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Ruminant and chicken: important 
sources of campylobacteriosis in 
France despite a variation of source 
attribution in 2009 and 2015
Amandine Thépault1,2, Valérie Rose1, Ségolène Quesne1, Typhaine Poezevara1,  
Véronique Béven3, Edouard Hirchaud3, Fabrice Touzain  3, Pierrick Lucas3, Guillaume Méric4, 
Leonardos Mageiros5, Samuel K. Sheppard4,6, Marianne Chemaly1 & Katell Rivoal1

Pathogen source attribution studies are a useful tool for identifying reservoirs of human infection. 
Based on Multilocus Sequence Typing (MLST) data, such studies have identified chicken as a major 
source of C. jejuni human infection. The use of whole genome sequence-based typing methods offers 
potential to improve the precision of attribution beyond that which is possible from 7 MLST loci. Using 
published data and 156 novel C. jejuni genomes sequenced in this study, we performed probabilistic 
host source attribution of clinical C. jejuni isolates from France using three types of genotype data: 
comparative genomic fingerprints; MLST genes; 15 host segregating genes previously identified 
by whole genome sequencing. Consistent with previous studies, chicken was an important source 
of campylobacteriosis in France (31–63% of clinical isolates assigned). There was also evidence that 
ruminants are a source (22–55% of clinical isolates assigned), suggesting that further investigation 
of potential transmission routes from ruminants to human would be useful. Additionally, we found 
evidence of environmental and pet sources. However, the relative importance as sources varied 
according to the year of isolation and the genotyping technique used. Annual variations in attribution 
emphasize the dynamic nature of zoonotic transmission and the need to perform source attribution 
regularly.

Campylobacter spp. are regarded as the most common foodborne bacterial zoonosis in Europe1, despite potential 
underestimation due to underreporting of cases2. In France, C. jejuni is responsible for nearly 80% of human 
infections while C. coli accounts for around 15%3. The economic burden of campylobacteriosis has been estimated 
to 2.4 billion euros annually in Europe4, with estimates of £50 million in 2008–2009 in the United Kingdom5 and 
82 million euros in the Netherlands in 20116.

Campylobacter spp. are frequent colonizers of the digestive tract of domesticated animals such as livestock7–10 
and pets11,12, as well as wild birds13–15, and have been isolated from environmental waters sources16,17. Accurately 
quantifying the relative importance of each Campylobacter reservoir in human infections constitutes an impor-
tant aim in public health to develop control strategies to decrease the human and economic burden of campy-
lobacteriosis. Previous source attribution studies, principally based upon Multilocus sequence typing (MLST) 
data18 which consists in the sequencing and the allele designation of 7 housekeeping genes of C. jejuni, have iden-
tified chicken as a major source of human infection worldwide, while ruminants, pets and environmental sources 
are also implicated19–22. However, MLST-based attribution has limited efficacy for source attribution of clinical 
cases from clonal complexes and sequence type that are isolated from multiple hosts, since they show identical 
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allelic variations in the 7 studied genes23. Recently, a pan genome approach was used to investigate host signal 
within 411 C. jejuni genomes, and 15 markers were identified as promising candidates for source attribution as 
they allowed the segregation of C. jejuni isolates according to their host24. In addition, comparative genomic fin-
gerprinting approach (CGF) has also been developed to genotype C. jejuni isolates with a high resolution25 and 
has been extensively used in Canada for routine surveillance of campylobacteriosis25–27. The CGF40 approach, 
which consists in the assessment of the presence/absence of 40 genes belonging to the accessory genome of C. 
jejuni through gene amplification, showed concordant results with MLST with a higher discriminatory power28, 
and could be an interesting alternative to MLST by potentially improving the accuracy of source attribution 
studies.

Here, we assessed the accuracy of attributions of C. jejuni isolates to their source based on MLST, CGF40 pro-
files and the 15 host segregating markers, and used the most accurate methods to identify the most likely origin of 
French campylobacteriosis from 2009 and 2015. Isolates originating from chicken, ruminant, pets, environmental 
waters and wild birds were considered as potential sources of human infection in the analysis.

