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ABSTRACT

In the domain of multi-bandsimage processing, two differ-

ent approachescan be considered: the scalar oneand thevec-

torial one. This paper presents a method that belongs to the
first approach. The method is achieved in three steps. The
first step temptsto eliminate redundant observationsby mak-

ing a selection of relevant bands. In the second step, each

of the selected bandsis segmented using atechnique of his-

togram multi-thresholding. Inthelast step, afusion by acom-
bination of the results of the selected bands allows to ob-

tain the final segmentation. Thisschemeisillustrated in the

frame of an application in high-resolution multispectral im-

agery acquired by the Compact Airborne Spectrographiclm-

ager (CASI).

1. INTRODUCTION

In order to collect a maximum of information from a scene,
the images currently used are generally of multi-bands na-
ture. The segmentation of these imagesis an important re-
search theme that finds many applications in color, multi-
spectral, or multi-temporal imagery [1] [3] [4] [5] [7] [8] [10]
[11] [12]. Two different schemes can be envisaged to solve
thisproblem: (¢) Thescalar processing scheme, that consists
in processing each band separately and then in proceeding
to afusion step of the results. (4i) The vectorial processing
scheme, that considers each pixel asavector and consistsin
applying asingle processing taking explicitly account of the
multidimensional nature of data.

In this paper we present, in a framework of airborne mul-
tispectral imagery, an example of practice utilization of the
scalar segmentation approach. Thisalternative to the vecto-
rial approach appearswell adapted to the examined problem.

2. DEVELOPED METHOD

The principle of the proposed method consists in process-
ing separately the relevant bands of the multispectral image,
and then in proceeding to afusion of the results obtained on

these bands. Informations contained in these images are of -
ten complementary but present sometimes important redun-
dancies. The first step of processing consists in making a
selection of relevant bands. Each of the spectral bands is
first characterized by a global histogram built from signifi-
cant peaksof local histograms. An aggregation by using the
global histogramsallowsthento form aset of classesof sim-
ilar bands by maximizing an entropy criterion. The repre-
sentative band of each classis that minimizing adissimilar-
ity measure with the center of the class. Each of the selected
bands is then segmented by using a technique of histogram
multi-thresholding. Thisoneisachieved by aniterativegray
levels aggregation operating on the global histogram of the
band. At last, afusion that combines the multi-thresholding
results of the selected bands allows to obtain the final seg-

mentation.
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Fig. 1. The segmentation approach synopsis.
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We present inwhat followsthesethree stepsaswell as exper-
imental results obtained in the framework of an application
concerning the detection and the classification of seaweed
deposit zones by aerial multispectral image analysis.

2.1. Relevant bands selection

In multi or hyperspectral data, neighboring bandsfrequently
appear similar and convey often same information. The in-
terband correlation is dueto the spectral proximity. Ananal-
ysis of the multi-bands images is then necessary to reduce
these redundancies. One method to realize this is through
principal component analysis. This technique is interesting
but poses certain problems when the correlation matrix of



the spectral bands is ill-conditioned. The accumulation of
errorsinthe calculation of thisone can be considerabl e, what
renders the precise estimation of its eigenvalues and eigen-
vectors delicate. Moreover, if the size and the number of
spectral bandsincrease, thedimension of the matrix increases
equally and the computational cost becomes important. In
this paper, we propose a different approach in which therel-
evant band choice is made among that existent. This selec-
tionisrealizedin two phases. Each of the bandsisfirst char-
acterized by aglobal histogram. Similar bands aggregations
followed by aselection of the representative band of each of
the formed classes are then undertaken.

2.1.1. Construction of the global histogram

This first phase leans on a transformation of the local his-
tograms and on simple decision criteria to determine local
significant peaks that will serve for the construction of the
global histogram.

Transformation of the local histograms:

The procedure of transformation is necessary because most
multi-modal local histogramshave modeswith badly defined
limits. The calculation of the maxima is then delicate. To
put in obviousness the principal modes of each histogram,
we usefour criteriabased on the measure of gray level cooc-
curences and on a function of Sensitivity of the Eye to the
Contrast (SEC) [9]. Theintroduction of thisfunction allows
to take into account the visibility of a point as compared to
its neighbors. It favors the aggregation of points with visu-
ally close illuminations. In function of the number of veri-
fied criteria, the gray level occurrence frequenciesare more
or less pondered.

