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Abstract: This short communication reports on the facile and scalable synthesis and characterization
of molybdenum carbides/carbon nanocomposites prepared by laser pyrolysis in a one-step process.
Water and commercial molybdenum oxide were used as low-cost environmentally friendly precursors.
The nanocomposites are mainly composed of two types of carbides with different apparent crystallite
sizes, 21 ± 1 nm and 9 ± 1 nm for Mo2C and MoC1−x, respectively. Thanks to a simple annealing
at 500 ◦C under argon, it was possible to increase the specific surface area around 50 m2/g without
changing the morphology of the nanocomposite.

Keywords: nanocomposites; molybdenum carbides; laser pyrolysis

1. Introduction

H2 or dihydrogen (hydrogen for short) is a very promising energy carrier with many
potential technological developments [1]. It could be converted into electricity, heat, or
motive force and has, thus, many applications. Moreover, the generated power from its
combustion is three-times more than gasoline for an equivalent weight [2]. Moreover, its
combustion does not produce CO2. However, hydrogen is rather difficult to store and to
transport due to its low energy density per volume unit. In addition, hydrogen is generally
produced from natural gas, and the process emits a large amount of CO2 to the atmosphere,
making the technology hardly compatible with the current environmental concerns. It is of
paramount importance to develop sustainable technologies for the production of hydrogen
such as biomass conversion or water splitting [1,3,4]. These methods allow the production
of cleaner, safer, and more sustainable hydrogen, but unfortunately, the hydrogen produced
through the water splitting process is less than 4% compared to the overall H2 industrial
production in the world [4]. An efficient water splitting process, such as electrocatalysis,
generally employs noble metals (Pd, Ir, Pt, etc.), whose resources are expensive, scarce, and
already used in many other applications [5]. These points enhance the need to develop
cost-effective catalysts for the large-scale implementation of hydrogen technology. Indeed,
all the water splitting processes, including thermolysis, photolysis, and electrolysis, are to
date the most expensive on the market with a cost of H2 around EUR 8–10/kg [4]. The
search for alternative catalysts to noble metals for electrocatalysis and with good markers
of energy policies (availability, accessibility, affordability, and acceptability) is essential
for the production of renewable hydrogen or even the use of hydrogen for fuel cells as a
replacement of thermal engines. In this context, transition-metal-based boride, carbide,
nitride, and sulfide materials are very promising and are currently attracting a growing
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interest in the energy field [6–11]. Especially the molybdenum borides, carbides, and
nitrides seem to be a suitable compromise for catalytic applications for green hydrogen
production and applications [6,12–21]. Moreover, Mo is not classified as critical material by
the European Union [22].

Such Mo-based materials are usually synthesized by chemical methods, as detailed in
a review paper by Ma et al. [6]. In this short communication, we report on laser pyrolysis as
an alternative method for the facile and scalable synthesis of molybdenum carbides/carbon
nanocomposites (MoyC/GCs). The objective of this study is to evaluate the potential of
laser pyrolysis for the production of molybdenum carbide nanocomposites. Utilizing water
and commercial molybdenum oxide as low-cost, environmentally friendly precursors, we
prepared, for the first time, molybdenum carbide nanoparticles dispersed in carbon via a
one-step reaction by the laser pyrolysis process.

2. Materials and Methods
2.1. Chemicals

Commercial ammonium heptamolydate tetrahydrate, (NH4)6Mo7O24·4H2O, was pur-
chased from Sigma Aldrich (St. Louis, MO, USA) (USP specifications, reference A1343).
C2H4 and NH3 were purchased from Air Liquide and Air Product, respectively. All chemi-
cals were used without purification. The deionized water was obtained from the MilliQ
equipment from Merck with a conductance of 10−4 S m−1 at 25 ◦C. (NH4)6Mo7O24·4H2O
was simply solubilized at room temperature by magnetic stirring in water at a concentration
of 50 g/L. Two different solutions were prepared without urea (called Solution A) and with
urea (called Solution B) (31 g of urea was added to Solution B).