Results
Clinical, animal, and environmental isolates genotyping using CGF40, MLST and whole genome  
sequencing (WGS). C. jejuni clinical isolates from 2009 appeared to be highly diverse with 85 CGF40 clus-
ters based on 100% of similarity between isolates, and 62 STs29. Clinical isolates from 2015 were also highly 
diverse with 229 CGF40 genotypes found. In addition, MLST performed on a subset of these clinical isolates 
(n = 79) using WGS, revealed 54 different STs, and 79% of the clinical isolates belonged to the 12 most common 
clonal complexes found (ST-21, ST-206, ST-257, ST-353, ST-48, ST-464, ST-22, ST-283, ST-42, ST-45, ST-52 and 
ST-658 complexes).

A total of 1,618 animal and environmental C. jejuni isolates from putative sources of human infection (i.e. 
chicken, ruminant, environment, and pets) constituted the comparison data set of CGF40 genotypes, while the 
comparison data sets of MLST and host-segregating markers profiles comprised respectively 857 and 740 isolates 
characterized in previous studies (Supplementary Table S1).

Accuracy of the several genotypes data in source attribution through self-attribution tests.  
The accuracy of the different genotyping methods in source attribution was assessed with isolates of a known 
origin. Self-attributions were performed on randomly selected subsets of isolates from each of the 4 puta-
tive contamination sources and the rates of correct self-attributions are shown in the Fig. 1. The probabilities 
of assignment of these isolates to the others sources are presented in the Table 1, as well as their confidence 
interval at 95%. The probabilities of correct self-attribution using CGF40 markers for source attribution were 
estimated to 49% in chicken (CI95% = 0.418, 0.553), 40% in ruminant (CI95% = 0.330, 0.469), 76% in envi-
ronment (CI95% = 0.701, 0.828), and 0% (CI95% = 0.00, 0.00) in pets isolates. However, MLST allowed sig-
nificantly higher correct self-attribution rates than CGF40 within ruminant (66%; CI95% = 0.591, 0.733) and 
pets isolates (27%; CI95% = 0.137, 0.399). Nevertheless, MLST showed a significantly lower rate within environ-
mental isolates (53%; CI95% = 0.454, 0.608) than CGF40 since there was no overlap between their confidence 
interval at 95%, while a similar rate was observed within chicken isolates with 37% (CI95% = 0.294, 0.455) of 
correct self-attribution. Finally, the use of the 15 host-segregating markers in source attribution gave a correct 
self-attribution of 57% (CI95% = 0.524, 0.616) in chicken, which is significantly higher than using MSLT, while 
correct self-attribution rates, similar to MLST, were observed in ruminant (57%; CI95% = 0.517, 0.626), environ-
mental (38%; CI95% = 0.309, 0.453) and pets isolates (27%; CI95% = 0.172, 0.372).

Source attribution of C. jejuni clinical isolates from 2009 and 2015. The probabilistic assignments 
of each clinical case from 2009 and 2015 to the different putative contamination sources were calculated using 
STRUCTURE software and are shown in Figs 2 and 3. Regarding clinical isolates from 2009 (Fig. 2A), MLST 
attributed 55% (CI95% = 0.468, 0.632) of isolates to ruminant, 34% (CI95% = 0.260, 0.413) to chicken and 11% 
(CI95% = 0.062, 0.163) to the environment. Based on the 15 host-segregating markers, we observed an equivalent 
attribution of clinical isolates in 2009 to chicken and ruminant with respectively 51% (CI95% = 0.355, 0.673) and 
41% (CI95% = 0.253, 0.566), while the implication of the environment was estimated to 8% (CI95% = 0.0, 0.162). 
Finally, using the CGF40 data to perform source attribution, a higher implication of the chicken reservoir was 
observed (53%; CI95% = 0.447, 0.609) in clinical cases from 2009, while ruminant and the environment showed 
respectively 33% (CI95% = 0.253, 0.407) and 14% (CI95% = 0.084, 0.199) of attribution.

