/π. The wavelet response presents a
coherent structure with flat ridge functions when r > 2π. It is only in this
range I that the granular medium is equivalent to a static effective medium
with frequency-independent physical properties. In range II, 2π > r > π,
the wavelet response still presents a simple coherent structure but with a
frequency-dependent amplitude which corresponds to an increasing departure
from the Rayleigh scattering almost satisfied in range I (Figure 7).

In the higher frequency domain, three r−ranges, III, IV and V , are identified
where multiple scattering phenomena play the dominant role. The main char-
acteristic of band III is a pronounced decrease of the energy of the backscat-
tered wavefield, and we show that this corresponds to a dominant lateral Mie
scattering at the scale of a single glass bead (Figure 6(b)). Band IV corre-
sponds to the domain where a strong coda wave exists in the wavelet response
and to a dominant forward-scattering at the scale of a single scatterer.
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The experiments discussed in the present paper show that an heterogeneous
medium made of a random packing of scatterers has a macroscopic acoustical
response which strongly depends on the incident wavelength. Whatever com-
plicated, we show that this response may be decomposed into five sub-domains,
each with a dominant Mie scattering regime at the scale of a single scatterer.
From the wavelet response experiments on granular media, we are able to de-
fine the wavelength range where the interface can be assimilated to a step-like
discontinuity or to a highly heterogeneous material. At low frequencies, when
λ/D > π, granular media can be replaced by equivalent homogeneous media:
most of deep structure imaging from seismics are based on this assumption. At
high frequencies, when λ/D < π/2, the granular medium is a complex medium
where multiple scattering exists: multi-physics modeling is then necessary to
perform seismic imaging of complex interfaces such as subsurface imaging and
seafloor characterization which involve high frequency source signals.
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Fig. 1. a: (up) Wavelet response of a homogeneous velocity profile for a Heaviside
discontinuity (down). The black dots follow the ridge functions corresponding to
high signal-to-noise ratios. b: the ridge functions, numbered 1 and 2 respectively,
are straight lines in a log − log diagram. The slopes equal the homogeneity degree
α of the velocity profile, i.e. 0 in the present case of a Heaviside discontinuity.
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Fig. 2. The experimental setup is composed of a frame whose top holds two piezo-
electric transducers. The box containing the glass beads is placed at the bottom of
the frame and can be horizontally translated while stacking the reflections from the
layer of glass beads in order to record the average reflected field.
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Fig. 3. a : The analytical wavelet used for the experiments is the fourth derivative
of a Gaussian : d4(e−t2)/dt4 . b : Modulus of the experimental reference wavelet re-
sponse obtained by propagating the source signals through water. The time-dilation
a = f−1

c where fc is the main frequency of the wavelets which are dilated versions
of the fourth derivative of a Gaussian. This reference wavelet response corresponds
to the reflection onto a flat interface with a Heaviside-like discontinuity.
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Fig. 4. Modulus of the composite experimental wavelet response rescaled for glass
beads with D = 1 mm (see text for details). The black dots represent the lines of
maxima associated with the ridge functions numbered in Figure 5(b).
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Fig. 5. a: Modulus of the composite experimental wavelet response (see text and
Figure 4 for details) represented in a log-linear diagram. The black dots represent
the temporal duration of each wavelet: below and above this line are the ballistic
and coda components of the reflected wavelets, respectively. b: Experimental ridge
functions (symbols) plotted in a log − log diagram and corresponding to the four
labeled lines of maxima extracted from the experimental wavelet response. Also
shown is the average ridge function (solid line), mostly linear in 4 frequency bands
represented by straight segments with slopes equal to 0, +1, +2, and 0 from right
to left respectively. c: Ratio between the energy of the ballistic component and the
energy of the coda extracted from the experimental wavelet response (see Figure
5(a)). In the bands I and II, the propagation regime dominates. The band III
corresponds to the transition between the propagation to the diffusion regime (bands
IV and V ) of the waves reflected by the glass beads.
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Fig. 6. a: Directivity pattern of a plane wave, coming from the right and incident on
a spherical inclusion: the ration between the incident wavelength λ and the scatterer
diameter D is given in terms of the study parameter r = λ/D. The directions of
the backscattering and forward scattering are the rightward and leftward, respec-
tively. The dashed lines represent the experimental frequency limits defining the
frequency ranges noted I, II, III, IV and V . b: Back-to-forward ratio of scatter-
ing amplitude defined as |f(0)|2 / |f(π)|2. The bands I and II and the bands IV
and V correspond to dominant back scattering and to dominant forward scatter-
ing, respectively. c: Transverse-to-longitudinal ratio of scattering amplitude defined

as |f(π/2)|2 /max
[

|f(π)|2 , |f(0)|2
]

. The band III corresponds to the frequency

domain where transverse scattering is dominant.
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Fig. 7. Extinction coefficient (solid line), i.e. total scattering cross-section divided
by the geometrical cross section πd2/4. Also shown are the five frequency bands
identified in the data (see Figure 5). In band I, the scattering cross-section closely
follows the Rayleigh scattering power law (∝ λ−4) (dashed line).
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