2.2. Synthesis of MoyC/GC Nanocomposites

To synthesize these MoyC/GC nanocomposites containing molybdenum carbides, we
used a laser pyrolysis process, which is an original method invented at the Massachusetts
Institute of Technology [23]. Indeed, the synthesis by laser pyrolysis is a continuous process
that generally leads to a production rate of several grams per hour [23]. The method
was initially developed with the use of gaseous precursors and was extended to liquid
precursors [24,25]. Its principle is based on the resonant interaction between a high-power
infrared laser and a precursor, carried into the reactor zone thanks to an inert gas. The
experimental device used in these experiments mainly consisted of a high-power CO2 laser
(λ = 10.6 µm) and an optical path, a reaction chamber, a gas delivery system, and pyrosol,
which allows the use of a liquid precursor. In this study, the CO2 laser power was set to
1500 W (i.e., 70% of internal power), and the pressure in the reactor was maintained at
atmospheric pressure (1.013 × 105 Pa). The temperature of the flame was estimated with an
IR camera (Pyroview 512N). The liquid precursor was contained in a glass jar equipped with
an ultrasonic generator (pyrosol device from RBI, Meylan, France). An aerosol composed
of precursor droplets was produced in this pyrosol. Indeed, the ultrasound generator
destroyed the surface of the liquid and created very tiny droplets. The cloud of droplets
was carried in the reaction chamber by the argon gas (600 sccm). A sensitizer gas, C2H4
and/or NH3, was added to the carrier gas in our case, as a precursor does not absorb
the laser radiation at 10.6 µm. When the precursor interacted with the laser beam, it was
heated, and collisional energy transfer caused a rise in temperature in the reaction zone,
allowing dissociation of the precursor molecules with the appearance of a flame, in which
the nanoparticles formed almost instantly.

2.3. Characterization

X-ray diffraction (XRD): Patterns were recorded in the 20–80◦ 2θ range on a Bruker
(Billerica, MA, USA) D2 Phaser (Cu Kα, 30 kV, 10 mA) diffractometer equipped with an
SSD160TM detector. Le Bail-type refinements were conducted using the FullProf Suite
software using profile matching mode.
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The X-ray data for refinements were recorded on a Rigaku XRD (Rigaku Corp., Tokyo,
Japan) with a Cu cathode without a monochromator. The instrumental resolution function
was evaluated by using a monocrystal of silicium.

Carbon elemental analyses: Carbon content was measured with an EMIA analyzer from
the HORIBA company (Edison, NJ, USA).

Thermogravimetric analysis (TGA): The TGA analysis was carried out on a TGA55 of
the TA Instruments brand (New Castle, DE, USA). The maximum operating temperature is
1000 ◦C. Measurements were performed in air, with a flow rate of 90 mL/min. For each of
the samples, we chose a ramp of 10 ◦C/min from room temperature up to 1000 ◦C, then
an isotherm of 30 min, and finally, a slow decrease of the unprogrammed temperature to
room temperature.

Specific surface area (SSA): The Brunauer−Emmet−Teller (BET) specific surface area
was determined from nitrogen physisorption with a Micromeritics (Norcross, GA, USA)
Gemini VII 2390t instrument using a mixture of N2/He (30%/70%). To avoid the surface
hydration and remove the polycyclic aromatic hydrocarbon (PAH) contaminants, samples
were previously outgassed under a vacuum at 150 ◦C.

Scanning and transmission electron microscopy (SEM and TEM): SEM photographs were
taken by using a JEOL JSM 7100F (JEOL, Ltd., Tokyo, Japan) operating at 10 kV to examine
the microstructure (shape and size) of the nanocomposites. Compositional analyses were
performed by energy dispersive X-ray spectroscopy (EDS) with EDS SDD X-Max (50 mm2)
Oxford Instruments (Abingdon-on-Thames, UK) AZtecEnergy detectors. High-resolution
TEM images (HRTEM), scanning transmission electron microscopy (STEM) images, and
energy dispersive (EDX) spectra or maps were acquired by using a high-resolution trans-
mission electron microscope, JEOL JEM 2100F (JEOL, Ltd., Tokyo, Japan). An acceleration
tension of 200 kV was used to estimate the crystallinity and morphology of the carbide’s
nanoparticles. For SEM analysis, the powder was directly observed on the carbon tape.
For HRTEM measurements, a small amount of powder was dispersed in ethanol by using
ultrasound. Then, the dispersion was dropped on a net-like carbon-film-covered Cu grid
(Cu micro grid) and dried in ambient conditions.

3. Results and Discussion

As mentioned in the Introduction, molybdenum carbide has been attracting more and
more attention as a potential electrocatalyst for HER. This is mainly due to some advantages
such as the unique surface and electronic properties, high catalytic activity, high selectivity,
high sulfur and nitrogen tolerance, and low cost, compared to Pt-group metal catalysts [6].
Dispersing molybdenum carbide nanoparticles on a conductive substrate is a commonly
used strategy to optimize the performance of HER catalyst. Consequently, facile, scalable,
and low-cost synthesis of small-sized, well-dispersed, and electrochemically accessible
Mo2C nanoparticles therefore remains challenging at the present time [26]. The direct
synthesis of carbon nanocomposites containing molybdenum carbides for HER has been
already achieved by several groups; most of them used the carburization of Mo precursors
and carbon sources at a high temperature (700 ◦C < T < 1000 ◦C) mainly under an argon or
N2 atmosphere [13–15,21,27–35]. Other alternatives reported in the literature include CVD,
where large-area 2D Mo2C/graphene heterostructures were prepared [36].

