Forecasting Staphylococcus aureus Infections Using Genome-Wide Association Studies, Machine Learning, and Transcriptomic Approaches - Institut de Recherche Mathématique de Rennes Access content directly
Journal Articles mSystems Year : 2022

Forecasting Staphylococcus aureus Infections Using Genome-Wide Association Studies, Machine Learning, and Transcriptomic Approaches

Abstract

Predicting the outcome of bacterial colonization and infections, based on extensive genomic and transcriptomic data from a given pathogen, would be of substantial help for clinicians in treating and curing patients. In this report, genome-wide association studies and random forest algorithms have defined gene combinations that differentiate human from animal strains, colonization from diseases, and nonsevere from severe diseases, while it revealed the importance of IGRs and CDS, but not small RNAs (sRNAs), in anticipating an outcome.

Domains

Bacteriology
Fichier principal
Vignette du fichier
msystems.00378-22.pdf (3.31 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03728161 , version 1 (09-11-2022)

Identifiers

Cite

Mohamed Sassi, Julie Bronsard, Gaetan Pascreau, Mathieu Emily, Pierre-Yves Donnio, et al.. Forecasting Staphylococcus aureus Infections Using Genome-Wide Association Studies, Machine Learning, and Transcriptomic Approaches. mSystems, 2022, pp.article n° : 00378-22. ⟨10.1128/msystems.00378-22⟩. ⟨hal-03728161⟩
51 View
48 Download

Altmetric

Share

Gmail Facebook X LinkedIn More