Figure 1. Correct self-attribution rates of C. jejuni isolates from 4 putative contamination sources based on 
genomic data obtained with CGF40, MLST or WGS (15 host segregating markers).
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When pets were added as a putative source of human contamination in 2009 (Fig. 2B), some clinical iso-
lates were attributed to this source but the global trends remained similar using CGF40 (Chicken: 53% 
[CI95% = 0.449, 0.613]; Ruminant: 33% [CI95% = 0.252, 0.406]; Environment: 13% [CI95% = 0.077, 0.189]; Pets: 
1% [CI95% = 0.0, 0.021]) and MLST (Chicken: 31% [CI95% = 0.231, 0.383]; Ruminant: 55% [CI95% = 0.467, 
0.631]; Environment: 10% [CI95% = 0.052, 0.149]; Pets: 4% [CI95% = 0.010, 0.076]). However, when the host 
segregating markers were used, all previously environment-assigned clinical isolates were attributed to pets while 
the attributions to chicken and ruminant were equivalent than previously (Chicken: 52% [CI95% = 0.360, 0.681]; 
Ruminant: 40% [0.245, 0.561]; Environment: 0% [CI95% = 0.00, 0.00]; Pets: 8% [CI95% = 0.00, 0.162]).

Clinical cases from 2015 were then probabilistically assigned to sources (Fig. 3). In MLST-based assignments, 
43% (CI95% = 0.318, 0.539) of isolates were attributed to chicken, 38% (CI95% = 0.273, 0.491) to ruminants and 
19% (CI95% = 0.101, 0.277) to the environment (Fig. 3A). The 15 host segregating markers allowed the assignment 
of 63% (CI95% = 0.532, 0.737), 24% (CI95% = 0.146, 0.331) and 13% (CI95% = 0.057, 0.197) of clinical isolates to 
the chicken, ruminant and environmental reservoirs respectively. These attributions were consistent with the pro-
portions of clinical cases attributed to the chickens (62%; CI95% = 0.573, 0.670), ruminants (22%, CI95% = 0.178, 
0.262) and environmental samples (16%, CI95% = 0.122, 0.194) using CGF40 data for source attribution.

When pets were included in the source attribution study as a potential source of human contamination in 2015 
(Fig. 3B), global trends were unchanged except for the assignment based on host segregating markers, where 12% 
(CI95% = 0.050, 0.188) of clinical cases were assigned to pets, while assignment to the environment decreased to 
7% (CI95% = 0.018, 0.119). Using CGF40 data or MLST in the STRUCTURE model, 2% (CI95% = 0.005, 0.032) 
and 8% (CI95% = 0.017, 0.136) of human isolates were respectively assigned to the pets reservoir.

CGF40 MLST WGS (15 HS markers)

Chicken Ruminant Environment Pets Chicken Ruminant Environment Pets Chicken Ruminant Environment Pets

Chicken 0.49 
(0.42–0.55)

0.23 
(0.17–0.29)

0.27 
(0.21–0.34)

0.01 
(−0.01–
0.03)

0.37 
(0.29–0.46)

0.27 
(0.19–0.34)

0.18 
(0.10–0.26)

0.18 
(0.12–0.24)

0.57 
(0.52–0.62)

0.11 
(0.06–0.16)

0.12 
(0.03–0.21)

0.20 
(0.11–0.30)

Ruminant 0.19 
(0.10–0.28)

0.40 
(0.33–0.47)

0.14 
(0.06–0.23)

0.26 
(0.19–0.34)

0.11  
(0.05–0.17)

0.66 
(0.59–0.73)

0.08 
(0.03–0.13)

0.15 
(0.06–0.23)

0.28 
(0.21–0.34)

0.57 
(0.52–0.63)

0.06 
(0.02–0.11)

0.09 
(0.04–0.14)

Environment 0.24 
(0.17–0.30)

0.00 
(0.00–0.00)