Sgnificant peaks detection:

Significant peaks of the histograms resulting from the previ-
ous transformations have to verify three criteria: (i) A gray
level is apeak of the histogram if it presents a maximal lo-
cal occurrence frequency. (i) The distance separating two
significant peaks has to be superior to a threshold s4; oth-
erwise we retain as significant peak that whose occurrence
frequency is the greatest. (ii¢) The height of a peak hasto
be superior to afraction s; of the maximum of the histogram.
Thisallowsto eliminate peaks of relatively weak occurrence
frequencies. The values of the thresholds s, and s; are cal-
culated in an automatic manner and represent the average of
distancesof successivepeaks couples, and the average of ap-
pearance frequencies of peaks.

The occurrence frequencies of the valid peaks are drawn in
aglobal histogram. This one, noted # 4,5, presents a well-
pronounced multi-modal form. This phaseisrealized by us-
ing several sizes of windows (16x16, 32x32, 64x64) so as
to take into account the spatial resolution of theimage. The

occurrencefrequencies of the peaks determined by applying
the different sizes are drawn in the same global histogram.

2.1.2. Aggregation and selection of representative bands

Theaim of this phaseisto select relevant bands that will be
segmented inthe following step. First, an aggregation of the
bands by an analysisof the global histogramsallowsto form
classes of similar bands. Then, the representative band of
each classis selected by seeking that minimizing a dissimi-
larity measure with the center of the class.

Aggregation of bands:

At the begining, each band isassociated with adifferent class.
At each step, the two closest classes, in the sense of amea-
sure of dissimilarity, are regrouped. A band B, character-
ized by its global histogram H, = (u1,us, ..., un) isthen
regrouped with an other band B,, modeled by the global his-
togram H, = (v1,va, ..., vy) if they minimize the normal-
ized dissimilarity measure defined by:
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Thedissimilarity measure between two formed classesof sev-
era bands (inter classesdissimilarity) isequal tothe average
of the dissimilarities between the bands of the two classes.
In practice, thedetermination of the number of classesto form
and the threshol dson the dissimilarity measureis sometimes
very delicate. In order to make the aggregation process un-
supervised, we propose the utilization of a measure of en-
tropy typethat allowsto evaluate the homogeneity of the set
of the obtained classes after each aggregation. The retained
bands grouping is that of the set which maximizes this en-
tropy.

In information theory, the entropy associated with a set of
possibleeventsis £ = — . p; In p;, where p; isthe proba-
bility of occurrence of the event i. Maximizing the entropy
returnsto distribute arare quantity between several sets,ina
manner the most uniform possible. In our case, that istrans-
lated by the fact to form classes having a common criterion
the most equitable possible. This criterion can be based on
the probability that an unknown band is classified in one of
theformed groupsby theaggregationalgorithm[6]. Wethere-
fore seek to make some groups whose the aggregation prob-
ability isthe same. Several hypothesesto evaluate this prob-
ability are possible.

In the case where the bands are to be distributed in an uni-
form manner in the “space of bands’, the probability p; to
anew band to belong to one of the classes can therefore be
proportiona to the size of this class. This size can be esti-
mated by the average dissimilarity between the bands of this
class (intra class dissimilarity).

The hypothesis of uniformity is not general, a modification

dr(Hu, Hy) =1 oy



of probabilitiesis necessary to takeinto account the fact that
some very close bands can provideaclassasinterestingasa
weaker number of bands distributed in a distant area of the
space. That istranslated by making p; not only proportional
to the size of the class, but also to the number of bands that
compose it. To obtain probabilities, a factor of normaliza-
tionisadded. That, at last, gives:

n;ds;
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where n; isthe number of bands of theclassi, d;; istheintra

classdissimilarity, d;; istheinter classes dissimilarity and n
is the number of the obtained classes.

pi = ()

Representative bands selection:

Each of the previously formed classesis characterized by its
mean histogram #,. The representative band of the class
is that one having the closest global histogram to 4, in the
sense of the employed dissimilarity measure.

