Communication Dans Un Congrès Année : 2024

IMU-based Monitoring of Buoy-Ballast System through Cable Dynamics Simulation

Résumé

This study is twofold. First, a comprehensive simulation framework of cable dynamics is introduced. This framework considers variable length cables and allows to incorporate elements such as buoys, ballast or Inertial Measurement Unit (IMU) sensors. The accuracy of this framework is assessed through experimental data.Second, a novel and improved solution for the instrumentation of a V-shaped buoy-ballast system using IMU sensors is investigated. This latter, designed for a neutrally buoyant tether between a Remotely Operated Vehicle (ROV) and an Unmanned Surface Vehicle (USV), is meant to improve operation safety. The discussed IMU-based solution provides wider information on the interaction between the ROV and the cable, including its 3D orientation and curvature amplitude, which could be used for both the control of the USV trajectory and its onboard winch.
Fichier principal
Vignette du fichier
IROS24_1459_final_version.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04756297 , version 1 (28-10-2024)

Identifiants

  • HAL Id : hal-04756297 , version 1

Citer

Charly Peraud, Martin Filliung, Cédric Anthierens, Claire Dune, Nicolas Boizot, et al.. IMU-based Monitoring of Buoy-Ballast System through Cable Dynamics Simulation. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024), Oct 2024, Abu Dhabi, United Arab Emirates. ⟨hal-04756297⟩
131 Consultations
19 Téléchargements

Partager

More