0.76 
(0.70–0.83)

0.00 
(0.00–0.00)

0.08 
(0.04–0.13)

0.01 
(0.00–0.01)

0.53 
(0.45–0.61)

0.38 
(0.30–0.45)

0.20 
(0.07–0.33)

0.05 
(0.02–0.07)

0.38 
(0.31–0.45)

0.37 
(0.28–0.47)

Pets 0.38 
(0.32–0.45)

0.05 
(0.03–0.08)

0.56 
(0.49–0.63)

0.0 
(0.0–0.0)

0.33 
(0.28–0.37)

0.25 
(0.22–0.27)

0.16 
(0.05–0.27)

0.27 
(0.14–0.40)

0.32 
(0.22–0.41)

0.11 
(0.07–0.17)

0.30 
(0.22–0.38)

0.27 
(0.17–0.37)

Table 1. Self-attribution of C. jejuni isolates from 4 putative sources of human infections using molecular data 
from CGF40, MLST or WGS using 15 host-segregating markers (HS markers). Host populations in bold letters 
are populations for which isoaltes were tested in self-attribution tests. Self-attribution probabilities for a same 
host population are presented in line.

Figure 2. Estimated source probabilities of French clinical isolates from 2009 using three genotyping methods 
for source attribution. (A) Probabilities of clinical isolates to originate from 3 putative sources (yellow: chicken; 
blue: ruminant, and green: environment), (B) Probabilities of clinical isolates to originate from 4 putative 
sources (yellow: chicken; blue: ruminant, green: environment, orange: pets). Each vertical bar represents one 
isolate, and the color of the bar shows the estimated probability that this isolate originates from each of the 
potential sources.
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Discussion
In this study, we attribute the source of clinical C. jejuni isolates using MLST, CGF40 genotypes and allelic var-
iation within 15 host-segregating markers derived from WGS. While MLST has previously been widely used to 
assign a source to clinical isolates of Campylobacter spp.19,20,22,30–34, the use of CGF40 and WGS host-segregating 
markers are relatively recent24,35. The accuracy of each genotyping method was assessed by performing 
self-attribution tests. In these tests, host-segregating markers allowed the greatest rate of correct assignment of 
isolates from all hosts to their origin apart from environment isolates for which CGF40 gave a higher probabil-
ity. These results are not surprising since host-segregating markers were picked for their potential to improve 
source attribution as they showed the highest rates of correct self-attribution in chicken and ruminant24. MLST 
gave equivalent probabilities of correct-assignment to host-segregating marker analysis in all hosts except for 
chicken isolates where attribution was lower than the host-segregating markers. Using CGF40, the probability of 
correct-assignment in chicken isolates was equivalent to the probability using the host segregating markers, but 
lower probabilities were observed in ruminant and pets isolates.

The difference of accuracy in self-attribution tests according to the genotyping method used, which may trig-
ger differences in source attribution of clinical cases, could be explained by the resolution of data provided by each 
genotyping method. MLST and host segregating markers provide highly discriminatory data since they assess the 
allelic variation within each tested gene. For example, there were 35 to 59 different alleles among each MLST genes 
and from 27 to 169 different alleles in each host-segregating markers within the isolates from this study, while 
CGF40 produces only binary data (0 or 1) informing on presence or absence of 40 assay genes. Furthermore, 
data resolution is important especially in a probabilistic model like STRUCTURE which assumes that each host 
population is characterized by its own set of allelic frequencies, and in which low numbers of markers showing 
high levels of allelic diversity are more informative than randomly selected markers36. Indeed, if the genetic infor-
mation provided by the genotyping method used to characterize isolates is not sufficient to discriminate isolates 
from several sources, misattributions of clinical cases to their source can occur using STRUCTURE33. This is 
consistent with conclusions of a recent study describing CGF40 as an alternative technique for source attribution 
in combination with comparative exposure assessment but not suitable using a source attribution model like the 
Asymmetric Island model20 since CGF40 do not provide enough details on genotypes compared with MLST35.