In this study, the synthesis of the MoyC/GC nanocomposites was performed in a
one-step method by laser pyrolysis. To the best of our knowledge, only a few papers
from the same group already reported more than 25 years ago the synthesis by laser
pyrolysis of (oxy)carbide/nitride powders by using Mo(CO)6 as precursors [37–39]. In
their particular process, the carburizing (C2H4) gas passed through a sublimation cell
containing the solid precursors (Mo(CO)6, which is quite toxic due to CO evolution. A new
and very important point of this study is that the MoyC/GCs powders were obtained from
an easy-to-use commercial oxide precursor, (NH4)6Mo7O24·4H2O, dispersed in water and
used as a liquid precursor. The as-formed nanocomposites are black in color. This color
is attributed to carbides and also to a significant amount of residual carbon phases due
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to the decomposition of the gas sensitizer (mainly C2H4), as expected. The characteristic
composition of the obtained nanocomposite could be tuned by the choice of experimental
conditions (including laser power, reactor pressure, and gas flow rate). The most relevant
experimental conditions are reported in Table 1 using the two solutions of the precursors
labelled A and B. Table 1 shows that the presence of carbon is high in all samples, from
68 to 86 wt%, well correlated with the C2H4 flow: 80% C content corresponds to a gas
flow rate of 200 sccm for C2H4, while about 70 wt% was obtained with a gas flow rate of
100 sccm. In the same way, the production rate is higher when the C2H4 gas flow rate is
high (700–800 mg/hour vs. 180–250 mg/hour). The production rate significantly decreases
when NH3 is added in the reactive mixture, in connection probably with a less-efficient
decomposition of precursors and less-efficient transfer of droplets. The presence of urea
tends to increase the production without a significant change in the carbon content.

Table 1. Most relevant experimental conditions.

Synthesis
Number Solution

CO2 Laser
Power

(W)
C2H4 (sccm) NH3 (sccm)

Total
Production
(mg/h) (±1)

% Carbon Elemental
Analysis *

(±1)

MOC4 A 1475 200 0 694 86

MOC5 A 1475 100 0 180 68

MOC6 B 1477 200 0 827 85

MOC7 B 1477 100 0 225 71

MOC8 B 1477 130 0 253 77

MOC9 B 1568 100 0 237 71

MOC10 B 1568 100 100 200 74

MOC11 B 1527 50 100 67 n.m.

MOC12 B 1527 0 200 8 n.m.

* wt%, measured by an EMIA analyzer, not measured (n.m.) for Samples 11 and 12 due to the low amount of
material. “Laser power” is the power measured by the power meter before initiation of the reaction (i.e., only in
the presence of neutral gases).

Heat treatments were carried out in air or argon in order to study the thermal behavior
of the MoyC/GCs samples and to evaluate the mass percentage of free carbon present in the
sample in connection with carbon elemental analysis. Analysis of the curves obtained by
TGA showed similar patterns for all the samples in both atmospheres (Figures S1 and S2).

Under air, a slight loss in mass of about 10% was observed at a low temperature
(<300 ◦C) due mainly to the desorption of the adsorbed compounds as mostly hydrocarbon
aromatic polycyclic (HAP). Between 300 ◦C and 350 ◦C, there was a rapid drop in mass
linked to the loss of free carbon. This loss of free carbon represents around 70% to 80% of
the total mass loss depending on the sample, which confirmed the large amount of free
carbon in all the samples as estimated by carbon elemental analysis. At the same time, the
weight loss should also be decreased a bit by the oxidation process of the carbides. This
point was confirmed by XRD analysis after a thermal treatment in air at 500 ◦C, which
shows that the samples consist almost entirely of oxides of MoO3 and MoO2 (Figure S3).
From 700 ◦C to almost 1000 ◦C, a new drop in mass was observed, probably related to the
sublimation of MoO3.

Under argon, a slight loss in mass of around 10% was also observed, but until 450 ◦C,
followed by a slow decrease of the mass up to 1000 ◦C due to the carbon loss.

