C-Norm: a neural approach to few-shot entity normalization - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
Article Dans Une Revue BMC Bioinformatics Année : 2020

C-Norm: a neural approach to few-shot entity normalization

Résumé

Background: Entity normalization is an important information extraction task which has gained renewed attention in the last decade, particularly in the biomedical and life science domains. In these domains, and more generally in all specialized domains, this task is still challenging for the latest machine learning-based approaches, which have difficulty handling highly multi-class and few-shot learning problems. To address this issue, we propose C-Norm, a new neural approach which synergistically combines standard and weak supervision, ontological knowledge integration and distributional semantics. Results: Our approach greatly outperforms all methods evaluated on the Bacteria Biotope datasets of BioNLP Open Shared Tasks 2019, without integrating any manually-designed domain-specific rules. Conclusions: Our results show that relatively shallow neural network methods can perform well in domains that present highly multi-class and few-shot learning problems.
Fichier principal
Vignette du fichier
s12859-020-03886-8.pdf (1.26 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03100410 , version 1 (06-01-2021)

Licence

Identifiants

Citer

Arnaud Ferré, Louise Deléger, Robert Bossy, Pierre Zweigenbaum, Claire Nédellec. C-Norm: a neural approach to few-shot entity normalization. BMC Bioinformatics, 2020, 21 (S23), pp.1-19. ⟨10.1186/s12859-020-03886-8⟩. ⟨hal-03100410⟩
247 Consultations
106 Téléchargements

Altmetric

Partager

More