Based on large datasets of C. jejuni isolates from several putative sources of human contamination, the most 
likely origins of French campylobacteriosis from 2009 and 2015 were determined. In contrast to the majority of 
source attribution studies performed on MLST genes and using STRUCTURE software20,22,37, ruminants were 
the most common putative source of campylobacteriosis from 2009 in France (55%), and were equal to chicken 
in clinical cases from 2015 (38% for ruminant, 41–43% for chicken) based on MLST assignments. Nevertheless, 
this result is consistent with other source attribution studies33,38, and may support a greater role for the ruminant 
reservoir in campylobacteriosis39.

However, when host-segregating-based assignments were considered, as they showed a better accuracy in 
self-attribution than MLST, ruminant and chicken were equally important in France in 2009, but there were more 
attributions to chicken in 2015, comparable to other studies19–21,31,34,40. Despite a variation in the source attribu-
tion of clinical isolates from 2009 and 2015, both populations were mainly contaminated with agricultural C. 
jejuni which include isolates from chicken and ruminants. Contamination with chicken was especially associated 

Figure 3. Estimated source probabilities of French clinical isolates from 2015 using three genotyping methods 
for source attribution. (A) Probabilities of clinical isolates to originate from 3 putative sources (yellow: chicken; 
blue: ruminant, and green: environment), (B) Probabilities of clinical isolates to originate from 4 putative 
sources (yellow: chicken; blue: ruminant, green: environment, orange: pets). Each vertical bar represents one 
isolate, and the color of the bar shows the estimated probability that this isolate originates from each of the 
potential sources.
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with the consumption of broiler meat (undercooked)1,19,34,41–44. This is consistent with the high prevalence of 
Campylobacter spp. on carcasses and retail broiler meat in France estimated to 88% and 76% respectively45,46, and 
the important overlap between C. jejuni genotypes circulating in chicken and isolated in humans in France29.

Different risk factors were identified for human contamination by ruminants-associated Campylobacter spp. 
such as consumption of tripe or raw milk, barbecuing in non-urban areas, contact with garden soil or having 
a local and a regional tap water provider at home19,34,37,43,44. In addition to these, consumption of undercooked 
beef meat was identified as a risk factor for C. jejuni infections in France as well as in the Netherlands to a lesser 
extent42,47. However, despite a high prevalence of Campylobacter ssp. in French cattle10, the food-borne trans-
mission of Campylobacter spp. is not clear, especially since no Campylobacter were detected in bovine meat in 
France48 in accordance with studies reporting rare beef or veal contamination49–51. On the other hand, cattle livers 
could be a non-negligible source of contamination in France since they constitute a popular dish in French cui-
sine and were shown to be highly contaminated by Campylobacter spp.51,52. As previously suggested19,33,35, contact 
with animals and the environmental contamination by ruminants, including water contamination, need also to 
be considered since Campylobacter spp. were shown to survive in bovine manure53 or during anaerobic digestion 
of livestock effluents in biogas plant54,55. Waterborne transmission of Campylobacter from ruminant to human has 
been previously reported56 and a recent 2-year study highlighted a high prevalence (80.7%) of Campylobacter spp. 
in environmental waters from intensive livestock farming areas in France57.

Implication of the environmental reservoir in our study, including environmental waters and wild birds, was 
low in 2009 (0–11% using MLST or the host-segregating markers) but slightly increased in 2015 (7–19% using 
MLST or the host-segregating markers). Our environmental-related estimates were in accordance with previous 
works19,33,34,37,58, which mainly associated these cases to consumption of untreated or private well water, practice 
of recreational activities related to water59–61, game consumption34, or contact with garden soil19, while consump-
tion of drinking water in bottles were protective60. Consistent with this, contamination through the consumption 
of treated drinking water is unlikely in France as no Campylobacter were isolated from drinking water16, and 
from groundwater despite the detection in this case of C. jejuni and C. coli genomes in the samples62. However, it 
was reported that 50% of surface water upstream treatment plants were contaminated by Campylobacter spp. in 
Brittany, France16, suggesting that any failure in treatment (e.g. chlorination) could trigger to human contamina-
tion. This has been previously described worldwide43,63, as well as in France, where an agricultural contamination 
of groundwater was hypothesized64.