The average value of the SSA was measured around 20 m2/g (±2 m2/g) for all the
MoyC/GCs samples with an average pore radius <40 nm, whatever the experimental
conditions. The SSA increased to 47 m2/g after annealing the samples at 500 ◦C for 3 h
under an argon atmosphere (and the average radius pore size decreased to 4 nm), which
could be explained by a full removal of HAP.
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Analysis of the powder XRD results showed that each powder was composed of a
mixture of crystallized phases. Indeed, all XRD patterns (except MOC12) can be indexed as
a mixture of oxide and carbide phases (Figure S4). The main peaks observed at 26◦, 39◦,
and 43◦ correspond, respectively, to the oxide and to the two types of carbides. The peak
obtained at 26◦ is attributed to MoO2; that obtained at 39◦ is attributed to the β-Mo2C-type
carbide; that at 43◦ is attributed to the MoC1−x-type carbide. The best result (i.e., with a
very low content of oxide phase) was obtained for MOC10 by using an equal mixture of
C2H4 and NH3 gases as sensitizer gases and B solution. In the case of MOC12 with only
NH3 as the sensitizer gas, the MoN phase can be detected as one of the main phases.

In order to have a better understanding of the microstructure of the MoyC/GCs
samples, we used the Fullprof suite software including WinPlotr to perform crystallite size
refinements on the MOC10 sample [40,41]. The Thompson–Cox–Hastings pseudo-Voigt
function (Npr = 7) was used to fit the X-ray data. The background was determined by
Fullprof under the form of manually selected points, which were interpolated. The first cell
parameters used for the refinement were extracted from the ICSD database.

The refinement strategy is:

• Start without refining parameters to generate the hkl information.
• Refine the lattice parameter.
• Refine the Y parameter and GauSize.

The estimation of the crystallite size assumed an isotropic model without strain contri-
butions. These estimations were directly calculated by FullProf using Scherrer’s equation.

The refinement shown in Figure 1 provides these results:

- Average apparent size for MoC1−x phase : 9 nm (±1 nm);

- Average apparent size for Mo2C phase : 21 nm (± 1 nm).
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Figure 1. Observed (red line), calculated (black line), and difference (blue line) X-ray powder
diffraction profiles of the MOC10 sample. hkl indexes for Mo2C (black) and MoC1−x (blue). The
oxide phase was not included in the refinement.



Nanomanufacturing 2022, 2 117

We clearly demonstrated that the nanocomposite MOC10 is mainly composed of
two types of carbides with different apparent crystallite sizes: the Mo2C phase is larger
(around 2.3-times) than the MoC1−x phase. Regarding the powder XRD results, we assumed
that this conclusion can be extended to all samples.

The morphologies and chemical composition of the nanocomposite powders were
also studied by SEM and EDX analysis. Figure 2 shows an overview of the general aspect
of the powders and confirms the heterogeneity of the samples. For all the samples (except
MOC12), we observed similar spherical bright spots dispersed in a dark background
(Figure 2a). The average diameter of these bright spots was below 1 µm. The morphology
of the nanocomposite, and especially these spherical particles, remained similar even after
annealing at 500 ◦C under argon (Figures S5 and S6). A zoom on these spherical bright
spots (represented by the white rectangle in Figure 2a) is presented in Figure 2b–d with
different magnifications. We can clearly observe that these spots are spherical grains, which
are composed of several aggregated nanoparticles (Figure 2d). The EDX analysis (point
mode) indicated clearly the presence of molybdenum in these aggregates.
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To better investigate the nanocomposites and especially the aggregated nanoparticles,
we used a high-resolution transmission electron microscope. HRTEM and selected area
electron diffraction (SAED) were performed on the sample to verify the crystallinity and
to confirm the data obtained by powder XRD (Figure 3). Well-crystallized particles were
observed by TEM (Figure 3 left), and the SAED pattern consisted of wide diffraction circles,
as expected, characteristics of aggregated nanocrystals (Figure 3 right). A very interesting
point is that the aggregates observed by HRTEM appeared to be empty and looked like
hollow spheres more than dense particles, something that was not expected from the
SEM analysis.
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Figure 3. HRTEM (left) image of the MOC10 sample and SAED (right) pattern.