2.2. Scalar segmentation

The selected bands are segmented using an histogram multi-
thresholding technique[9]. The multi-thresholding operates
on the global histogram H ., of the band. It isrealized by
an iterative procedure allowing to aggregate the masses of
H 4105 into significant punctual masses characterizing the re-
gions that compose the band. The aim is to detect the most
significant thresholds s, by displacing iterativly the masses
to their gravity centers until the convergence of histograms.
This procedure is described hereafter.

Let HO (i) = Hyop(i), 4 € [imin, imas), betheinitial his-
togram to process, and H *), be that one obtained at the it-
eration k. The Frequencies of occurrence of the gray levels
at theiteration £ + 1 are determined according to following
relation:

G = 3 TW ()36 - uels) )

whered (.)representsthe symbol of Kronecker and . (s) des-
ignates the average at the iteration & defined by:

Peev, sH® (5)
e, HE)(s)

Vi isthe set of the 2m + 1 gray levels neighborsof ¢ :

pr(s) = (4)

Vi = {max((¢: — m), imin)...min((i + m), émaz) }

The relation (3) translates the displacement of a part of the
masses of H(*) (i) to their local centers of gravity. To make
the procedure automatic, we vary gradually m until succes-
sive sizes provide the same results. The obtained final his-
togram is constituted by punctual masses. To each mass cor-
responds a class and the position of each mass indicatesthe

gray level that will be assigned as label to each class. The
values of thresholds s, are given by the barycenters of the
gray levelsdetermined by the position of these masses. They
allow to define the intervals of illumination of the classes
and to associate alabel to each point of the band.

2.3. Fusion of multi-thresholding results

This step consists in combining resultsissued from the pre-
viously segmented bands so as to produce a representation
better than those of the results taken separately. 1t does not
exist a standard method allowing to realize this operation.
Various techniques can be employed, going from usual sta-
tistical algorithms, as bayesian methods, until ad hoc means,
asthevote, passing by morerecent techniquesbased on neu-
ral networks systems or on the fuzzy set theory [2]. In our
case, we have used a vectorial classification. The result of
the fusion is then obtained by the aggregation of the com-
binations of 1abels of the multi-threshol ded bandsfollowing
an unsupervised k-means approach.

3. EXPERIMENTAL RESULTS

In the framework of studies undertaken by the Remote sens-
ing Group in Brittany (GSTB) in France, we have been inter-
ested inthe problem of location and classification of zonesof
seaweed deposits by the analysis of multispectral imagesin
order to evaluate the seaweed covering by surface unit. The
tested image was collected by the CA S| sensor on July 1998,
and has a 2 metre resolution. It is composed of ten spec-
tral bands (1024x512) corresponding to ten different wave
lengths going from the visible to the near-infrared. For this
image, we have at our disposal aground truth map gevin es-
timations of true rate of seaweed covering in some represen-
tative sites. This has allowed to measure the vaidity of the
proposed approach.

Threeclasses of similar bandswere obtained by the aggrega-
tion process. Theimagesin figure2(a) represent the sel ected
bands. We can notice the clear difference and thus the com-
plementary of the selected bands. The multi-thresholding
results of thesethree bandsare represented inthefigure 2(b).
In examining these results, we can state that, in the sense of
thegray level, thedifferent regions, which composethe orig-
inal bands, arewell detected. Their boundariesalign closely
with the visible transitions and the details are not lost. The
final classification results obtained following the devel oped
method (figure 3(b)) are coherent as compared to those of the
ground truth. These results have proven closer to the ground
truth that those obtained following a vectoria approach of k-
means applied on the original bands (figure 3(c)). This one
emphasizes some remarkable fluctuations due to the incon-
cideration of spatial relationships between pixels.



Fig. 2. (a) The selected bands. (b) The multi-thresholding
results (in false colors) of the selected bands.

4. CONCLUSION

The suggested method allows a segmentation of multispec-
tral images through a scalar approach. It proceeds in three
steps. The first tempts to eliminate redundant observations
by maximizing an entropy criterion. Scalar segmentations
viaan automatic multi-threshol ding technique areapplied on
relevant bands, in the second step. Finally, a fusion of the
multi-thresholding resultsis achieved in the last step to pro-
vide the final segmentation.

Thedevel oped approachisquasi automatic and operateswith-
out intervention of high-level knowledge. The efficiency of
this approach expresses itself in the majority of examined
cases, through a coherent detection of the representative el-
ements of the images.
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