The role of wild birds in human contamination has been poorly investigated in France. As reported by Cody  
et al.58, several studies highlighted the contamination of equipment and surfaces in children playgrounds associated 
with a frequent hand-to-mouth behaviour in children65, and consumption of milk from bottle where the top had 
been pecked by birds66, as potential Campylobacter transmission routes from wild birds to human. In addition, iso-
lation of C. jejuni belonging to wild bird-associated clonal complex (CC-177) in freshwater in France67 supports the 
previously described potential waterborne transmission of Campylobacter from wild birds to human68.

Companion animals including cat and dog were not highly involved in clinical cases in France (4% to 12% 
using MLST or the host-segregating markers), consistent with previous attributions22,31 and contrasting with 
the 25% of clinical cases attributed to pets in the Netherlands32. With regard to self-attribution tests, probabil-
ities of correct assignment were generally low in pets regardless of the genotyping method used (MLST: 0.268 
WGS: 0.272 CGF40: 0.0), suggesting an overlap of pets genotypes with those from the 3 others reservoirs. It is 
highlighted by the predominance of ST-45 in pets32,69, and its isolation in chicken29,68,70, environmental waters, 
wild birds58,65,71, and cattle24,72, indicating that chicken, ruminants or environment are likely to be significant 
sources of Campylobacter for pets through several transmission routes (e.g. food such as raw meat or offal). 
However, when pets are contaminated they may constitute a transmission route for chicken, ruminant or 
environmental-related Campylobacter to humans, suggesting that owning a companion animal increased human 
exposure to Campylobacter spp., emphasizing its role as risk factor32,41,59. Another potential scenario is the role of 
human in pets contamination, since these animals are likely to be fed with the same foods than their owner and 
especially with their food leftovers32.

Finally, our source attribution is not without limitations. While chicken and cattle C. jejuni collections show 
a national coverage10,45,46, pets and environmental populations may not be representative of C. jejuni from these 
reservoirs in France, as sampling surveys were locally conducted57,67,73. However, samplings were done on large 
period of time (6-month or 2-year period) to isolate a high number of strains in order to minimize this bias. In 
addition, the time span of strains isolation is important to consider, especially in a highly recombinant micro-
organism like Campylobacter, in which MLST genotypes were shown to be increasingly different over time74. 
However this bias can be nuanced as several studies identified a temporal stability in the population structure 
of isolates from chicken, wild birds and clinical cases75–77. Moreover, clinical cases studied here may not be rep-
resentative of all notified French campylobacteriosis C. jejuni cases, since surveillance of campylobacteriosis in 
France is not mandatory leading to underestimate its incidence78. Therefore, it was not possible to get a represent-
ative collection of all cases occurring in France. However, in  our study, we selected C. jejuni campylobacteriosis 
cases from the 10 most populated departments which represent 26% of the French population with 17,585,983 
inhabitants (official statistics in 2014 from the National Institute of Statistics and Economic Studies). Lastly, the 
comparison of our results with studies using different source attribution models could be discussed, nevertheless, 
for the two main models used for source attribution (STRUCTURE and Asymetric island model), Sheppard  
et al.20 showed that they produced consistent results.