This last point was clearly confirmed by the STEM-EDX images (Figure 4). In Figure 5
right, unlike the core, we observed a Mo-enriched shell. Nevertheless, on the same mesh
copper grid, a careful analysis of the STEM-EDX experiments indicated that molybdenum
was not only concentrated in the micron-size aggregates, but also quite dispersed in all the
nanocomposite (Figure 5). Indeed, a deep study by HRTEM revealed without ambiguities
the presence of numerous nanocrystals containing molybdenum concomitantly to the
spherical aggregates’ formation. Their sizes varied from 3 nm to 10 nm (Figure 6a,b), and
the d-spacing value was estimated at 1.24 Å, which is comparable to the (222) plane of
MoC1−x or even to the (201) plane of Mo2C. The EDX analysis of the area containing the
nanocrystals confirmed the presence of molybdenum (Figure 6c). Most were agglomerated
and visible even at lower magnification. Regarding the XRD refinement, we can suppose
that the bigger hollow particles are mainly formed by Mo2C nanocrystals and the smaller
nanocrystals dispersed in carbon by the MoC1−x phase. Of course, because the crystallized
parts were systematically coated with a large amount of amorphous carbon, it is very
complicated to confirm this hypothesis. A very important point is that these nanocrystals
and nanoparticles remained present even after the annealing process at 500 ◦C under argon
(Figure S6).
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Figure 3. HRTEM (left) image of the MOC10 sample and SAED (right) pattern. 

This last point was clearly confirmed by the STEM-EDX images (Figure 4). In Figure 
5 right, unlike the core, we observed a Mo-enriched shell. Nevertheless, on the same mesh 
copper grid, a careful analysis of the STEM-EDX experiments indicated that molybdenum 
was not only concentrated in the micron-size aggregates, but also quite dispersed in all 
the nanocomposite (Figure 5). Indeed, a deep study by HRTEM revealed without ambi-
guities the presence of numerous nanocrystals containing molybdenum concomitantly to 
the spherical aggregates’ formation. Their sizes varied from 3 nm to 10 nm (Figure 6a,b), 
and the d-spacing value was estimated at 1.24 Å, which is comparable to the (222) plane 
of MoCଵି୶ or even to the (201) plane of Mo2C. The EDX analysis of the area containing the 
nanocrystals confirmed the presence of molybdenum (Figure 6c). Most were agglomer-
ated and visible even at lower magnification. Regarding the XRD refinement, we can sup-
pose that the bigger hollow particles are mainly formed by MoଶC nanocrystals and the 
smaller nanocrystals dispersed in carbon by the MoCଵି୶ phase. Of course, because the 
crystallized parts were systematically coated with a large amount of amorphous carbon, 
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nanocrystals and nanoparticles remained present even after the annealing process at 500 
°C under argon (Figure S6). 

 
Figure 4. STEM (left) and EDX (right) mapping images of a single MOC10 aggregate. Mo appears 
in yellow color. 

Figure 4. STEM (left) and EDX (right) mapping images of a single MOC10 aggregate. Mo appears in
yellow color.
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appears in yellow color. 

 

Figure 5. STEM (left) and EDX (right) mapping images of a large area of the MOC10 sample. Mo
appears in yellow color.

All these SEM and HRTEM analyses confirmed the XRD results and the composite
composition of the samples.
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Figure 6. (a,b) HRTEM images and (c) EDX mapping image of the MOC10 sample.

4. Conclusions

The studies carried out in this exploratory study on laser pyrolysis synthesis clearly
demonstrate the possibility to obtain large amounts of molybdenum carbides/carbon
nanocomposites by using water as a solvent and a safe and low-cost oxide precursor. This
one-step process led at the best to a mixture with at least two phases of carbides, including
the hex-Mo2C compound, which has the best catalytic performance for the HER reaction
reported in the literature [6], and the fcc-MoC1−x compound, which interestingly exhibits
a higher water dissociation ability, producing abundant surface OH−, which promotes the
reforming of intermediates in the reaction at the surface [42–44]. The crystallized parts of
the nanocomposites are mainly composed of two types of carbides with different apparent
crystallite sizes, 21 nm ± 1 nm and 9 nm ± 1 nm for Mo2C and MoC1−x, respectively.
A high carbon content containing HAP was generated in the compounds, and to reduce
it, annealing was necessary. Thanks to a simple annealing at 500 ◦C under argon, it was
possible to increase the SSA around 50 m2/g without changing the morphology of the
nanocomposite. The next step will be to perform HER catalytic experiments.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nanomanufacturing2030009/s1, Figure S1: TGA of MOC9 under
air; Figure S2: TGA of MOC9 under air; Figure S3: XRD patterns of MOC9@500 ◦C under air;
Figure S4. Powder XRD patterns of MOCX (5 < X < 12) obtained on a sample without any treatment.

https://www.mdpi.com/article/10.3390/nanomanufacturing2030009/s1
https://www.mdpi.com/article/10.3390/nanomanufacturing2030009/s1
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The references plotted in the figure were obtained from the Eva data source software available on the
DRX apparatus; Figure S5. SEM image of MOC10 after annealing at 500 ◦C under argon; Figure S6.
HRTEM image of MOC10 after annealing at 500 ◦C under argon.
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