Tail expectile-VaR estimation in the semiparametric Generalized Pareto model - Ensai, Ecole Nationale de la Statistique et de l'Analyse de l'Information
Pré-Publication, Document De Travail Année : 2024

Tail expectile-VaR estimation in the semiparametric Generalized Pareto model

Résumé

Expectiles have received increasing attention as coherent and elicitable market risk measure. Their estimation from heavy-tailed data in an extreme value framework has been studied using solely the Weissman extrapolation method. We challenge this dominance by developing the theory of two classes of semiparametric Generalized Pareto estimators that make more efficient use of tail observations by incorporating the location, scale and shape extreme value parameters: the first class relies on asymmetric least squares estimation, while the second is based on extreme quantile estimation. A comparison with simulated and real data shows the superiority of our proposals for real-valued profit-loss distributions.
Fichier principal
Vignette du fichier
gpdEVaR.pdf (1.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04787798 , version 1 (18-11-2024)

Identifiants

  • HAL Id : hal-04787798 , version 1

Citer

Yasser Abbas, Abdelaati Daouia, Boutheina Nemouchi, Gilles Stupfler. Tail expectile-VaR estimation in the semiparametric Generalized Pareto model. 2024. ⟨hal-04787798⟩
0 Consultations
0 Téléchargements

Partager

More