In conclusion, a variation was observed in assignments of French clinical cases between 2009 and 2015 and 
according to the genotyping method used. The host segregating markers were the most accurate in self-attribution 
especially for chicken isolates and apart from environmental isolates. A predominant role of agricultural reser-
voirs (chicken and ruminant) was observed in campylobacteriosis from 2009 and 2015 in France, emphasizing the 
importance of intervention strategies to control Campylobacter in hosts in order to decrease the human burden. 
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It is especially true for cattle where the environmental contamination by Campylobacter of human might be more 
important than the foodborne pathway, addressing the question of transmission routes for Campylobacter from 
ruminant to human, as no clear evidence is available. Nevertheless, since host-segregating markers allowed a 
higher accuracy in assignments of chicken isolates than MLST loci, it suggests that the importance of chicken in 
campylobacteriosis may be underestimated using MLST and could be more important than currently described. 
Finally, combining molecular and epidemiological approaches of source attribution may be of interest for fur-
ther investigation of possible transmission routes for Campylobacter. In relation with French consumption habits 
and behaviour, this combining approach would be helpful to better understand campylobacteriosis epidemiol-
ogy in France, and how different trends of source attribution can be obtained compared with our neighbouring 
countries.

Material and Methods
Clinical, animal, and environmental isolates. A total of 2132 C. jejuni isolates were collected between 
2008 and 2016 in France, and characterized in this, and previous studies10,24,29,77,79. Clinical isolates were obtained 
from the National Reference Centre for Campylobacter and Helicobacter in France. In 2009, 3754 isolates from 
clinical cases of campylobacteriosis were obtained from 348 diagnostic bacteriology laboratories in public hos-
pitals and private laboratories belonging to the National Surveillance System of campylobacteriosis in France80.  
C. jejuni was the most common species representing 81.4% (n = 3054) of Campylobacter spp. isolates80. Of these, 
C. jejuni isolates from the 10 most populated regions in France (n = 143) were considered for genotyping (CGF40, 
MLST, WGS) and included in this study24,29. In 2015, 5722 Campylobacter spp. isolates from campylobacteriosis 
were reported by laboratories from the National Surveillance System in France and identified by the National 
Reference Centre81. Of the 4704 C. jejuni isolates81, 371 isolates obtained from the 10 departments selected in 
2009, were considered in this study. All isolates were successfully characterized using CGF4077, and a subset 
(n = 79) was characterized using MLST and WGS.

In addition, isolates originating from 4 potential sources of human infection were included in this study: (i) 
chickens, 644 isolates from 2008 and 2009, representative of the broiler production chain in France (national cov-
erage of 9-month and 12-month sampling surveys performed at retail and slaughterhouse levels respectively)7,46; 
(ii) cattle, 42 isolates from 2013, and 649 from 2016 representative of the French cattle production (6-month 
sampling survey at slaughterhouse level allowing the analyses of 959 samples from 282 farms distributed among 
32 French departments representative of the French production of cattle)10; (iii) environment, 122 isolates from 
2013 to 2015 and from freshwater, sea water, sediment or mussels; (iv) pets, including 161 cat and dog isolates 
from 2014 and 2015. Isolates details and source publications are detailed in supplementary Table S1.

DNA extraction. Isolates stored at −80 °C, were subcultured onto Campylobacter selective blood-free agar 
(Karmali, Oxoid) in microaerobic conditions (85% N2, 10% CO2, 5% O2) at 42 °C for 48 h. Genomic DNA was 
extracted from one-day single-colony cultures incubated at 37 °C using the kit QiaAMP DNA Mini Kit (QIAGEN) 
and quantified using the Qubit® 2.0 fluorometer and the Qubit dsDNA HS Assay kit (Invitrogen) following man-
ufacturers’ recommendations.

Comparative Genomic Fingerprinting (CGF40). CGF40 fingerprints were generated from 8 Multiplex 
PCRs according to primer sets previously published25 as well as experimental conditions29. The PCR results were 
converted into binary data corresponding to the absence (0) or the presence (1) of each of the 40 markers in the 
bacterial genomes and the CGF40 fingerprints of these 40 genes (CGF40) were stored into BioNumerics® soft-
ware (v 7.6, Applied Maths, Belgium). Each binary CGF40 fingerprint was then used in the source attribution 
model to assign an origin to clinical C. jejuni isolates from 2009 and 2015. To perform this, all clinical, animal and 
environmental isolates were previously genotyped using CGF4010,29,77,79.

