An exterior optimal transport problem
Un problème de transport optimal extérieur
Résumé
This paper deals with a variant of the optimal transportation problem. Given f ∈ L 1 (R d , [0, 1]) and a cost function c ∈ C(R d × R d) of the form c(x, y) = k(y − x), we minimise ∫ c dγ among transport plans γ whose first marginal is f and whose second marginal is not prescribed but constrained to be smaller than 1 − f. Denoting by Υ(f) the infimum of this problem, we then consider the maximisation problem sup{Υ(f) : ∫ f = m} where m > 0 is given. We prove that maximisers exist under general assumptions on k, and that for k radial, increasing and coercive these maximisers are the characteristic functions of the balls of volume m.
Origine | Fichiers produits par l'(les) auteur(s) |
---|