MultiLocus Sequence Typing (MLST). Alleles of the seven housekeeping MLST genes (aspA, glnA, gltA, 
glyA, pgm, tkt and uncA) were determined as previously described29. Alleles, sequence types (ST) and clonal com-
plexes (CC) of isolates from cattle, pets, environment and clinical cases from 2015 were determined from whole 
genome sequence (WGS) data and by comparison of the sequences to the PubMLST database (http://pubmlst.
org/campylobacter) on BIGSdb82. MLST characterization through WGS was performed using a subset of isolates 
from cattle, pets, environment and clinical cases from 2015, keeping the same proportion as for CGF40 geno-
types. The global experimental design is presented in Fig. 4.

Whole Genome Sequencing (WGS). Genomes were sequenced using the Ion Torrent technology on an 
Ion Torrent Proton machine (Life Technologies) according to previously published conditions24. Assemblies were 
produced by either MIRA version 4.0rc183 or SPAdes 3.1.184. Among 156 C. jejuni genomes newly sequenced, 
an average of 150 contigs was obtained with a median value of 62 contigs. The average of the total assembled 
sequence length is 1,715,087 bp (Supplementary Table S2).

French genomes sequenced in this study or previously24 were augmented with 491 genomes of C. jejuni iso-
lated from chicken, ruminant, environmental water and wild birds from different countries and published in pre-
vious studies (Fig. 4)85–88. This gave a total of 859 C. jejuni genomes to constitute our study dataset (Supplementary 
Table S1) in which allelic variations among 15 host segregating markers24 was assessed for the source attribution 
study. These host-segregating markers were preferred to whole genome to perform source attribution, as their 
potential in source attribution has been demonstrated24, while the whole genome was shown to not improve 
assignment compared with MLST23.

Accuracy of the several genotypes data in source attribution through self-attribution tests. To 
assess the accuracy of attribution probabilities obtained with each genotyping method, self-attribution tests 

http://pubmlst.org/campylobacter
http://pubmlst.org/campylobacter
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were performed within the different host populations, as described in previous studies using MLST or the 
host-segregating markers20,24. Random subsets of twenty isolates from each hosts population were assigned to a 
dataset from unknown origin and 10 independent self-attribution tests were performed to assign these isolates 
to a source. Accuracy of genotyping methods were considered as significantly different when no overlap of their 
95% confidence interval were observed. Experimental conditions used were identical to those used to attribute a 
source to the clinical isolates.

Molecular source attribution of the clinical isolates. Probabilistic assignment of French human iso-
lates from 2009 and 2015 to their most likely origin was performed separately using STRUCTURE software89. 
This software estimates the most likely origin of clinical isolates according to the similarity in alleles frequen-
cies among the potential host populations and by assuming that each host population is characterized by its 
own set of allelic frequencies. CGF40 fingerprints, MLST profiles, and allelic profiles of the 15 host-segregating 
loci24 were used to attribute a source to clinical isolates according to previously published conditions24. Briefly, 
100,000 burn-in steps with 100,000 subsequent iterations were run in STRUCTURE using the no-admixture 
model, assuming uncorrelated gene frequencies and using the STARTATPOPINFO parameter turned on. Clinical 
isolates were distinguished from host populations isolates using POPFLAG.

Host datasets used as a reference to probabilistically attribute a source to clinical isolates included isolates 
from 3 putative sources of contamination (chicken, cattle and environment) (Supplementary Table S1). Pets were 
added as a source of infection in a second analysis since their role in campylobacteriosis as reservoir or vector is 
not fully elucidated32,90,91.

Accession number(s). Genome sequences generated as part of this study belong to the BioProject 
PRJNA357677 and were deposited in SRA (SRR6914212 to SRR6914375; see supplementary Table S2). The 
assemblies of genomes sequenced in earlier studies can be found in Dryad (https://doi.org/10.5061/dryad.28n35 
and https://doi.org/10.5061/dryad.m86k3) and NCBI (BioProject PRJNA312235 and BioProject PRJNA357677).
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